Numerical Integration by using Straight Line Interpolation Formula

Similar documents
Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right:

Convergence rates of approximate sums of Riemann integrals

B. Examples 1. Finite Sums finite sums are an example of Riemann Sums in which each subinterval has the same length and the same x i

Approximations of Definite Integrals

Numerical Solutions of Fredholm Integral Equations Using Bernstein Polynomials

1. (25 points) Use the limit definition of the definite integral and the sum formulas to compute. [1 x + x2

Numerical Solution of Fuzzy Fredholm Integral Equations of the Second Kind using Bernstein Polynomials

The Definite Riemann Integral

( ) dx ; f ( x ) is height and Δx is

n 2 + 3n + 1 4n = n2 + 3n + 1 n n 2 = n + 1

Numerical Integration - (4.3)

Trapezoidal Rule of Integration

Approximate Integration

f ( x) ( ) dx =

The Reimann Integral is a formal limit definition of a definite integral

Convergence rates of approximate sums of Riemann integrals

Trapezoidal Rule of Integration

Some New Iterative Methods Based on Composite Trapezoidal Rule for Solving Nonlinear Equations

Closed Newton-Cotes Integration

The Elementary Arithmetic Operators of Continued Fraction

Simpson s 1/3 rd Rule of Integration

lecture 16: Introduction to Least Squares Approximation

Math1242 Project I (TI 84) Name:

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k.

Limit of a function:

1.3 Continuous Functions and Riemann Sums

the midpoint of the ith subinterval, and n is even for

General properties of definite integrals

12.2 The Definite Integrals (5.2)

Second Mean Value Theorem for Integrals By Ng Tze Beng. The Second Mean Value Theorem for Integrals (SMVT) Statement of the Theorem

Error Analysis of the High Order Newton Cotes Formulas

EVALUATING DEFINITE INTEGRALS

THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK SUMMER EXAMINATION 2005 FIRST ENGINEERING

The Definite Integral

1.1 The FTC and Riemann Sums. An Application of Definite Integrals: Net Distance Travelled

Numerical Methods. Lecture 5. Numerical integration. dr hab. inż. Katarzyna Zakrzewska, prof. AGH. Numerical Methods lecture 5 1

COMPOSITE TRAPEZOID RULE FOR THE RIEMANN-STIELTJES INTEGRAL AND ITS RICHARDSON EXTRAPOLATION FORMULA

AN INEQUALITY OF GRÜSS TYPE FOR RIEMANN-STIELTJES INTEGRAL AND APPLICATIONS FOR SPECIAL MEANS

AP Calculus Notes: Unit 6 Definite Integrals. Syllabus Objective: 3.4 The student will approximate a definite integral using rectangles.

POWER SERIES R. E. SHOWALTER

Quadrature Methods for Numerical Integration

Chapter System of Equations

Schrödinger Equation Via Laplace-Beltrami Operator

Numerical Integration

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best

On The Homogeneous Quintic Equation with Five Unknowns

4. When is the particle speeding up? Why? 5. When is the particle slowing down? Why?

Definite Integral. The Left and Right Sums

The Basic Properties of the Integral

Linford 1. Kyle Linford. Math 211. Honors Project. Theorems to Analyze: Theorem 2.4 The Limit of a Function Involving a Radical (A4)

Important Facts You Need To Know/Review:

Crushed Notes on MATH132: Calculus

Math 3B Midterm Review

8.1 Arc Length. What is the length of a curve? How can we approximate it? We could do it following the pattern we ve used before

Chapter 7 Infinite Series

( ) k ( ) 1 T n 1 x = xk. Geometric series obtained directly from the definition. = 1 1 x. See also Scalars 9.1 ADV-1: lim n.

