Duality in the Combinatorics of Posets

Similar documents
Math 3012 Applied Combinatorics Lecture 14

COMBINATORIAL PROBLEMS FOR GRAPHS AND PARTIALLY ORDERED SETS

Planar Posets and Minimal Elements

APPLICATIONS OF THE PROBABILISTIC METHOD TO PARTIALLY ORDERED SETS

On the Duality of Semiantichains and Unichain Coverings

Maximum union-free subfamilies

ONLINE LINEAR DISCREPANCY OF PARTIALLY ORDERED SETS

Online Linear Discrepancy of Partially Ordered Sets

Strange Combinatorial Connections. Tom Trotter

NEW PERSPECTIVES ON INTERVAL ORDERS AND INTERVAL GRAPHS

Bell Communications Research, 445 South Street, Morristown, NJ 07962, U.S.A., and Technische Universitat

Probabilistic Method. Benny Sudakov. Princeton University

A Brooks-Type Theorem for the Bandwidth of Interval Graphs

arxiv: v1 [math.co] 5 May 2016

The Saturation Number of Induced Subposets of the Boolean Lattice

Tree sets. Reinhard Diestel

An algorithm to increase the node-connectivity of a digraph by one

DIMENSION AND CUT VERTICES: AN APPLICATION OF RAMSEY THEORY

A CHARACTERIZATION OF PARTIALLY ORDERED SETS WITH LINEAR DISCREPANCY EQUAL TO 2

Almost Cross-Intersecting and Almost Cross-Sperner Pairs offamilies of Sets

On Antichains in Product Posets

Hamiltonian Cycles and Symmetric Chains in Boolean Lattices

Massachusetts Institute of Technology 6.042J/18.062J, Fall 02: Mathematics for Computer Science Professor Albert Meyer and Dr.

Posets with Large Dimension and Relatively Few Critical Pairs

The Erdős-Moser Conjecture

Independent Transversals in r-partite Graphs

Containment restrictions

arxiv: v1 [math.co] 16 Mar 2015

On the dual König property of the order-interval hypergraph of two classes of N-free posets

arxiv: v3 [math.co] 25 Feb 2015

Discrete Mathematics

Abstract. We show that a proper coloring of the diagram of an interval order I may require 1 +

Symmetric chain decompositions of partially ordered sets

Interval k-graphs and Orders

Graham Brightwell and Mitchel T. Keller The reversal ratio of a poset. Article (Accepted version) (Refereed)

Linear Extension Counting is Fixed- Parameter Tractable in Essential Width

POSETS WITH COVER GRAPH OF PATHWIDTH TWO HAVE BOUNDED DIMENSION

INTERVAL PARTITIONS AND STANLEY DEPTH

On the intersection of infinite matroids

Minimally Infeasible Set Partitioning Problems with Balanced Constraints

The Chromatic Number of Ordered Graphs With Constrained Conflict Graphs

Maximal Symmetric Difference-Free Families of Subsets of [n]

21-301, Spring 2019 Homework 4 Solutions

Homogeneous Structures and Ramsey Classes

The Turán number of sparse spanning graphs

Posets, homomorphisms and homogeneity

Minimal Paths and Cycles in Set Systems

CSE 20 DISCRETE MATH. Winter

Edge-disjoint induced subgraphs with given minimum degree

Discrete mathematics , Fall Instructor: prof. János Pach

Advanced Topics in Discrete Math: Graph Theory Fall 2010

R u t c o r Research R e p o r t. Uniform partitions and Erdös-Ko-Rado Theorem a. Vladimir Gurvich b. RRR , August, 2009

Matroid Representation of Clique Complexes

Observation 4.1 G has a proper separation of order 0 if and only if G is disconnected.

TREE-WIDTH AND DIMENSION

The Algorithmic Aspects of the Regularity Lemma

ON THE STANLEY DEPTH OF SQUAREFREE VERONESE IDEALS

Packing of Rigid Spanning Subgraphs and Spanning Trees

Recursive generation of partitionable graphs

STABILITY AND POSETS

arxiv:math/ v1 [math.co] 16 Jul 1997

Cographs; chordal graphs and tree decompositions

Tiling on multipartite graphs

MULTIPLICITIES OF MONOMIAL IDEALS

Enumerating minimal connected dominating sets in graphs of bounded chordality,

Poset-free Families of Sets

Monochromatic Forests of Finite Subsets of N

PERFECT GRAPHS AND THE PERFECT GRAPH THEOREMS

Matchings in hypergraphs of large minimum degree

A taste of perfect graphs

COMBINATORIAL SYMBOLIC POWERS. 1. Introduction The r-th symbolic power of an ideal I in a Notherian ring R is the ideal I (r) := R 1

