Will LHCb be running during the HL-LHC era? Burkhard Schmidt for the LHCb Collaboration

Similar documents
LHCb Overview. Barbara Storaci on behalf of the LHCb Collaboration

PoS(HQL 2012)021. The LHCb upgrade. Tomasz Szumlak 1

The LHCb Upgrade. On behalf of the LHCb Collaboration. Tomasz Szumlak AGH-UST

Early physics with the LHCb detector

b Physics Prospects For The LHCb Experiment Thomas Ruf for the LHCb Collaboration Introduction Detector Status Physics Program

Flavour Physics at LHC

The LHCb Upgrade and beyond

LHCb results and prospects

Physics opportunities with an upgraded LHCb detector in the HL-LHC era

ALICE and LHCb in the HL-LHC era

LHCb Discovery potential for New Physics

Recent results from the LHCb experiment

Physics potential of ATLAS upgrades at HL-LHC

PoS(QFTHEP2011)002. Recent results from LHCb. Yu. Guz IHEP, Protvino, Russia

Design of the new ATLAS Inner Tracker for the High Luminosity LHC era

LHCb: From the detector to the first physics results

Flavor Physics beyond the SM. FCNC Processes in the SM

The FP420 R&D Project

The LHCb experiment

Future and Prospects for Heavy Flavour Physics at LHC

Upgrade of ATLAS and CMS for High Luminosity LHC: Detector performance and Physics potential

LHCb Semileptonic Asymmetry

Yiming Li (LAL, Orsay) On behalf of the LHCb and MoEDAL collaborations

arxiv: v1 [hep-ex] 2 Dec 2010

Status of the LHCb Experiment. Ueli Strauman, University of Zurich, Switzerland. Sept. 13, 2001

Future Belle II experiment at the KEK laboratory

Identifying Particle Trajectories in CMS using the Long Barrel Geometry

LHC State of the Art and News

Interface with Experimental Detector in the High Luminosity Run

The LHCb detector. Eddy Jans (Nikhef) on behalf of the LHCb collaboration

LHCb Calorimetry Impact

The LHCb Flavour Physics Experiment

(Towards) First Physics with LHCb

The HL-LHC physics program

LHC operation in 2015 and prospects for the future

The LHCb Upgrade. Status of LHCb The pre upgrade years. Running scenario A few selected channels.

Hadron Spectroscopy at LHCb. Hadron Spectroscopy. Results from LHCb. Lucio Anderlini (INFN Firenze) on behalf of the LHCb Collaboration

LHCb: Reoptimized Detector & Tracking Performance

Physics opportunities with LHCb and its planned upgrade

Early Physics with the CMS detector at LHC

CMS Conference Report

LHCb in the HL-LHC era A very high luminosity flavor physics experiment at LHC

Status and prospects of the LHCb experiment

LHC accelerator status and prospects. Frédérick Bordry Higgs Hunting nd September Paris

LHCb status. Marta Calvi. for the LHCb Collaboration. 103 rd LHCC meeting University Milano-Bicocca and INFN

(a) (b) Fig. 1 - The LEP/LHC tunnel map and (b) the CERN accelerator system.

Search for NP with B s ->m + m - and B->K *0 m + m -

Operation and Performance of the LHCb experiment

Studies of top pair production in the fully hadronic channel at LHC with CMS

Large Hadron Collider at CERN

Heavy Flavour Physics at the LHC. Lessons from the first phase of the LHC DESY 27 September 2012

e + e - (1) Silicon Vertex Detector

The Compact Muon Solenoid Experiment. Conference Report. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland. Top physics at HL-LHC

UNIVERSITÀ DEGLI STUDI DI MILANO - BICOCCA DIPARTIMENTO DI FISICA G. OCCHIALINI CORSO DI DOTTORATO IN FISICA E ASTRONOMIA CICLO XXVII

R. Mureşan. University of Oxford On behalf of LHCb Collaboration. Prepared for the CERN Theory Institute "Flavour as a Window to New Physics at LHC"