{ } { S n } is monotonically decreasing if Sn

Sequence and Series of Functions

MA123, Chapter 9: Computing some integrals (pp )

Exponential and Logarithmic Functions (4.1, 4.2, 4.4, 4.6)

The Weierstrass Approximation Theorem

MATH 104 FINAL SOLUTIONS. 1. (2 points each) Mark each of the following as True or False. No justification is required. y n = x 1 + x x n n

Options: Calculus. O C.1 PG #2, 3b, 4, 5ace O C.2 PG.24 #1 O D PG.28 #2, 3, 4, 5, 7 O E PG #1, 3, 4, 5 O F PG.

Review of the Riemann Integral

F x = 2x λy 2 z 3 = 0 (1) F y = 2y λ2xyz 3 = 0 (2) F z = 2z λ3xy 2 z 2 = 0 (3) F λ = (xy 2 z 3 2) = 0. (4) 2z 3xy 2 z 2. 2x y 2 z 3 = 2y 2xyz 3 = ) 2

ANALYSIS HW 3. f(x + y) = f(x) + f(y) for all real x, y. Demonstration: Let f be such a function. Since f is smooth, f exists.

ENGINEERING PROBABILITY AND STATISTICS

Elementary Linear Algebra

Double Sums of Binomial Coefficients

Chapter 2 Infinite Series Page 1 of 9

We will begin by supplying the proof to (a).

Course 121, , Test III (JF Hilary Term)

MTH 146 Class 16 Notes

Section IV.6: The Master Method and Applications

Certain sufficient conditions on N, p n, q n k summability of orthogonal series

MAS221 Analysis, Semester 2 Exercises

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx),

Chapter 5. The Riemann Integral. 5.1 The Riemann integral Partitions and lower and upper integrals. Note: 1.5 lectures

 n. A Very Interesting Example + + = d. + x3. + 5x4. math 131 power series, part ii 7. One of the first power series we examined was. 2!

Green s Function Approach to Solve a Nonlinear Second Order Four Point Directional Boundary Value Problem

f(t)dt 2δ f(x) f(t)dt 0 and b f(t)dt = 0 gives F (b) = 0. Since F is increasing, this means that

Orthogonal functions - Function Approximation

Riemann Integration. Chapter 1

Review of Sections

LEVEL I. ,... if it is known that a 1

UNIVERSITY OF BRISTOL. Examination for the Degrees of B.Sc. and M.Sci. (Level C/4) ANALYSIS 1B, SOLUTIONS MATH (Paper Code MATH-10006)

A GENERAL METHOD FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS: THE FROBENIUS (OR SERIES) METHOD

Infinite Series Sequences: terms nth term Listing Terms of a Sequence 2 n recursively defined n+1 Pattern Recognition for Sequences Ex:

Handout #2. Introduction to Matrix: Matrix operations & Geometric meaning

5.1 - Areas and Distances

BRAIN TEASURES INDEFINITE INTEGRATION+DEFINITE INTEGRATION EXERCISE I

SUTCLIFFE S NOTES: CALCULUS 2 SWOKOWSKI S CHAPTER 11

INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS)

INFINITE SERIES. ,... having infinite number of terms is called infinite sequence and its indicated sum, i.e., a 1

GRAPHING LINEAR EQUATIONS. Linear Equations. x l ( 3,1 ) _x-axis. Origin ( 0, 0 ) Slope = change in y change in x. Equation for l 1.

APPROXIMATE INTEGRATION

Theorem 5.3 (Continued) The Fundamental Theorem of Calculus, Part 2: ab,, then. f x dx F x F b F a. a a. f x dx= f x x

Test Info. Test may change slightly.