arxiv: v1 [math.co] 16 Feb 2018

Katarzyna Mieczkowska

arxiv: v2 [math.co] 3 Jan 2019

arxiv:math/ v1 [math.co] 10 Nov 1998

Induced subgraphs of graphs with large chromatic number. IX. Rainbow paths

Equivalence relations

Rainbow Hamilton cycles in uniform hypergraphs

Diskrete Mathematik und Optimierung

arxiv: v3 [cs.ds] 21 Jan 2013

Game saturation of intersecting families

Order Dimension, Strong Bruhat Order and Lattice Properties for Posets

Chordal Graphs, Interval Graphs, and wqo

Faithful embedding on finite orders classes

The chromatic number of ordered graphs with constrained conflict graphs

PROBLEMS AND RESULTS IN PARTIALLY ORDERED SETS, GRAPHS AND GEOMETRY

MINIMALLY NON-PFAFFIAN GRAPHS

The Waldschmidt constant for squarefree monomial ideals

Ahlswede Khachatrian Theorems: Weighted, Infinite, and Hamming

Downloaded 03/01/17 to Redistribution subject to SIAM license or copyright; see

A Course in Combinatorics

2 S. FELSNER, W. T. TROTTER S. S. Kislitsyn [9] made the following conjecture, which remains of the most intriguing problems in the combinatorial theo

LOVÁSZ-SAKS-SCHRIJVER IDEALS AND COORDINATE SECTIONS OF DETERMINANTAL VARIETIES

arxiv: v1 [math.co] 28 Oct 2018

EQUIVALENCE RELATIONS (NOTES FOR STUDENTS) 1. RELATIONS

The Strong Largeur d Arborescence

Observation 4.1 G has a proper separation of order 0 if and only if G is disconnected.

< k 2n. 2 1 (n 2). + (1 p) s) N (n < 1

CSE 20 DISCRETE MATH WINTER

CSE 20 DISCRETE MATH SPRING

Transcription:

University of Minnesota, September 12, 2014 Duality in the Combinatorics of Posets William T. Trotter trotter@math.gatech.edu

Diagram for a Poset on 26 points Terminology: b < i and s < y. j covers a. b > e and k > w. s and y are comparable. j and p are incomparable. c is a maximal element. u is a minimal element.

A Chain of Size 4 Definition A chain is a subset in which every pair is comparable.

A Maximal Chain of Size 6 Definition A chain is maximal when no superset is also a chain. Is the chain in the picture maximum?

Height of a Poset Definition The height of a poset P is the maximum size of a chain in P. Proposition To partition a poset P of height h into antichains, at least h antichains are required. Question How hard is it to find the height of a poset and the minimum size of a partition of the poset into antichains?

Scholarship and Attribution Observation Getting it right is not as easy as some would believe. In fact, it is not always easy for people to agree on what right means.

Mirsky s Theorem Theorem (1971) A poset of height h can be partitioned into h antichains. Proof A i is the set of elements at height i.

An Antichain of Size 6 Definition A subset is an antichain when every pair is incomparable.

A Maximal Antichain of Size 9 Definition An antichain is maximal when no superset is also an antichain. Is the antichain in the picture maximum?

Width of a Poset Definition The width of a poset P is the maximum size of an antichain in P. Proposition To partition a poset P of width w into chains, at least w chains are required. Question How hard is it to find the width of a poset and the minimum size of a partition of the poset into chains?

Dilworth s Theorem Theorem (1950) A poset of width w can be partitioned into w chains. Note The original proof is one page long!

Alternate Proofs of Dilworth s Theorem Fulkerson (1954) Used bipartite matching algorithm (network flows) to find minimum chain partition and maximum antichain simultaneously. Gallai/Milgram (1960) Path decompositions in oriented graphs. Perles (1963) Simple induction depending on whether there is a maximum antichain A with U(A) and D(A) non-empty. This is the proof found in most combinatorics textbooks today.

Posets and Perfect Graphs Theorem (Lovász, 1972) A graph G is perfect if and only if its complement is perfect. Remark Dilworth s theorem then follows then as an immediate corollary to the trivial theorem on height.