T.Hebbeker LHC. performance, physics, plans. Thomas Hebbeker KET

Search for K + π + νν decay at NA62 experiment. Viacheslav Duk, University of Birmingham for the NA62 collaboration

Status of the LHCb experiment and minimum bias physics

Searches for exotica at LHCb

PoS(IHEP-LHC-2011)011

Diameter 8.5 km Beam energy: 7 TeV Luminosity: Protons/bunch: 1.15x10 11 Bunches: 2808 Bunch spacing: 25 ns

CLICdp work plan and foreseen documents in preparation for the next European Strategy Update

Walter Hopkins. February

Photon photon and photon nucleus physics at the LHC

Status and expectations for first physics with LHCb. M. Needham On behalf of the LHCb collaboration Symmetries and Spin July 20 th - 26 th Prague

Searches for Long-Lived Particles in ATLAS: challenges and opportunities of HL-LHC

Frederic Teubert CERN, EP Department

The LHC Heavy Flavour Programme

THE ATLAS TRIGGER SYSTEM UPGRADE AND PERFORMANCE IN RUN 2

Selected physics highlights from LHCb. Neville Harnew University of Oxford

Year- 1 (Heavy- Ion) Physics with CMS at the LHC

LHC: PAST, PRESENT AND FUTURE

Risultati dell esperimento ATLAS dopo il run 1 di LHC. C. Gemme (INFN Genova), F. Parodi (INFN/University Genova) Genova, 28 Maggio 2013

Observation of the rare B 0 s µ + µ decay

Commissioning of the LHC collimation system S. Redaelli, R. Assmann, C. Bracco, M. Jonker and G. Robert-Demolaize CERN, AB department

Recent LHCb measurements of Electroweak Boson Production in Run-1

The Compact Muon Solenoid Experiment. CMS Note. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland. CMS prospects for heavy flavour physics

Status and Outlook of the LHC

Overview of LHCb Experiment

Future of LHC. Beate Heinemann. University of California, Berkeley Lawrence Berkeley National Laboratory

Review of LHCb results on MPI, soft QCD and diffraction

Studies of the ATLAS hadronic Calorimeter response to muons at Test Beams

Chamonix XII: LHC Performance Workshop. Requirements from the experiments in Year 1*

Physics highlights from LHCb. Neville Harnew University of Oxford

Higgs Searches and Properties Measurement with ATLAS. Haijun Yang (on behalf of the ATLAS) Shanghai Jiao Tong University

Flavour Physics at hadron machines

HL-LHC Physics with CMS Paolo Giacomelli (INFN Bologna) Plenary ECFA meeting Friday, November 23rd, 2012

Recent CMS results on heavy quarks and hadrons. Alice Bean Univ. of Kansas for the CMS Collaboration

Measurement of the Inclusive Isolated Prompt Photon Cross Section at CDF

Results and Prospects for Ion Physics at LHCb

The LHCb Upgrade. Contents: Detector Upgrade Physics Program. Marcel Merk Nikhef and the Vrije Universiteit Beauty 2011, Amsterdam April 8, 2011

PoS(EPS-HEP2015)309. Electroweak Physics at LHCb

Flavour physics in the LHC era

Prospects for Quarkonium measurements in p-a and A-A collisions at the LHC. University of Heidelberg

Search for a Z at an e + e - Collider Thomas Walker

Status of LHCb and Physics Prospects

Upgrade of the CMS Forward Calorimetry

B physics prospects at the LHC

Status and physics at LHCb

The LHCb Experiment II Detector XXXIV SLAC Summer Institute, July, 2006

Transcription:

Will LHCb be running during the HL-LHC era? Burkhard Schmidt for the LHCb Collaboration Helpful discussions with L. Rossi and several other colleagues from the machine acknowledged Outline: Introduction and Physics Motivation LHCb Detector and Trigger Upgrade Machine related issues to the LHCb upgrade Conclusions YES

