applied to a single-phase fluid in a closed system wherein no chemical reactions occur.

Similar documents
Thermodynamics II. Department of Chemical Engineering. Prof. Kim, Jong Hak

Solution Thermodynamics

Open Systems: Chemical Potential and Partial Molar Quantities Chemical Potential

Energy, Entropy, and Availability Balances Phase Equilibria. Nonideal Thermodynamic Property Models. Selecting an Appropriate Model

Lecture. Polymer Thermodynamics 0331 L Chemical Potential

Supplementary Notes for Chapter 9 Mixture Thermodynamics

I wish to publish my paper on The International Journal of Thermophysics. A Practical Method to Calculate Partial Properties from Equation of State

Lecture 8. Chapter 7. - Thermodynamic Web - Departure Functions - Review Equations of state (chapter 4, briefly)

Appendix II Summary of Important Equations

3. Be able to derive the chemical equilibrium constants from statistical mechanics.

Introduction to Vapor/Liquid Equilibrium, part 2. Raoult s Law:

Name: SID: Discussion Session:

If two volatile and miscible liquids are combined to form a solution, Raoult s law is not obeyed. Use the experimental data in Table 9.

Solution Thermodynamics

(1) The saturation vapor pressure as a function of temperature, often given by the Antoine equation:

a for save as PDF Chemistry 163B Introduction to Multicomponent Systems and Partial Molar Quantities

Thermodynamics. Section 4

NAME and Section No. it is found that 0.6 mol of O

University of Washington Department of Chemistry Chemistry 452/456 Summer Quarter 2014

Non-Ideality Through Fugacity and Activity

The ChemSep Book. Harry A. Kooijman Consultant. Ross Taylor Clarkson University, Potsdam, New York University of Twente, Enschede, The Netherlands

Thermodynamics II. Department of Chemical Engineering. Prof. Kim, Jong Hak

General Thermodynamics for Process Simulation. Dr. Jungho Cho, Professor Department of Chemical Engineering Dong Yang University

Chemical Equilibrium. Chapter 6 Spontaneity of Reactive Mixtures (gases) Taking into account there are many types of work that a sysem can perform

y i x P vap 10 A T SOLUTION TO HOMEWORK #7 #Problem

( ) 1/ 2. ( P SO2 )( P O2 ) 1/ 2.

...Thermodynamics. If Clausius Clapeyron fails. l T (v 2 v 1 ) = 0/0 Second order phase transition ( S, v = 0)

CHEMICAL REACTIONS AND DIFFUSION

Physics 607 Exam 1. ( ) = 1, Γ( z +1) = zγ( z) x n e x2 dx = 1. e x2

Review of Classical Thermodynamics

A Self-Consistent Gibbs Excess Mixing Rule for Cubic Equations of State: derivation and fugacity coefficients

4.2 Chemical Driving Force

LNG CARGO TRANSFER CALCULATION METHODS AND ROUNDING-OFFS

and Statistical Mechanics Material Properties

Assignment 4. Adsorption Isotherms

V T for n & P = constant

is the calculated value of the dependent variable at point i. The best parameters have values that minimize the squares of the errors

Introduction to Statistical Methods

Thermodynamics and statistical mechanics in materials modelling II

Chapter 18, Part 1. Fundamentals of Atmospheric Modeling

10.34 Numerical Methods Applied to Chemical Engineering Fall Homework #3: Systems of Nonlinear Equations and Optimization

Osmotic pressure and protein binding

Chapter 13: Multiple Regression

Thermodynamics General

PETE 310 Lectures # 24 & 25 Chapter 12 Gas Liquid Equilibrium

Process Modeling. Improving or understanding chemical process operation is a major objective for developing a dynamic process model

Phase equilibria Introduction General equilibrium conditions

Estimation of the composition of the liquid and vapor streams exiting a flash unit with a supercritical component