Sperner k-families Definition When k 1, a set S of elements of P is called a Sperner k-family when height(s) k. In the diagram, the red points form a Sperner 2-family. A Sperner 1-family is just an antichain.

Sperner k-families and Chains Notation When k 1, the maximum size of a subposet S with height(s) k is denoted w k (P). Here, w 2 (P) = 9. Observation When height(s) k and C is a chain, then S C min {k, C }.

Chain Partitions and Sperner k-families Observation When k 1, if height(s) k and C = {C 1, C 2,, C t } is any chain partition of P, then S Σ i min {k, C i }. Definition A chain partition C is k-saturated when w k (P) = Σ i min {k, C i }.

Greene/Kleitman Theorem Theorem (1976) For every k 1 and for every poset P, there is a chain partition C of P that is simultaneously k and k + 1-saturated.

The G/K Theorem is Tight Theorem (West, 1986) For every k 1 and for every h 4, there is a poset P of height h which does not have a chain partition that is simultaneously k and k -saturated whenever 1 k < k < h and k + 2 k. Note Minimal examples were given in 2002 by G. Chappell.

Duality Greene s Theorem Notation When k 1, the maximum size of a subset T in a poset P with width(t) k is denoted h k (P). Note h 1 (P) is just the height of P. Theorem (1976) For every k 1 and for every poset P, there exists an antichain partition A that is simultaneously k and k+1-saturated.

Alternative Proofs Note Combinatorial proofs of the Greene-Kleitman theorem have been provided by H. Perfect (1984) and M. Saks (1979). The argument by Saks results in an effective algorithm for finding for each k 1 a chain partition which is both k-saturated and k+1- saturated. Note A. Frank (1980) has given a unified approach proving both Greene-Kleitman and Greene using network flows. A. J. Hoffman and D. E. Schwarz (1977) have given such a proof using linear algebra.

On-line Antichain Partition Problems Builder reveals comparabilities between the new point and all preceding points. Partitioner makes an irrevocable assignment of the new point to an antichain. Basic Question Is there some function f(h) so that if Builder is constrained to posets of height at most h, then Partitioner can construct an on-line partition into f(h) antichains. Subtlety Does it matter if Partitioner does or doesn t know h?

On-Line Antichain Partitioning Theorem (Schmerl, Szemerédi, 1983) There is an on-line algorithm that will partition a poset of height h into h(h + 1)/2 antichains. Furthermore, this is best possible. Also, Partitioner does not need to know h in advance.

On-line Chain Partition Problems Builder reveals comparabilities between the new point and all preceding points. Partitioner makes an irrevocable assignment of the new point to a chain. Basic Question Is there some function g(w) so that if Builder is constrained to posets of width at most w, then Partitioner can construct an on-line partition into g(w) antichains. Subtlety Does it matter if Partitioner does or doesn t know w?

On-Line Chain Partitioning Theorem (Kierstead, 1981) There is an on-line algorithm that will partition a poset of width w into chains. (5 w - 1)/4 Note From below, w(w +1)/2 chains are required.

On-Line Chain Partitioning Theorem (Bosek and Krawczyk, 2010) There is an on-line algorithm that will partition a poset of width w into w chains. 16 log w Remark The best lower bound to date is (1 o(1)) w 2.

Intersecting Maximal Chains Lemma (Lonc and Rival, 1987) In a poset P on n points, there is always a set S of at most n/2 points that meets every non-trivial maximal chain. Question Does the same result hold for antichains?

Intersecting Maximal Antichains Example (Sands, 1991) There is a poset P on 17 points for which any set intersecting all non-trivial maximal antichains has at least 9 elements.

Sands Example Fact For i = 1, 2,, 16, i and i + 1 form a maximal antichain. Fact 1, 9 and 17 form a 3- element maximal antichain.

Intersecting Maximal Antichains Theorem (Maltby, 1992) For every ε > 0, there is some n 0 so that if n > n 0, then there is a poset P on n points for which any set intersecting all non-trivial maximal antichains has at least (8/15 - ε)n points.

Intersecting Maximal Antichains Theorem (Duffus, Kierstead and Trotter, 1991) The chromatic number of the hypergraph of non-trivial maximal antichains of a poset P has chromatic number at most 3. As a consequence, if P has n elements, there is a subset S of size at most 2n/3 meeting every non-trivial maximal antichain.

