Enhancing the Performance of P3HT/Cdse Solar Cells by Optimal Designing of Active Layer

Similar documents
Organic Solar Cell: Optics in Smooth and Pyramidal Rough Surface

Towards a deeper understanding of polymer solar cells

International Journal of Science, Environment and Technology, Vol. 6, No 2, 2017,

Development of active inks for organic photovoltaics: state-of-the-art and perspectives

Charge Extraction from Complex Morphologies in Bulk Heterojunctions. Michael L. Chabinyc Materials Department University of California, Santa Barbara

Planar Organic Photovoltaic Device. Saiful I. Khondaker

Organic solar cells. State of the art and outlooks. Gilles Horowitz LPICM, UMR7647 CNRS - Ecole Polytechnique

Organic Electronic Devices

Vikram Kuppa School of Energy, Environmental, Biological and Medical Engineering College of Engineering and Applied Science University of Cincinnati

Effect of doping on performance of organic solar cells

Challenges in to-electric Energy Conversion: an Introduction

Semiconductor Polymer

Role of Surface Chemistry on Charge Carrier Transport in Quantum Dot Solids

Conjugated Polymers Based on Benzodithiophene for Organic Solar Cells. Wei You

2.626 Fundamentals of Photovoltaics

Quantum Dots for Advanced Research and Devices

Plastic Electronics. Joaquim Puigdollers.

Organic Solar Cells. All Organic solar cell. Dye-sensitized solar cell. Dye. τ inj. τ c. τ r surface states D*/D + V o I 3 D/D.

Mesoporous titanium dioxide electrolyte bulk heterojunction

Synthesis Breakout. Overarching Issues

Photoconductive Atomic Force Microscopy for Understanding Nanostructures and Device Physics of Organic Solar Cells

Photovoltaics. Lecture 7 Organic Thin Film Solar Cells Photonics - Spring 2017 dr inż. Aleksander Urbaniak

Organic Device Simulation Using Silvaco Software. Silvaco Taiwan September 2005

Breaking the Space Charge Limit in Organic Semiconductors by Novel Plasmon-Electrical Concept

Physics of Organic Semiconductor Devices: Materials, Fundamentals, Technologies and Applications

SCAPS Simulation of P3HT:Graphene Nanocomposites-Based Bulk-Heterojunction Organic Solar Cells

Nanomaterials for Hybrid Solar Cells. Silvija Gradečak Department of Materials Science and Engineering, MIT

Flexible Organic Photovoltaics Employ laser produced metal nanoparticles into the absorption layer 1. An Introduction

Theoretical Study on Graphene Silicon Heterojunction Solar Cell

Photovoltaic Cells incorporating Organic and Inorganic Nanostructures

Maria Carmela Di Piazza. Gianpaolo Vitale. Photovoltaic Sources. Modeling and Emulation. ^ Springer

Opto-electronic Characterization of Perovskite Thin Films & Solar Cells

Recent advancement in polymer solar cells

FACULTY OF ENGINEERING ALEXANDRIA UNVERSITY. Solid State lab. Instructors Dr. M. Ismail El-Banna Dr. Mohamed A. El-Shimy TA Noha Hanafy

Time Scaling with System Size for Resistor-Only Warm Up for Photovoltaic Device Simulation

Transparent TiO 2 nanotube/nanowire arrays on TCO coated glass substrates: Synthesis and application to solar energy conversion

Device physics of polymer:fullerene bulk heterojunction solar cells Bartesaghi, Davide

Supplementary material: Nature Nanotechnology NNANO D

Effect of Donor-Acceptor Vertical Composition Profile on Performance of Organic Bulk Heterojunction Solar Cells

Triplet state diffusion in organometallic and organic semiconductors

What will it take for organic solar cells to be competitive?