Mass Transfer Processes

University of Washington Department of Chemistry Chemistry 453 Winter Quarter 2015

INTRODUCTION TO CHEMICAL PROCESS SIMULATORS

Non-Commercial Use Only

Chemistry 163B Free Energy and Equilibrium E&R ( ch 6)

Equation of State Modeling of Phase Equilibrium in the Low-Density Polyethylene Process

NUMERICAL DIFFERENTIATION

Electrochemical Equilibrium Electromotive Force

The International Association for the Properties of Water and Steam

Chapter 8 Solutions Engineering and Chemical Thermodynamics 2e

Computation of Phase Equilibrium and Phase Envelopes

Thermodynamic ProperDes for Fluids

Determination of activity coefficients of dimethyl ether in butyl acetate and 2-propanol

Determination of Structure and Formation Conditions of Gas Hydrate by Using TPD Method and Flash Calculations

DETERMINATION OF CO 2 MINIMUM MISCIBILITY PRESSURE USING SOLUBILITY PARAMETER

A Modulated Hydrothermal (MHT) Approach for the Facile. Synthesis of UiO-66-Type MOFs

The material in this ebook also appears in the print version of this title: X.

Numerical Heat and Mass Transfer

Adsorption: A gas or gases from a mixture of gases or a liquid (or liquids) from a mixture of liquids is bound physically to the surface of a solid.

Phase equilibria for the oxygen-water system up to elevated temperatures and pressures

The Multiple Classical Linear Regression Model (CLRM): Specification and Assumptions. 1. Introduction

Outlet temperature of a WGS reactor (Stage I) for the conversion of CO, applied for the abatement of CO to a fixed value.

CHEMICAL ENGINEERING

Lecture 12. Transport in Membranes (2)

Chapter 9: Statistical Inference and the Relationship between Two Variables

Linear Regression Analysis: Terminology and Notation

Outline. Unit Eight Calculations with Entropy. The Second Law. Second Law Notes. Uses of Entropy. Entropy is a Property.

Prediction of steady state input multiplicities for the reactive flash separation using reactioninvariant composition variables

Exercises of Fundamentals of Chemical Processes

The Ordinary Least Squares (OLS) Estimator

Topic 3 : Thermodynamics

Chemical Engineering Department University of Washington

University of Washington Department of Chemistry Chemistry 452/456 Summer Quarter 2014

Thermodynamics of Materials

PART I: MULTIPLE CHOICE (32 questions, each multiple choice question has a 2-point value, 64 points total).

A New Thermodynamic Function for Phase-Splitting at Constant Temperature, Moles, and Volume

NAME and Section No.

Econ107 Applied Econometrics Topic 3: Classical Model (Studenmund, Chapter 4)

Modelli Clamfim Equazione del Calore Lezione ottobre 2014

1st Year Thermodynamic Lectures Dr Mark R. Wormald BIBLIOGRAPHY

Calculation of Interfacial Properties of Binary Mixtures Containing Polar and Non-polar Components

Entropy generation in a chemical reaction

Chapter 2. Electrode/electrolyte interface: ----Structure and properties

Multicomponent Vaporization Modeling of Petroleum-Biofuel Mixture at High-Pressure Conditions

Canonical transformations

Chapter One Mixture of Ideal Gases

between standard Gibbs free energies of formation for products and reactants, ΔG! R = ν i ΔG f,i, we

CinChE Problem-Solving Strategy Chapter 4 Development of a Mathematical Model. formulation. procedure

Mathematical Preparations

ON A DETERMINATION OF THE INITIAL FUNCTIONS FROM THE OBSERVED VALUES OF THE BOUNDARY FUNCTIONS FOR THE SECOND-ORDER HYPERBOLIC EQUATION

Q e E i /k B. i i i i

UNIFAC. Documentation. DDBSP Dortmund Data Bank Software Package

Transcription:

The basc relaton connectng the Gbbs energy to the temperature and pressure n any closed system: (ng) (ng) d(ng) d dt (nv)d (ns)dt T T,n appled to a sngle-phase flud n a closed system wheren no chemcal reactons occur. Consder a sngle-phase, open system:,n Chemcal potental (ng) (ng) (ng) d(ng) d dt dn T n T,n,n,T,n j

Defne the chemcal potental: (ng) n,t,n j The fundamental property relaton for sngle-phase flud systems of constant or varable composton: d(ng) (nv)d (ns)dt dn When n =, dg Vd SdT dx G V T,x G S TT,x

Consder a closed system consstng of two phases n equlbrum: d(ng) (nv) d (ns) dt dn d(ng) (nv) d (ns) dt dn nm (nm) (nm) d(ng) (nv)d (ns)dt dn dn

d(ng) (nv)d (ns)dt dn dn The two phase system s closed thus: d(ng) (nv)d (ns)dt dn dn 0 dn dn ( )dn 0 Multple l phases at the same T and are n equlbrum when chemcal potental of each speces s the same n all phases.

Defne the partal molar property of speces : M (nm) n The chemcal potental and the partcle molar Gbbs energy are dentcal: G For thermodynamc property M:,T,n nm M(,T, n, n,..., n,...) j M M d(nm) n d n dt Mdn T T,n,n

M M d(nm) n d n dt M dn T T,n,n d nm ndmmdn dn x dn ndx M M ndm Mdn n d n dt M (xdn ndx ) T T,n,n M M dm d dt Mdx n M xm dn 0 Tn T,n T,n n M M dm d dt M dx 0 T T, n, n Summablty relatons nm n M 0 M x M 0 Calculaton of mxture propertes from partal propertes

M M dm d dt Mdx 0 T T,n,n dm x dm M dx M M d dt xdm 0 T T,n,n The Gbbs/Duhem equaton Ths equaton must be satsfed for all changes n, T and the caused by changes of state n a homogeneous phase. For the mportant specal case of changes at constant T and : x dm 0 M

M x M x M For bnary systems Const. and T, usng Gbbs/Duhem equaton dm x dm Mdx xdm M dx dm x x M dx M dx dm dx M M M M x M dm dm M M x dx dx M M x d (B) x (A)

The three knds of propertes used n soluton thermodynamcs p p p G,S,, H, U Soluton propertes M, for example M artal propertes,, for example G,S, H, U ure-speces propertes M, for example G,S, H, U

EXAMLE Descrbe a graphcal nterpretaton of equatons (A) and (B) dm M I dx x dm I I I I dx 0 dm I M x dx I M x dm dx I M I M

The need arses n a laboratory for 000 cm 3 of an antfreeze soluton consstng of 30 mol-% methanol n water. What volumes of pure methanol and of pure water at 5 C must be mxed to form the 000 cm 3 of antfreeze at 5 C? The partal and pure molar volumes are gven. 3-3 - ml Methanol : V 38.63 cm mol V 40.77 cm o 3-3 - 8cm m Water : V 7.765 cm mol V 8.06 ol V x V xv V (0.3)(38.63) (0.7)(7.765) 4.05 cm 3 / mol n V V t 000 4.05 83.46 mol n (0.3)(83.46) 4. 974 mol n (0.7)(83.46) 58. 7 mol V t nv 4.974)(40.77) 07 ( cm V t n V ( 58.7)(8.068) 053 cm 3 3

The enthalpy of a bnary lqud system of speces and at fxed T and s: H 400x 600x xx (40x 0x) Determne expressons for H and H as functons of x, numercal values for the pure-speces enthalpes H and H, and numercal values for the partal enthalpes at nfnte dluton and H H H H 400x 600x xx (40x 0x) x x H 600 80x 0x 3 H H x dh dx H 60x 40 40 x 3 H 600 40x 3 x 0 x x H 40 J mol H 640 J mol

d ( ng) ( nv ) d ( ns) dt G dn G (ns) G T n,n,t,n j (nv) n T,n,T,n j G T, x S G T,x V dg V d S dt