Pairwise Disjoint Maximal Antichains Theorem (Duffus and Sands, 2009) Let s k 3. If s C s + (s-k)/(k-2) for every maximal chain C in P, then P has k pairwise disjoint maximal antichains.

The Dual Theorem Theorem (Howard and Trotter, 2009) Let s k 3. If s A s + (s-k)/(k-2) for every maximal antichain A in P, then P has k pairwise disjoint maximal chains.

Transversals for Chains Theorem (Greene and Kleitman, 1976) The minimum size of a set intersecting all maximum chains is equal to the maximum number of pairwise disjoint maximum chains. Theorem (Howard and Trotter, 2009) The minimum size of a set intersecting all maximal chains is equal to the maximum number of pairwise disjoint maximal chains.

Transversals for Antichains Theorem (Folklore but maybe 2014?) The minimum size of a set intersecting all maximum antichains is equal to the maximum number of pairwise disjoint maximum antichains. Theorem (Howard and Trotter, 2009) When there is a finite projective plane of order q, there is a poset in which the maximum number of pairwise disjoint maximal antichains is 2, yet the minimum size of a set intersecting all maximal antichains has size 2q.

The Dimension of a Poset L 1 = b < e < a < d < g < c < f L 2 = a < c < b < d < g < e < f L 3 = a < c < b < e < f < d < g The dimension of a poset is the minimum size of a realizer. This realizer shows dim(p) 3. In fact, dim(p) = 3

Bounds on Dimension Theorem (Dilworth, 1950) poset is at most its width. The dimension of a Theorem (Kimble 1974, Trotter 1975) If A is a maximum antichain in a poset P, then dim(p) max { 2, P A }. Corollary (Hiraguchi, 1951) If P is a poset on n points and n 4, then dim(p) n/2.

Comparability and Incomparability Graphs Definition With a poset P, we associate a comparability graph G whose vertex set is the ground set of P with xy an edge in G if and only if x and y are comparable in P. Definition The incomparability graph of a poset is just the complement of the comparability graph. Theorem Height, width, dimension and number of linear extensions are comparability invariants.

Matchings in Graphs Definition A matching in a graph is a set of edges with no common end points. Fact The matching shown has size 9 and is maximal

Dimension and Matchings Theorem (Trotter and Wang, 2014) If dim(p) = d 3, there is a matching of size d in the comparability graph of P. Theorem (Trotter and Wang, 2014) If dim(p) = d 3, there is a matching of size d in the incomparability graph of P. Corollary (Hiraguchi, 1951) If P is a poset on n points and n 4, then dim(p) n/2.

Some Ideas Behind The Proofs (1) Theorem (Trotter, 1975) For every w 1, if P is a poset and width(p max(p)) = w, then dim(p) w + 1.

Some Ideas Behind The Proofs (2) Theorem (Trotter and Wang, 2014+) For every w 2, if P is a poset, width(p max(p)) = w, P max(p) = C 1 υ C 2 υ υ C w with C w = 1, then dim(p) w. Theorem (Trotter and Wang, 2014+) For every w 2, if P is a poset, A is a subset of max(p) and P A has a complete matching of size w which is maximum in P, then dim(p) w.

Some Ideas Behind The Proofs (3) Theorem (Trotter and Wang, 2014+) If P = U υ D is a partition into an up set U and a down set D, then dim(p) width(u) + dim(d).

Some Ideas Behind The Proofs (4) Overview Look for a suitable maximum matching in P. This maximum matching splits the partitions the poset into an up set U and its complement D. The dimension of D is at most 3 and the width of U is at most 4. So dim(p) 3 + 4 = 7.

Comparability Graphs Not Cover Graphs Theorem (Trotter and Wang, 2014+) For every n 1, there is a poset of dimension \binom(2n, n) for which the maximum size of a matching in the cover graph has size 2n. Theorem (Trotter and Wang, 2014+) If P is a poset and the maximum size of a matching in the cover graph of P has size m, then dim(p) (5 m + 2m)/2.

Coding the Standard Example Example Points in {1,2,, 2n} in middle. Minimal element for every n-element subset. Same for maximal elements

Matchings in Graphs Observation A point not in the matching has a signature from a set of size 5 m. Fact WLOG, no two points have same signature. Conclusion P has size at most 5 m + 2m.