Solar Cell Materials and Device Characterization

Charge separation in molecular donor acceptor heterojunctions

Appendix 1: List of symbols

Atlas. Device Simulation Framework

Nanoelectronics. Topics

Introduction to semiconductor nanostructures. Peter Kratzer Modern Concepts in Theoretical Physics: Part II Lecture Notes

Nanostructured Electrodes and Their Use in Organic Solar Cells

A. K. Das Department of Physics, P. K. College, Contai; Contai , India.

Fabrication and Characteristics of Organic Thin-film Solar Cells with Active Layer of Interpenetrated Hetero-junction Structure

The driving force dependence of charge Carrier dynamics in donor-acceptor Organic photovoltaic systems using Optical and electronic techniques

The photovoltaic effect occurs in semiconductors where there are distinct valence and

Photonic Devices Human eye: about 400 nm to 700 nm

Organic Electronic Devices

As our population continues to grow, I believe that efficiently harnessing clean, abundant solar energy

Improvement of Photovoltaic Properties for Unmodified Fullerene C 60 -Based Polymer Solar Cells by Addition of Fusible Fullerene

PHOTOVOLTAICS Fundamentals

Forming Gradient Multilayer (GML) Nano Films for Photovoltaic and Energy Storage Applications

Solid State Device Fundamentals

Published in: ELECTRONIC PROPERTIES OF NOVEL MATERIALS - PROGRESS IN MOLECULAR NANOSTRUCTURES

Electroluminescence from Silicon and Germanium Nanostructures

Nanomaterials & Organic Electronics Group TEI of Crete

Conductivity and Semi-Conductors

The influence of doping on the performance of organic bulk heterojunction solar cells

Università degli Studi di Salerno. Dipartimento di Ingegneria dell'informazione, Ingegneria elettrica e matematica applicata

Seminars in Nanosystems - I

Monolayer Semiconductors

Mini-project report. Organic Photovoltaics. Rob Raine

smal band gap Saturday, April 9, 2011

Supporting Information

Research Article P3HT:PCBM Incorporated with Silicon Nanoparticles as Photoactive Layer in Efficient Organic Photovoltaic Devices

ET3034TUx Utilization of band gap energy

Comparison of Ge, InGaAs p-n junction solar cell

Nanotechnology and Solar Energy. Solar Electricity Photovoltaics. Fuel from the Sun Photosynthesis Biofuels Split Water Fuel Cells

Optimizing the performance of metal-semiconductor-metal photodetectors by embedding nanoparticles in the absorption layer

Solid State Device Fundamentals

UNIT I: Electronic Materials.

Defects and Dark Current in Organic Photovoltaics and Impacts on Device Physics

Senior Project Thesis Senior Project Committee, Department of Physics, Case Western Reserve University

Materials Chemistry for Organic Electronics and Photonics

Electrons are shared in covalent bonds between atoms of Si. A bound electron has the lowest energy state.

Numerical model of planar heterojunction organic solar cells

International Journal of Nano Dimension

Sébastien FORGET. Laboratoire de Physique des Lasers Université Paris Nord P13. www-lpl.univ-paris13.fr:8088/lumen/

A. OTHER JUNCTIONS B. SEMICONDUCTOR HETEROJUNCTIONS -- MOLECULES AT INTERFACES: ORGANIC PHOTOVOLTAIC BULK HETEROJUNCTION DYE-SENSITIZED SOLAR CELL

Program and Lecture Schedule of International Workshop on Hybrid Perovskite. Photovoltaic and Optoelectronic Devices (Tentative**)

ELECTRONIC DEVICES AND CIRCUITS SUMMARY

Nanoscale optical circuits: controlling light using localized surface plasmon resonances

Nanoscience galore: hybrid and nanoscale photonics

Introduction to Organic Solar Cells

Organic solar cells with inverted layer sequence incorporating optical spacers - simulation and experiment.

Device 3D. 3D Device Simulator. Nano Scale Devices. Fin FET

Engineering Challenges in Quantum Dot Displays

Organic Photovoltaic Devices. Hole Transfer Dynamics in. Maxim S. Pshenichnikov. Jan C. Hummelen. Paul H.M. van Loosdrecht. Dmitry Paraschuk (MSU)

Modelling and Simulation of organic bulk heterojunction solar cells

Basic Limitations to Third generation PV performance

AMPS - 1D. A. K. Das Department of Physics, P. K. College, Contai; Contai , India.