H UV nh nu(nv) (nh) (n U) (n V) n n n,t,n,,t,n j, j,t,n, j H U V For every equaton provdng a lnear relaton among the thermodynamc propertes of a constant-compostoncomposton soluton there exsts a correspondng equaton connectng the correspondng partal propertes p of each speces n the soluton. هر معادلهكه رابطه اي خطي بين خواص ترموديناميكي يك محلول با تركيب ثابت برقرار نمايد ا داراي يك معادله المثني است كه خواص جزيي متناظر هر يك از اجزاء مخلوط را بههم مربوط مي نمايد.

n V t p n y n p n V t p y,,...,n

Gbbs s theorem A partal molar property (other than volume) of a consttuent هر خاصيت جزيي مولي ) غير از حجم ( يك جزء تشكيلدهنده مخلوط گاز ايدهآل the correspondng موليto جزء equal خالصs بهصورت mxture گاز ايدهآل در an deal-gas دمايn مخلوط speces ولي برابر همان خاصيت ميباشد. molar property در the speces مخلوط مof gas at فشاري deal معادل فشار a pure as جزيي آن theدر mxture temperature but at a pressure equal to ts partal pressure n the mxture. M g g ( T, ) M ( T, p ) (nv g ) g (n ) n V n n n T,,n T,,n n j j j g V g V M g V g

Snce the enthalpy of an deal gas s ndependent of pressure: g g g H (T, ) H (T,p ) H (T, ) M y M M M y M roperty change of mxng H g g g g H H y H 0 y H g Enthalpy change of mxng Smlarly U g y U g Internal energy change of mxng g g g U U y U 0

The entropy of an deal gas does depend on pressure g g dt ds C R T d ds Rdln (T const.) g S (T,) S (T,p ) Rln Rln Rlny g g p y M (T,) M (T,p ) g g S (T,) S (T,) R ln y g g g g S ys R yln y S S y S R y ln y g g g

G H TS g g g H (T,) g H (T,) g G H TS lny g g g g g S (T, ) S (T, ) Rlny G G lny g g g g g dg V d d d ln (const. T) G (T) ln g (T) ln y g g G y (T) yln y

Chemcal potental: provdes fundamental crteron for phase equlbra however the Gbbs energy hence μ s defned n relaton to however, the Gbbs energy, hence μ, s defned n relaton to the nternal energy and entropy - (absolute values are unknown).

g ( ) G (T) ln Fugacty: a quantty that takes the place of μ G (T) ln f Wth unts of pressure

G (T) lnf G (T) ln g For deal gases G G R ln R 0 g G G ln g f f Fugacty coeffcent ln R G d ln (Z ) (const. T) 0

When the compressblty factor s gven by two terms vral equaton Z B d ln (Z 0 ) (const. T) ln B 0 d B ln

Saturated vapor: Saturated lqud: v v G (T) lnf l l G (T) lnf G v G l v v l f l G G ln f f ln 0 f v l f v f l f sat = = v l sat For a pure speces coexstng lqud and vapor phases are n equlbrum p p g q p p q when they have the same temperature, pressure, fugacty and fugacty coeffcent.

The fugacty of pure speces as a compressed lqud: G (T) lnf sat sat G (T) lnf sat f G G ln f sat dg = V d S dt sat G G V d (const. T) sat Snce V s a weak functon of ln f f sat sat V d l sat f V (- ) sat ln = f f = sat sat sat l sat sat sat f= exp V( V(- )

For H O at a temperature of 300 C and for pressures up to 0,000 ka (00 bar) calculate values of f and from data n the steam tables and plot them vs.. For a state at : For a low pressure reference state: G G * ( T ) ln * ( T ) ln f f f f * H H * ( S S ) R T ln * G H TS * * f ka f ln * ( G G f G * ) The low pressure (say ka) at 300 C: H * 3076. 8 J S * 0. 3450 g J gk f 8.05 H 3076.8 ln (S 0.345) 8.34 573.5

