Common Base Configuration

Similar documents
ELCT 503: Semiconductors. Fall 2014

Copyright 2004 by Oxford University Press, Inc.

55:141 Advanced Circuit Techniques Two-Port Theory

ANALOG ELECTRONICS I. Transistor Amplifiers DR NORLAILI MOHD NOH

55:141 Advanced Circuit Techniques Two-Port Theory

Physics Courseware Electronics

Two Port Characterizations

COLLEGE OF ENGINEERING PUTRAJAYA CAMPUS FINAL EXAMINATION SPECIAL SEMESTER 2013 / 2014

CHAPTER 13. Exercises. E13.1 The emitter current is given by the Shockley equation:

Transfer Characteristic

College of Engineering Department of Electronics and Communication Engineering. Test 1 With Model Answer

Diode. Current HmAL Voltage HVL Simplified equivalent circuit. V γ. Reverse bias. Forward bias. Designation: Symbol:

Week 11: Differential Amplifiers

ECSE Linearity Superposition Principle Superposition Example Dependent Sources. 10 kω. 30 V 5 ma. 6 kω. 2 kω

College of Engineering Department of Electronics and Communication Engineering. Test 2

Lecture 27 Bipolar Junction Transistors

Electronic Circuits. Transistor Bias Circuits. Manar Mohaisen Office: F208 Department of EECE

ELECTRONIC DEVICES. Assist. prof. Laura-Nicoleta IVANCIU, Ph.D. C13 MOSFET operation

I = α I I. Bipolar Junction Transistors (BJTs) 2.15 The Emitter-Coupled Pair. By using KVL: V

ES 330 Electronics II Homework 04 (Fall 2017 Due Wednesday, September 27, 2017)

CHAPTER.4: Transistor at low frequencies

V V. This calculation is repeated now for each current I.

Key component in Operational Amplifiers

1.4 Small-signal models of BJT

55:041 Electronic Circuits

55:041 Electronic Circuits

Department of Electrical and Computer Engineering FEEDBACK AMPLIFIERS

FEEDBACK AMPLIFIERS. v i or v s v 0

Flyback Converter in DCM

6.01: Introduction to EECS 1 Week 6 October 15, 2009

EE 330 Lecture 24. Small Signal Analysis Small Signal Analysis of BJT Amplifier

Bipolar junction transistors

EE C245 ME C218 Introduction to MEMS Design

5.6 Small-Signal Operation and Models

Lecture 10: Small Signal Device Parameters

FE REVIEW OPERATIONAL AMPLIFIERS (OP-AMPS)( ) 8/25/2010

Phan Nhu Quan, PhD Dec 02, 2017

Lecture 8: Small signal parameters and hybrid-π model Lecture 9, High Speed Devices 2016

EE C245 ME C218 Introduction to MEMS Design Fall 2007

Introduction to circuit analysis. Classification of Materials

Electrochemistry Thermodynamics

(b) i(t) for t 0. (c) υ 1 (t) and υ 2 (t) for t 0. Solution: υ 2 (0 ) = I 0 R 1 = = 10 V. υ 1 (0 ) = 0. (Given).

Graphical Analysis of a BJT Amplifier

Junction Bipolar Transistor. Characteristics Models Datasheet

Boise State University Department of Electrical and Computer Engineering ECE 212L Circuit Analysis and Design Lab

ELECTRONICS. EE 42/100 Lecture 4: Resistive Networks and Nodal Analysis. Rev B 1/25/2012 (9:49PM) Prof. Ali M. Niknejad

Boise State University Department of Electrical and Computer Engineering ECE 212L Circuit Analysis and Design Lab

The Common-Emitter Amplifier

Prof. Paolo Colantonio a.a

VI. Transistor Amplifiers

General Purpose Transistors

Small-Signal Midfrequency BJT Amplifiers

Assignment 3 ELEC 312/Winter 12 R.Raut, Ph.D.

Feedback Principle :-

Chapter 13 Problem Solutions Computer Simulation Computer Simulation ma/ V 80. r I (120)(0.026)

Lecture #4 Capacitors and Inductors Energy Stored in C and L Equivalent Circuits Thevenin Norton

Linearity. If kx is applied to the element, the output must be ky. kx ky. 2. additivity property. x 1 y 1, x 2 y 2

Physics 4B. A positive value is obtained, so the current is counterclockwise around the circuit.