Limits and an Introduction to Calculus

EXERCISE a a a 5. + a 15 NEETIIT.COM

Transcription:

Glol Jourl of Pure d Applied Mthemtics. ISSN 0973-1768 Volume 13, Numer 6 (2017), pp. 2123-2132 Reserch Idi Pulictios http://www.ripulictio.com Numericl Itegrtio y usig Stright Lie Iterpoltio Formul Mhesh Chlpuri* d J Suchrith 1,2 Deprtmet of Mthemtics, Osmi Uiversity, Hyderd-07, Idi Astrct The prolems of umericl itegrtio is to fid pproximte vlue of the Defiite Itegrl. I this pper we fid pproximte vlue of the Defiite Itegrl y usig Stright lie Iterpoltio formul. This formuls useful for equl d uequl spce poits. Keywords:Numericl Itegrtio,Numericl methods,averge rule 1 INTRODUCTION With the dvet of the moder high speed electroic digitl computer, the Numericl Itegrtio hve ee successfully pplied to study prolems i Mthemtics, Egieerig, Computer Sciece d Physicl Sciece. Numericl itegrtio, lso clled Qudrture, is the study of how the umericl vlue of defiite itegrl c e foud. The purpose of this pper is to give ew method to fid pproximte clcultio of defiite itegrl (1) I = f(x)dx where f(x) is itegrle, i the Riem sese o [ ]. The limit of the itegrtio my e fiite or semi-fiite. The meig of the itegrtio (1) is the Are of fig. (1). It's ouded re y three stright lies y=0, x=, x= d oe curve f(x).

2124 Mhesh Chlpuri d J Suchrith Figure 1: Vlue of Defiite itegrl I this pper, we develop stright lie equtio y(x) = 1 + 2 x such tht (2) I = f(x)dx y(x)dx The grphicl meig of ove itegrl is, there exist res A d B such tht A=B, see fig: 1 2 PRELIMINARIES Defitio2. 1: The Itegrtio (1) is pproximted y fiite lier comitio of vlue of f(x) i the form (3) I = f(x)dx = λ k f k k=0 where x k, k=0,1,..., re clled the scisss or odes distriuted withi the limits of itegrtio [ ] d λ k, k=0,1,..., re clled weight of the itegrtio rule of the qudrture formul. The error costet of (3) is give s (4) E = f(x)dx λ k f k k=0 Defitio2. 2: Order of ccurcy, or precisio, of Qudrture formul is the lrgest positive iteger such tht the formul is exct for x k, for ech k = 0,1,...,. Defitio2. 3: The smllest polyomil is lier polyomil, the stright lie. Lest squre stright lie pproximtios re extremely useful d commo pproximte fit. Give +1

Numericl Itegrtio y usig Stright Lie Iterpoltio Formul 2125 dt poits (x i, f i ),1,..., the the est stright lie through the set of dt poits is y = 1 + 2 x, where 1 d 2 re stisfy the equtios (5) 1 ( + 1) + 2 x i = f(x i ), 1 x i + 2 x 2 i = x i f(x i ). The equtio (5) is clled orml-equtio of lest squre fit. They c solve for 1 d 2 y Guss Elimitio method. Theorem 1 y(x) is stright lie iterpoltio equtio of the cotiuous d itegrle fuctio f(x) o[,].the (6) y(x i ) f(x i ) where =, x = Proof. :-Let y(x) = 1 + 2 x where 1, 2 re costts the y( ) = 1 + 2 d y(x 1 ) = 1 + 2 x 1 d so o y(x ) = 1 + 2 x. ddig ll we get y(x i ) = ( + 1) 1 + 2 pply Norml Equtio (4) we get x i y(x i ) f(x i ) Theorem 2 Let y(x) is iterpoltio polyomil equtio of the cotiuous d itegrle fuctio f(x) o[,] d y(x i ) f(x i ), where = >, x = < if d oly if x x ydx fdx. As, itegrtio of f o [ ] is pproch to itegrtio of y(x) o [ ]. Proof. Multiplyig with h d limit h 0 i (6), we get It gives theorem lim h h 0 =0 y(x ) = lim h 0 h =0 f(x ).