For dfferent values of up to the saturated pressure at 300 C, one obtans the values of f,and hence. Note, values of f and at 859.7 ka are obtaned = 4000 ka T = 300 ºC H = 96 J/g S = 6.364 J/gK f 8.05 96 3076.8 ln (6.364 0.345) 8.34 573.5 f 36 ka 36/ 4000 0.908

T = 300 ºC sat = 859.7 ka sat f 8.05 75 3076.8 ln (5.708 0.345) 8.34 573.5 H = 75 J/g S = 5.708 J/gK V =.403 cm 3 /g f sat 6738.9 ka sat 6738.9 / 859.7 0.7843

Values of f and at hgher pressure l sat sat sat V( ) f exp l 3 V (.403)(8.05) 5.8 cm / mol f 6738.9exp 5.8( 859.7) 834 573.5 = 0000 ka 5.8(0000 859.7) f 6738.9exp 6789.4 ka 834 573.5 6789.4 /0000 0.6789

Fugacty and fugacty coeffcent: speces n soluton For speces n an deal gas mxture: g (T) ln y For speces n a mxture of real gases or n a soluton of lquds: (T) ln f ˆ Fugacty of speces n soluton (replacng the partal pressure) Multple phases at the same T and are n equlbrum when the fugacty of each consttuent speces s the same n all phases: fˆ f ˆ... fˆ

The resdual property: R M M M g The partal resdual property: R g M M M R g G G G G (T) lnfˆ g g ( ) y G (T) ln y The fugacty coeffcent of speces n soluton g G G ln y ˆ ˆf ˆf y R G lnˆ

For deal gas R R G 0 G lnˆ ˆf g ˆ g y ˆf g y

Fundamental resdual-property ng ng d d(ng) dt G HTS relaton d(ng) (nv)d (ns)dt dn ng nv nh G d d dt dn ng f (, T, n ) G/ as a functon of ts canoncal varables allows evaluaton of all other thermodynamc propertes, and mplctly contans complete property nformaton. ng nv nh G d d dt dn g g g g G ng nv nh d d dt dn or R R R ng nv nh R G d d dt dn R R R ng nv nh d d dt ln ˆ dn

R R R ng nv nh d d dt ln ˆ dn R R V (G /) Tx T,x R H (G /) T T R,x ln ˆ R (ng / ) n,t,n j

Develop a general equaton for calculaton of ln ˆ values form compressbltyfactor data. R (ng ) ln ˆ n,t,n j ˆ (nz n) d ln R n ng 0 d 0,T,n j ( nz n) (nz) Z n n n lnˆ 0 ( Z ) d Integraton at constant temperature and composton

Generalzed correlatons for the fugacty coeffcent d r r ln ( Z ) ( const. Tr ) 0 Z r Z Z 0 ln d r 0 r r r ( Z ) Z ( const. Tr 0 0 r ln d 0 r r d r 0 r ( Z ) 0 r ) ln ln 0 ln ( ) 0 ln r 0 Z For pure gas d r Table E3-E6 r

Estmate a value for the fugacty of -butene vapor at 00 C and 70 bar. T.77 0 r Table E5 and E6 0.67 r.73.096 0.9 ( ) 0 0.638 f (0.638)(70) 44.7 bar

Generalzed correlatons for the fugacty coeffcent r B Z T B c B r c c B 0 r c r 0 Z (B B ) dr ln (Z ) (const. T 0 r) r T r r 0 ln = (B +ωb ) T r For pure gas 0 B 0.083 B 0.39 0.4 T.6 r 0.7 T 4. r

Fugacty coeffcent from the vral E.O.S The vral equaton Z B The mxture second vral coeffcent B B j y y j B j For a bnary mxture B y yb y yb y yb y yb