LHCb believes there is a strong case for continuing to run beyond LS2 in 2018. We appreciate that at fixed luminosity the data-doubling time will become long, so we consider it essential to upgrade the experiment to increase the signal rate to storage by an order of magnitude. The physics case for 50 fb-1 in LHCb has been presented in detail to the LHCC in a Letter of Intent and endorsed by them. The evidence for CP violation in the charm sector is one of the most important and unexpected results to have come from the LHC so far, and illustrates the potential of probing for new physics in the flavour sector. B. Schmidt LHC performance workshop Chamonix 2012 2

LHCb performs precision measurements of CP asymmetries and investigates potential effects of physics beyond the Standard Model. Discover New Physics through indirect effects of new states via virtual production in loop diagrams. Sensitive far beyond direct particle production reach The LHCb physics program is complementary to the direct searches of ATLAS and CMS. complementary to the physics program of Super-B factories. LHCb contributes to the diversity of the CERN Physics program. B. Schmidt LHC performance workshop Chamonix 2012 3

World Best Example: Φ s : the B s mixing phase Mixing induced CP-Violation in B s Obtained compelling results from initial measurements Tevatron SM discrepancy resolved Precision measurements challenging in the forward region at a hadron collider Need luminosity Need a detailed understanding of detector & systematics Until 2017 (Phase I) : Upgrade (from 2019): Observe NP in ϕ s if larger than 3 x SM Beyond SM precision measurement: σ 0.006 B. Schmidt LHC performance workshop Chamonix 2012 4

software hardware Present Trigger 40 MHz Level-0 μ, had, e, γ Max 1 MHz HLT1 part. recon. HLT2 global recon. 3-4 khz Storage: event size ~50kB Final states with muons Linear gain Hadronic final states Yield flattens out Must raise p T cut to stay within 1 MHz readout limit To profit of a luminosity of 2 x10 33 cm -2 s -1, information has to be introduced that is more discriminating than E T. Upgrade strategy: 40MHz readout rate Fully software trigger 20kHz output rate B. Schmidt LHC performance workshop Chamonix 2012 5

LHCb Upgrade L = 2 x10 33 /cm 2 /s collect > 50 fb -1 ~5 fb -1 /year s =14TeV Calorimeters: replace R/O Muon System; allmost compatible New Silicon Tracker New Vertex Detector Outer Tracker: replace R/0 TORCH RICH: change HPD s to MAPMT s Physics program: Wide range with quark flavour physics as main component, but includes also lepton flavour physics, electroweak physics and exotic searches General purpose detector in the forward region with 40 MHz readout and a full software trigger. B. Schmidt LHC performance workshop Chamonix 2012 6

The Physics program of LHCb is limited by the detector, not by the LHC. The detector upgrade allows LHCb to better utilise the LHC capabilities. The LOI for the upgrade has been submitted in March 2011 and endorsed by the LHCC in June 2011. LHCb has been encouraged to proceed preparing TDRs. LHCb intends to upgrade the detector in LS2, scheduled for 2018, and to take data for about 10 years afterwards. B. Schmidt LHC performance workshop Chamonix 2012 7

LHCb design: L ~ 2x10 32 cm -2 s -1 at s of 14TeV with 25 ns BX interactions / bunch crossing µ = 0.4 LHCb operation in 2011: L up to 4 x 10 32 cm -2 s -1 at s of 7 TeV with 50 ns BX µ = 1.6 LHCb upgrade: L > 2 x 10 33 cm -2 s -1 at s of 14TeV with 25 ns BX With 50ns BX the average pile-up would be up to 8, which leads to a too large detector occupancy 25 ns LHC operation is fundamental for the LHCb upgrade µ = 4 B. Schmidt LHC performance workshop Chamonix 2012 8