2126 Mhesh Chlpuri d J Suchrith 3 MAIN RESULTS The odes x i,,1,2..., re equispced with =, x = with spcig h=(-)/.we fit stright lie y(x) = 1 + 2 x with +1 dt poits (, f 0 ), (x 1, f 1 ),..., (x, f ). But we kow x i = + x 1 +... +x = + + h+... + + h = ( + 1) + h( + 1), 2 x i 2 = ( + 1) + h( + 1)(2 + 1) /6 + h 2 2 ( + 1) 2 /4, x i f i = x o f i + h if i. Solve the Norml equtio for 1 d 2, we get 1 = f i x i 2 x i x i f i ( + 1) x i 2 ( x i) 2 2 = ( + 1) x i f i x i f i ( + 1) x i 2 ( x i) 2 Sustitutig ove vlues i 1, 2 we get 1 = 2 h( + 1)( + 2) [(3 + h( + 1)) f i 3( + x ) if i ] 2 = 6 h( + 1)( + 2) [2 if i i f i ] y = 1 + 2 x is the est stright lie pproximte fit to f(x) o [ ]. (7) I = f(x)dx ydx = ( 1 + 2 x)dx = 1 h + 2h( + ) 2 = 1 h + 2 h(2 + h)/2 sustitutig 1 d 2, we get umericl solutio of give itegrtio, (8) we lso write x f(x)dx = f(x)dx h + 1 f(x i ) x f(x)dx h(f i s verge)

Numericl Itegrtio y usig Stright Lie Iterpoltio Formul 2127 or f(x)dx ( )(f i s verge) I this pper ove formul is clled Averge rule of umericl itegrtio of f(x). This method is exct for polyomil of degree 1, hece is of order 1. Error estimte The error of the this rule is x E = x 2 dx (x ) + 1 ( 2 + x 2 1 + x 2 2 +... +x 2 ) = h 3 2 /6 there fore the (9) R = E 2! f" (ξ) = h3 2 ( )3 f"(ξ) = 12 12 f"(ξ), where ξ [ ]. So we kow from (9), the error of (9) is iverse proportiol to umer of suitervls(i.e R 1/). Other proof of Averge rule,we fit lest squre stright lie y = l for the discrete dt (x i, f i ),,1,...,, where x i s re eed't e equispced poits, we hve i.e or so I = I(l) = (f i y i ) 2 = miimum x f(x)dx = di dl = 2(f i l).1 = 0 ( ) = + 1 f(x i ) l = 1 + 1 f i. x f(x) x ydx = ldx = l(x ) Note:-This rule does ot depedig o h, so this rule c e use for uequispced odes x i s. The grphiclly meig of Averge rule is, suppose the crossig pits of f(x) d y re P[l 1, m 1 ] d Q[l 2, m 2 ]. See grph fig: 2 A,B d C re res of itegrtio (f(x) y) from limits to l 1, l 1 to l 2 d l 2 to respectively. The the vlues of B, A+C re pproximtely sme. i.e B A+C.

2128 Mhesh Chlpuri d J Suchrith Figure 2: Grph of Averge rule The ifiite series i=1 f(x i ) is covergece if x 1 f(x) is fiite. We hve Averge rule x f(x)dx x 1 Write d h=1 we get lim ( 1)h i=1 ( 1)h f(x i ). i=1 f(x i ) f(x)dx x 1 f(x i ) f(x)dx. i=1 x 1 This is sme s itegrl test of ifiite series. Hece the theorem. Note:-Let, (, + ), d or h 0 the f(x)dx = lim [ h + 1 f(x i )] = lim h 0 [h f(x i )]. 3.1 Composite Formule To void the use of higher order methods d still oti ccurte results, we use the composite itegrtio methods. We divide the itervl [, ] ito umer of suitervls d evlute the itegrl i ech suitervl y prticulr method. We c derive composite formule from Averge rule x f(x)dx = f(x)dx h + 1 f(x i )