Fugacty coeffcent from the vral E.O.S nb Z n nz,,, ) ( ) ( n T n T n nb n nz Z,,, n T n T ) ( ) ( ˆ nb d nb, 0, ) ( ) ( ln n T n T n nb d n nb

B yyb yyb yyb yyb B y (y )B yyb yyb y (y )B B y B y B y y (B B B ) B B B B ybyb yy y n / n / n n n n B B B n n n n nb n B n B nn n (nb) nnnn B n n T,n

(nb) nn nn B ( ) n n n T,n T,n (nb) n n n B ( ) n n n n n (nb) (nb) B (y yy ) nn n T,n n T,n B y (y ) (nb) n T,n B y (nb) ln ˆ n T,n ln ˆ = B +y δ ˆ ln B y Smlarly:

For mult-component systems ˆ ln k Bkk yy j( k j) j Where: B B B Where: k k kk

ω +ω j B j= (B +ωω B) ωj= cj 0 j cj T cj= (TcT cj)(-k j) = cj Z cj V cj cj Emprcal lnteracton t parameter Z = cj Z +Z c cj V = cj V +V /3 /3 c cj 3

Determne the fugacty coeffcents for ntrogen and methane n N ()/CH 4 () mxture at 00K and 30 bar f the mxture contans 40 mol-% N. B B B ( 59.8) 35. 05.0 0. 6 ln ˆ cm 3 mol 30 B 35. (0.6) (0.6) 0. (83.4)(00) 050 y ˆ 0.95 ln ˆ 30 B y 05.00 (0.4) (0.6) 0. 835 (83.4)(00) ˆ 0. 834

ˆ ˆ Estmate and for an equmolar mxture of methyl ethyl ketone () / toluene () at 50 C and 5 ka. Set all k j = 0. B j j cj cj j ( B 0 Z cj Z B j c ) Z T cj cj cj Z cj V cj cj ( TcTcj )( kj ) V cj V / 3 c V / 3 cj B B B 3 ˆ B y 0. 08 ln ˆ B y 0. 07 ln ˆ 0.987 ˆ 0.983

The deal soluton Serves as a standard to be compared: G d cf. G G g G g ln x ln y M d x M d x M G d x G x ln x S d G T d G T, x R ln x S d S R ln x S d x S R x ln x V d d G T, x G T d V V V xv d H d G d TS d G ln x TS ln x H d H d H x H

The Lews/Randall Rule For a specal case of speces n an deal soluton: ( T ) ln fˆ d G d ( T ) ln fˆ d G G d G ( T ) ln ln x f The Lews/Randall rule fˆ d x f ˆ d The fugacty coeffcent of speces n an deal soluton s equal to the fugacty coeffcent of pure speces n the same physcal state as the soluton and at the same T and.

Excess propertes The mathematcal formalsm of excess propertes s analogous to that of the resdual propertes: M E M M where M represents the molar (or unt-mass) value of any extensve thermodynamc property (e.g., V, U, H, S, G, etc.) Smlarly, we have: d ng nv nh E E E d d dt G E dn The fundamental excess-property relaton

The excess Gbbs energy and the actvty coeffcent The excess Gbbs energy s of partcular nterest: c.f. G E G G G E R E G G G G ln d d ( T ) ( T ) fˆ x f ln fˆ x f lnˆ ln ln fˆ x f The actvty coeffcent of speces n soluton. A factor ntroduced nto Raoult s law to account for lqud-phase non-dealtes. For deal soluton, 0, E G

E E E ng nv nh d d G dt E dn ng d E nv E d nh E dt ln dn T, E E V ( G / ) T H E E ( G / ) T E ( ng / ) ln n x,x, T, n j Expermental accessble values: actvty coeffcents from VLE data, V E and H E values come from mxng experments. E G x ln Important applcaton n phase-equlbrum x d ln 0 ( const. T, ) thermodynamcs.