Characterization of Bi Layer Organic Solar Cell Using Silvaco TCAD Pradeep Kumar 1, Maninder Singh 2

Supplementary Information of. The Role of Fullerenes in Environmental Stability of Polymer:Fullerene Solar Cells

NANO-MORPHOLOGY OF POLYMER BULK HEROJUNCTIONS STUDIED BY TIME- RESOLVED SYNCHROTRON X-RAY SCATTERING SOO KIM

Transcription:

IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 12, Issue 1 Ver. I (Jan. Feb. 2017), PP 23-28 www.iosrjournals.org Enhancing the Performance of P3HT/Cdse Solar Cells by Optimal Designing of Active Layer Fatemeh Rezaei 1, Alireza Kashaniniya 1, Reza Sabbaghi-Nadooshan 1 1 (Department of Electrical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran) Abstract: The present study examined the influence of different condition like as doping, in active layer, on the performance of P3HT/CdSe Solar cells.in this work, we analyzed the best doping for the configuration of P3HT/ CdSe in order to improve the performance of the solar cell. For this aim, we investigated the current density of electrons, the electric field, the short-circuit current and the open-circuit voltage in different doping. The results indicate that when the doping is increased in P3Ht and is decreased in CdSe, the current density of electrons, the electric field, the short-circuit current, and the open-circuit voltage are increased. Finally, we obtained doping of and for electron and hole donor respectively as the best doping for this configuration. Keywords: doping - electric field - efficiency - solar cells I. Introduction The rise of organic materials with semiconductive properties has encouraged the development of organic electronics based on novel electronic devices such as organic light-emitting diodes (OLED), organic solar cells (OSC), organic thin film transistors (OTFT) and etc. Many organic semiconductors can be processed in solutions and deposited layers easily by spinning, casting, printing and etc. This is one of the great advantages of organic semiconductors, because it reduces considerably the cost of electronic devices processing. On the other hand, organic semiconductors have very low charge carrier mobility because of their amorphous or semicrystalline structure. Thus, in organic solar cells the diffusion length of photogenerated carriers is very short because of the poor mobility and therefore, the conventional p-n junction has very limited efficiency for photovoltaic conversion. This drawback of organic semiconductors has been overcome with different solar cell configurations in which the p-n interface has an increased area. The typical configuration consists of a blend of a p-type organic semiconductor as P3HT (poly(3- hexylthiophene)) and an n-type one as PCBM (Phenyl-C61- butyric acid methyl ester). In a proper blend, the interface area is maximized and each semiconductor must be connected to the respective contact to provide the electrical path to the photo-generated electrons and holes, after they are separated at the p-n interface. Another approach is to combine with inorganic semiconductors in organic-inorganic hybrid solar cells. For this, the great availability of inorganic semiconductor nanostructures allows the design of different hybrid solar cell configurations. One of the simplest configurations is the system of semiconductor nano particles with n-type conductivity, such as CdS and CdSe, embedded in a polymeric matrix with p-type conductivity, such as P3HT. In this paper, cadmium selenide is used as electron acceptor and P3Ht as electron donor. First, the architecture of layers structure is determined. Then for the purpose of validation, the paper is simulated using Silvaco, and its current-voltage curve is illustrated. Then the main idea of the paper, which is the change in the amount of doping in donor and acceptor, is presented and the voltage-current curves and quantum efficiency and cell efficiency are illustrated. Finally, the results and conclusion regarding the increase of efficiency, the increase of Voc and Isc are presented in the form of comparison tables. II. Model We utilized Bimolecular Langevin Recombination Model in order to determine recombination rate. [1] [2] [3] [4] [5] [6] The Langevin recombination rate coefficient has been given in literature by equation: rl x,y,t =qε ε0 E + E (1) Where and are electron and hole mobility respectively.the electron-to-hole mobility ratio β is defined by: β= (2) The Langevin recombination rate is given by: DOI: 10.9790/1676-1201012328 www.iosrjournals.org 23 Page