Numericl Itegrtio y usig Stright Lie Iterpoltio Formul 2129 3.1.1 Trpezoidl rule We divide the itervl [ ] ito suitervl, ech of legth h=(-)/. we deote the suitervl s (, x 1 ), (x 1, x 2 ),..., (x 1, x ) where =, x = d x i = + ih, i=1,2,...,. We write x f(x)dx+... + f(x)dx x 1 x 1 x 2 I = f(x)dx = f(x)dx + x 1 write =1 i verge rule d pply to ech itegrtio we get (10) f(x)dx h 2 (f 0 + f + 2 f i ) i=1 this formul is clled composite Trpezoidl rule or 1/2 Averge rule. 3.1.2 1/3-Averge rule I usig the 1/3 Averge rule, we eed three scisss. We divide the itervl [ ] i eve umer of suitervls of equl legth givig odd umer of scisss. If we divide the itervl [ ] ito 2N suitervl ech of legth h=(-)/(2n), the we get 2N+1 scisss, x 1,..., x 2N, x = + ih i=1,2...,2n-1.we write I = x f(x)dx = x 2 f(x)dx + x 4 f(x)dx+... + x 2N f(x)dx. x 2 x 2N 2 We write =2 i Avrge we get I = x f(x)dx = 2h [(f 3 0 + f 1 + f 2 ) + (f 2 + f 3 + f 4 )+... +(f 2N 2 + f 2N 1 + f 2N )] (11) I = x f(x)dx 1 = 2h 3 (f 0 + f 1 + f 3 + f 5 +... +f 2N 1 + f 2N + 2(f 2 + f 4 +... +f 2N 2 )) This formul is clled 1/3-Averge rule. 3.1.3 Geerl form of 1/(m+1)-Averge rule I usig the 1/(m+1)-Averge rule, we eed mn+1 scisss. We divide the itervl [ ] i mn umer of suitervls of equl legth givig mn+1 umer of scisss. If we divide the itervl [ ] ito mn suitervl ech of legth h=(-)/(mn), the we get mn+1 scisss, x 1,..., x mn, x = + ih i=1,2...,mn-1.we write I = x f(x)dx = x m We write =m i Avrge we get f(x)dx + x 2m x m f(x)dx+... + x mn x m(n 1) f(x)dx. I = x f(x)dx = mh x [(f 0 m+1 0 + f 1 + f 2 +... +f m ) + (f m + f m+1 + f m+2 +... +f 2m )+... + +(f mn m + f mn (m 1) + f mn 1 + f 2N )]

2130 Mhesh Chlpuri d J Suchrith x (12) I = f(x)dx = mh m + 1 [2(f m + f 2m +... +f m(n 1) ) + f 0 + f 1 +... +f m 1 + f m+1 +... +f mn ] this formul is clled 1/(m+1)-Averge rule. 4 PROBLEMS Prolem 1 Fid the pproximte vlue of 1 1 I = 0 2 + x dx, usig Averge rule with differet equl suitervls. Usig the exct solutio, fid the solute errors. Solutio:Results for the Averge rule to estimte the itegrl of f(x) = 1/(2 + x) from x = 0 to 1. The exct vlue is I exct = 1 1/(2 + x)dx = log(3) 0 log(2)=0.4055. We hve I = f(x)dx = x f(x)dx h +1 f(x i ) I Error=I I exct 1 0.41665 0.01115 2 0.4111 0.0056 4 0.4083 0.0028 8 0.4069 0.0014 16 0.4062 0.0007 32 0.4058 0.0003 64 0.4056 0.0001 This rule slowly covergece to exct vlue I d the error is hlf if is dle. So exct vlue come from =124 for four deciml plces. Prolem 2 Fid the pproximte vlue of 3 2 f(x)dx, usig tle x 2 2.1 2.3 2.6 2.7 2.85 3 f(x) 2.463 2.3948 2.325 2.3375 2.3656 2.4272 2.5107