Target Absorber for Secondaries (TAS): The high luminosity insertions at IP1 and IP5 are equipped with a TAS and a TAN to protect the triplet quadrupole magnets and other machine elements from particles leaving the IP. Would a TAS/TAN be needed in IP8 for the envisaged luminosity increase to 2 x 10 33 /cm 2 /s? Good knowledge of BLM thresholds around IP8 is important. Detailed FLUKA simulations are needed. A first glance at the issue of the TAS: Look at beam losses up- and down-stream of IP8 for a fill in 2011 where the luminosity has been 4x10 32 /cm 2 /s in LHCb (at s of 7 TeV). Factor 5 below maximum luminosity for the upgrade, and factor 2 less in energy Factor 4 is needed to take into account the difference between L peak and L Level How far are we from the threshold causing a beam dump? (which is at ~30% of the quench limit) B. Schmidt LHC performance workshop Chamonix 2012 9

Fill 2242 on October 23/24, 2011 L = 4x10 32 /cm 2 /s BLM RS12=1.5x10-6 Gy/s Courtesy Mariusz Sapinski B. Schmidt LHC performance workshop Chamonix 2012 10

Running Sum 12 (84s) for beam loss signal averaged over 5 hours luminosity of 4 x 10 32 /cm 2 /s beam 1 beam 2 Dump limit Courtesy Mariusz Sapinski Q4 D2 BLM close to beamline D1 Q3 Q2 Q1 LHCb The losses are a factor 10-1000 or more below the dump threshold Better knowledge of BLM thresholds is important. B. Schmidt LHC performance workshop Chamonix 2012 11

R2E issues (M.Brugger): Relocation of some equipment is foreseen in LS1. More simulations are needed to determine whether other equipment needs to be mitigated. Cable length to be checked. Safe room needs to be reviewed. Aperture and Beam-Screen (LBOC 24.o1.12, R. Bruce et al.): Beam screen orientation is optimized for external horizontal crossing angle. Move to vertical crossing angle this year Aperture should give no problems at top energy Aperture at injection more problematic 450 GeV, beta*=11m, 170urad H 3.5 TeV, beta*=3m, 100urad V Rotation of the beam-screen in the triplet by 90 o in LS1 would be desirable 0.02 0.01 0.03 0.02 0.01 0.01 0.02 0.03 x m 0.01 0.02 y m B. Schmidt LHC performance workshop Chamonix 2012 12 3.5 TeV, 3.5m, sep 2mm, 1

LHCb submitted an LOI to the LHCC in March 2011 and has a firm plan to upgrade the detector by 2018 LHCC considers the physics case compelling and the 40 MHz readout as the right upgrade strategy. LHCC encouraged LHCb to prepare a TDR as soon as possible. Given its forward geometry, its excellent tracking and PID capabilities and the foreseen flexible software trigger, the upgraded LHCb detector is an ideal detector for the next generation of flavour physics experiments provides unique and complementary possibilities for New Physics studies. LHCb intends to run for about 10 years after the upgrade and relies on 25 ns LHC operation, luminosity levelling, equal amounts of data for the two spectrometer magnet polarities. First discussions with the machine in relation to the upgrade took place and we intend to continue them in view of the TDRs under preparation. B. Schmidt LHC performance workshop Chamonix 2012 13

L= 4x10 32 /cm 2 /s BLM~ 1.5x10-6 Gy/s BLM in cell 5 (follows the beam intensity) Courtesy Mariusz Sapinski B. Schmidt LHC performance workshop Chamonix 2012 15

Running sum 12 (84s) for beam loss signal averaged over 5 hours in fill 2242 on October 23/24 with stable luminosity of 4 x 10 32 /cm 2 /s beam 1 beam 2 Dump limit Courtesy Mariusz Sapinski LHCb Q1 Q2 Q3 D1 D2 Q4 The losses are a factor 10-1000 or more below the dump threshold B. Schmidt LHC performance workshop Chamonix 2012 16

TAS: Space is very tight due to compensator magnets (on both sides). TAN: The situation is much better space wise. MBXW TCDD/TDI MKI MSI B. Schmidt LHC performance workshop Chamonix 2012 17