RL n, x,y,t =rl x,y,t ni2 (3) Where n is electron density, p is hole density and is the intrinsic concentration.the Langevin recombination rate is included in recombination terms in the carrier continuity equations (equations 4 and 5). The continuity equations for electrons and holes are defined by equations: n t=1qdiv + (4) p t=1qdiv + (5) Where n and p are the electron and hole concentration, and are the electron and hole current densities, and are the generation rates for electrons and holes, and are the recombination rates for electrons and holes, and q is the magnitude of the charge on an electron. Furthermore, we used singlet and triplet model for exchange between charged carrier and singlet and triplet excitons (in SILVACO Atlas). Almost, ray tracing based on geometrical optic principles has been utilized in order to simulate optoelectronic devices. But in this case, we used Beam Propagation Method because we need a method that takes into account the wave nature of light. The BPM in ( LUMINOUS in silvaco environment ) has been extended to solve a more general Helmholtz Wave Equation (Equation 6). 2E( r,t) n2c2 2E r,t t2=0 (6) Here, E is the electric field of an optical wave, n is the complex refractive index of the material, and c is the speed of light in vacuum. We need to know almost all physical parameters of each layer in the organic solar cell in order to simulate parameters such as hole and electron mobility, band gap energy, density of state, LUMO, HOMO and dielectric constant. We seek to simulate the polymer cell Zno/P3HT:CdSe/Mo in the two-dimensional silvaco atlas environment. Since polymer materials are limited in this software environment, we need to define the P3Ht polymer material. one of the reasons for using P3Ht is the small size of the band gap and its high donor ability compared with other polymers. We have also used Molybdenum because of its low thermal expansion coefficient, which will help the matter have a lower expansion when exposed to increased temperature. Also Zno with its high work function is considered a positive factor for increasing the efficiency. In this work, we investigate the influence of material dopings on performance of proposed solar cells. III. Simulation Using Silvaco We are going to simulate the polymer cell Zno/P3HT:CdSe/Molybdenum in two-dimensional Silavo ATLAS simulator. Since polymer materials are limited in this software, the polymer P3Ht should be defined. One of the reasons for using P3Ht is the short length of the gap band and that it is a greater donor than other polymers. Molybdenum is also used for its low thermal expansion coefficient. This decreases the expansion of Molybdenum caused by the increase of temperature. Zno also has a high work function, which is considered a positive factor for the increase of efficiency. For cell simulation, we used singlet, langevin, pfmob, and print models for cell formation and simulation in Silvaco. IV. The Effect of Doping In Electron Donor (P3HT) Layer Regulating the doping in electron donor is one effective way to improve the performance of our proposed cell. In order to analyzing this parameter, in begging we consider for doping in electron donor. Fig1. Configuration, current density and electric field of the P3HT/CdSe solar cells with in electron donor. for doping DOI: 10.9790/1676-1201012328 www.iosrjournals.org 24 Page

In next step, we consider for doping in electron donor. Fig2. Configuration, current density and electric field of the P3HT/CdSe solar cells with in electron donor. for doping Fig3. Current- voltage curve of the P3HT/CdSe solar cells with doping in electron donor. Therefore, we should specify a optimize mount for doping in electron donor. There are different approaches for this aim such as neural network, Statistical calculations and trial and error, using equation. We can see, specify a optimize mount for doping and in electron donor and hole donor, respectively. Fig4. Configuration, current density and electric field of the P3HT/CdSe solar cells with doping and in electron donor and hole donor, respectively. DOI: 10.9790/1676-1201012328 www.iosrjournals.org 25 Page

Fig5. Refractive index and current-voltage curve of the P3HT/CdSe solar cells with doping and in electron donor and hole donor, respectively. We consider V. Regulating Doping In Hole Donor for doping Fig6. Configuration, current density and electric field of the P3HT/CdSe solar cells with doping After optimization, the concentration value of was found for doping Fig3. Current- voltage curve of the P3HT/CdSe solar cells with doping DOI: 10.9790/1676-1201012328 www.iosrjournals.org 26 Page

We consider for doping Fig6. Configuration, current density and electric field of the P3HT/CdSe solar cells with doping After optimization, the concentration value of was found for doping Fig3. Current- voltage curve of the P3HT/CdSe solar cells with doping Fig4. Configuration, current density and electric field of the P3HT/CdSe solar cells with doping DOI: 10.9790/1676-1201012328 www.iosrjournals.org 27 Page