Electronics II. Midterm #2

figure shows a pnp transistor biased to operate in the active mode

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

Airflow and Contaminant Simulation with CONTAM

Energy Storage Elements: Capacitors and Inductors

ELG 2135 ELECTRONICS I SECOND CHAPTER: OPERATIONAL AMPLIFIERS

INDUCTANCE. RC Cicuits vs LR Circuits

( ) ( ) ( ) ( ) ( ) 1 2. ELEC 201 Electric Circuit Analysis I Lecture 8(a) RL and RC Circuits: Single Switch 11/9/2017. Driven RL Circuit: Equation

Week 9: Multivibrators, MOSFET Amplifiers

Electronics II. Midterm II

TUTORIAL PROBLEMS. E.1 KCL, KVL, Power and Energy. Q.1 Determine the current i in the following circuit. All units in VAΩ,,

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Circuits and Electronics Spring 2001

IV. Diodes. 4.1 Energy Bands in Solids

G = G 1 + G 2 + G 3 G 2 +G 3 G1 G2 G3. Network (a) Network (b) Network (c) Network (d)

9/12/2013. Microelectronics Circuit Analysis and Design. Modes of Operation. Cross Section of Integrated Circuit npn Transistor

The BJT Differential Amplifier. Basic Circuit. DC Solution

IV. Diodes. 4.1 Energy Bands in Solids

Driving your LED s. LED Driver. The question then is: how do we use this square wave to turn on and turn off the LED?

EE 2006 Electric Circuit Analysis Fall September 04, 2014 Lecture 02

ESE319 Introduction to Microelectronics. BJT Biasing Cont.

ANALOG ELECTRONICS 1 DR NORLAILI MOHD NOH

SEMI CONDUCTOR - ELECTRONICS

EE 221 Practice Problems for the Final Exam

EE 330 Fall 2016 Seating

Chapter 2 Problem Solutions 2.1 R v = Peak diode current i d (max) = R 1 K 0.6 I 0 I 0

Chapter 6. Operational Amplifier. inputs can be defined as the average of the sum of the two signals.

Electrical Circuits II (ECE233b)

I. INTRODUCTION. 1.1 Circuit Theory Fundamentals

6.01: Introduction to EECS I Lecture 7 March 15, 2011

Mod. Sim. Dyn. Sys. Amplifiers page 1

Measurement and Model Identification of Semiconductor Devices

Coupling Element and Coupled circuits. Coupled inductor Ideal transformer Controlled sources

Announcements. Lecture #2

( ) = ( ) + ( 0) ) ( )

Mod. Sim. Dyn. Sys. Amplifiers page 1

S-Domain Analysis. s-domain Circuit Analysis. EE695K VLSI Interconnect. Time domain (t domain) Complex frequency domain (s domain) Laplace Transform L

FYSE400 ANALOG ELECTRONICS

Bipolar Junction Transistor (BJT) - Introduction

Useful Formulae. Electrical symbols and units

Quick Review. ESE319 Introduction to Microelectronics. and Q1 = Q2, what is the value of V O-dm. If R C1 = R C2. s.t. R C1. Let Q1 = Q2 and R C1

2SC3457. isc Silicon NPN Power Transistor. isc Product Specification. INCHANGE Semiconductor. isc Website:

i I (I + i) 3/27/2006 Circuits ( F.Robilliard) 1

Transcription:

ommon Base onfguraton nput caracterstcs: s. B wt B const Output caracterstc: s. B wt const Pcture from ref [2] S. Lneykn, ntroducton to electroncs Slde [53] ommon Base Termnal caracterstcs [2] α BO FB 10 7 A α 0.99 ( ) BO Pcture from ref [2] S. Lneykn, ntroducton to electroncs Slde [54] BO KL : + B ( B + ) BO α + α β BO + B + B ( 1 α ) ( 1 α ) O 1

bers-moll model for acte regon (large sgnal) S. Lneykn, ntroducton to electroncs Slde [55] bers-moll model for acte regon (large sgnal) S. Lneykn, ntroducton to electroncs Slde [56] 2