Numericl Itegrtio y usig Stright Lie Iterpoltio Formul 2131 Solutio I this prolem h is ot equl to ll itervl, But we c pply Averge rule to this prolem.we hve I = 3 (3 2) f(x)dx = (f(x 2 0 ) + f(x 1 )+... +f(x 6 )) 7 = 1 (2.463 + 2.3948 + 2.325 + 2.3375 + 2.3656 + 2.4272 + 2.5107) 7 = 16.8238 7 = 2.4034. Prolem 3 Fid pproximte vlue of I = 3 1 si(x)ex dx fit stright lie y(x) such tht 3 y(x)dx = I. 1 Solutio:Let f(x) = si(x)e x d y e the stright lie y fit +1 dt poits (x i, f(x i )),,1,2,..,. Now we divide the itervl [1 3] ito two equl suitervl, tht is = 2 or h = 1. the 3 dt poits re (1, f(1)), (2, f(2)) d (3, f(3)). we fit stright lie y 2 y orml equtio (5) we get y 2 = 0.27x + 3.4 followig this we get y 4 = 0.78x + 3.15 y 8 = 1.17x + 2.77 y 16 = 1.39x + 2.51 y 32 = 1.51x + 2.36 d y 64 = 1.57x + 2.28. But we kow if the 3 y 1 (x)dx 3 f(x)dx. there fore I = 1 3 (1.57x + 1 2.28)dx = 10.84. the figure (3) shows tht the covergece of y (x) Figure 3: Covergece of y (x)

2132 Mhesh Chlpuri d J Suchrith 5 CONCLUSION We develop this ew method for esy to solve Defiite Itegrl of fiite itervl with equispced odes.if we hve ot equispced dt poit the we c use this Averge rule for itegrtio o give compct itervl (exmple 4.2 is exmple of this cocept). This method is esy to evlute of defiite itegrl. The Error is esy to derive. It's lier se cocept, we re developig this cocept to hight degree polyomils d defiite itegrl of this polyomil is sme s defiite itegrl of give fuctio o compct itervl [ ]. Also we develop this cocept to high dimesio. We re reserched out the odes, there re o fixed odes for give exct vlue of itegrtio for ll itegrle fuctios f(x). ACKNOWLEDGEMENTS We grtefully ckowledge the support of the UGC(Uiversity Grts Commissio) JRF d NET Fellowship,Idi. REFERENCES [1] M. Cocepcio Ausi, 2007, A Itroductio to Qudrture d Other Numericl Itegrtio Techiques, Ecyclopedi of Sttistics i Qulity d reliility. Chichester, Egld. [2] Gordo K. Smith, 2004, Numericl Itegrtio, Ecyclopedi of Biosttistics.2d editio, Vol-6 [3] Rjesh Kumr Sih, Rkesh Kumr,2010, Numericl method for evlutig the itegrle fuctio o fiite itervl, Itertiol Jourl of Egieerig Sciece d Techology.Vol-2(6) [4] Gerry Sozio, 2009, Numericl Itegrtio, Austrli Seior Mthemtics Jourl, Vol-23(1) [5] J. Oliver, 1971, The evlutio of defiite itegrls usig high-order formule, The Computer Jourl, Vol-14(3) [6] S.S Sstry, 2007, Itroductory Method of Numericl Alysis, Fourth Editio, Pretice-hll of Idi Privte Limited. [7] Richrd L. Burde, 2007, Numericl Alysis, Seve Editio, Itertiol Thomso Pulishig Compy. [8] Joh H. Mthew, 2000, Numericl Method for Mthemtics, Sciece d Egieerig, Secod Editio, Pretice Hll of Idi Privte Limited. [9] Dvid Kicid, Wrd Cheey, Numericl Alysis Mthemtics of Scietific Computig, Idi Editio, Americ Mthemticl Society, Third editio, 2010 pge o.478-507 [10] M.K Ji, S.R.K. Iyegr, R.K. Ji, Numericl Methods for Scietists d Egieers Computtio.2005, pge 291-310 d 356-403. [11] Steve C. Chpr.Applied Numericl Methods with MATLABÂ for Egieers d Scietists, Third Editio.2012, pge o. 462-492.