Table 1.show the comparison between the achieved output parameters for our optimized ZnO/P3HT : CdSe /Mo with the achieve results in [15 ] and [16 ],which indicates good improvement in both PCE and FF. Cell Efficiency (PCE) Fill Factor (FF) Ref. Zno/P3Ht:CdSe/Molybdenum 1.248 0.78 This work ITO/P3HT:CdSe/Ag 0.14 0.3 [15] ITO/ZNO/PCBM/MOO3 0.31 0.42 [16] VI. Conclusion In this article, first, we analyzed the best doping for the configuration of P3HT/ CdSe in order to improve the performance of the solar cell. For this aim, we investigated the current density of electrons, the electric field, the short-circuit current, and the open-circuit voltage in different doping. The results indicate that when the doping is increased in P3Ht and is decreased in CdSe, the current density of electrons, the electric field, the short-circuit current, and the open-circuit voltage are increased. Finally, we obtained doping of and for electron donor and hole donor as the optimum doping for this configuration. References [1]. H. Altas. 2007. A Photovoltaic Array Simulation Model for Matlab-Simulink GUI Environment. Dept. of Electrical and Electronics Engineering, Karadeniz Technical University, Trabzon, Turkey. IEEE. [2]. J.M. Enrique.2007. Theoretical assessment of the maximum power point tracking efficiency of photovoltaic facilities with different converter topologies. Departamento de Ingenierı a Electro nica, de Sistemas Informa ticos y Automa tica, Universidad de Huelva, Spain [3]. Ismail H. Altas.2007. A Novel Photovoltaic Online Search Algorithm for Maximum Energy Utilization. Department of Electrical and Electronics Engineering 61080, Trabzon - Turkey [4]. Marcelo Gradella Villalva. MAY 2009. Comprehensive Approach to Modeling and Simulation of Photovoltaic Arrays. IEEE Transactions on Power Electronics, Vol. 24, No. 5 [5]. Dezso Sera, Student Member. July 2008. Optimized Maximum Power Point Tracker for Fast-Changing Environmental Conditions. IEEE Transactions on Industrial Electronics, Vol. 55, No. 7 [6]. Kashif Ishaque a, Zainal Salam.2011. Modeling and simulation of photovoltaic (PV) system during partial shading based on a twodiode model. Faculty of Electrical Engineering, Universiti Teknologi Malaysia, UTM 81310, Skudai, Johor Bahru, Malaysia Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan [7]. Nasr Eddine Chabane Sari, Prof.2014. Electrical stimulation of organic solar cell based on CuPc/C60 heterojunctions. IEEE [8]. Trung Dang Minh. 12 November 2015.P3HT:PCBM, best seller in polymer photovoltaic research. DOI: 10.1002/adma.201100792 Source: PubMed [9]. Zhengguo Xiao, Qingfeng Dong.2015. Efficiency Enhancement in Polymer Solar Cells With a Polar Small Molecule Both at Interface and in the Bulk Heterojunction Layer. IEEE JOURNAL OF PHOTOVOLTAICS, VOL. 5, NO. 5. [10]. Matthew J. Greaney and Richard L. Brutchey.2015. Ligand engineering in hybrid polymer: nanocrystal solar cells. Materials Today, Volume 18, Number 1. [11]. Shenqiang Ren, Liang-Yi Chang, 2011. Inorganic_Organic Hybrid Solar Cell: Bridging Quantum Dots to Conjugated Polymer Nanowires.nano letter. [12]. Patrick R. Brown.2014. Energy Level Modification in Lead Sulfide Quantum Dot Thin Films through Ligand Exchange. American Chemical Society [13]. Liang Shen, Wenjuan Yu.2013. Performance Improvement of Low-Band-Gap Polymer Solar Cells by Optical Microcavity Effect. IEEE ELECTRON DEVICE LETTERS, VOL. 34, NO. 1. [14]. Ehsan H. Sabbar, Mustafa H.2012. A Fabricated Solar Cell from ZnO/a-Si/Polymers. [15]. International Journal of Advanced Science and Technology Vol. 44, July. [16]. A. Sánchez-Martínez and Etal,2015. Solution Processable P3HT/CdS Hybrid Solar Cells with Different Layer Configurations. Int. J. Electrochem. Sci., Vol. 10 [17]. Wenbo Wang and Etal,2014. Optical simulations of P3HT/Si nanowire array hybrid solar cells.nanoscale Research Letter DOI: 10.9790/1676-1201012328 www.iosrjournals.org 28 Page