Analytcal model bers-moll model of Transstor (acte regon) B S S BS B T ( e 1) B B T S T ( e 1) ( e 1) α B B T S T ( e 1) ( e 1) β S. Lneykn, ntroducton to electroncs Slde [57] nternal Feedback ffect and Output Resstance S. Lneykn, ntroducton to electroncs Slde [58] 3

H-parameters n B-mode Measurement metod 11 21 22 1 2 0 1 12 1 1 0 2 2 2 0 1 2 1 0 2 ; ; ; eb b rb fb ob e cb e 0 eb cb 0 c cb 0 e c e 0 cb defntons S. Lneykn, ntroducton to electroncs Slde [59] Small-sgnal parameters S. Lneykn, ntroducton to electroncs Slde [60] 4

ommon mtter Termnal caracterstc [2] Pcture from ref [2] S. Lneykn, ntroducton to electroncs Slde [61] Small sgnal e, oe S. Lneykn, ntroducton to electroncs Slde [62] 5

arly oltage arly effect: W ( ) > W ( ) 1 1 2 2 Depleton layer of B-Juncton ncreases wt > current ncreases Te densty of electrons n B-Juncton ncreases wt B > current ncreases 1 + B T Se A S. Lneykn, ntroducton to electroncs Slde [63] Small sgnal fe fe dc 0 100 ce d c Q b b S. Lneykn, ntroducton to electroncs Slde [64] 6

Small sgnal: g m e be 1 db de 1 1 1 e Q Q for 1mA, e 2.6kΩ ce ; α 0 d β d g b d e d α be α be for ( β + 1) r ( β + 1) e ma [ ] c e 1, 0.04 1/ Ω m m Q Q m dbe dbe re T e S. Lneykn, ntroducton to electroncs Slde [65] g T g β Small sgnal: re be re 1 c 0 ce m S. Lneykn, ntroducton to electroncs Slde [66] 7

Small sgnal: 1/ oe (r o ) Pcture from ref [3] 1 oe ce ro b 0 c dc oe Q, for 1mA, ro 100kΩ d + ce A S. Lneykn, ntroducton to electroncs Slde [67] Large and small sgnal model for acte regon Pcture from ref [3] S. Lneykn, ntroducton to electroncs Slde [68] 8

Small sgnal model (T) Pcture from ref [3] S. Lneykn, ntroducton to electroncs Slde [69] π-model Pcture from ref [3] S. Lneykn, ntroducton to electroncs Slde [70] 9

Small Sgnal Models of BJT S. Lneykn, ntroducton to electroncs Slde [71] Transstor: lementary crcuts ommon mtter () ommon Base (B) ommon ollector () S. Lneykn, ntroducton to electroncs Slde [72] 10

Pcture from ref [3] S. Lneykn, ntroducton to electroncs Slde [73] 1. amplfer Pcture from ref [3] S. Lneykn, ntroducton to electroncs Slde [74] 11

-example 10, 1mA, O 5 A 100, β100, S 10fA Fnd: Grapcal soluton, BB, B, R Small sgnal parameters Draw a small sgnal equalent crcut Sole te crcut S. Lneykn, ntroducton to electroncs Slde [75] grapcal soluton S. Lneykn, ntroducton to electroncs Slde [76] 12

Q-pont soluton,, BB, B, R R B BB 10uA β B + T O ln 5kΩ 1.01mA S 656m S. Lneykn, ntroducton to electroncs Slde [77] Small sgnal equalent crcut parameters o fe m re β 100 T re g e ( 1+ β ) α 1 0.04 r Ω e r A 0 26Ω + r e 2.6kΩ 105kΩ S. Lneykn, ntroducton to electroncs Slde [78] 13

Small Sgnal equalent crcut o A o A A p s s g ( r R ) ro r + R g A A 200 100 20k fe m o o R << ro R << ro fe m R 100 200 S. Lneykn, ntroducton to electroncs Slde [79] Small Sgnal equalent crcut R R R n o O r 2.6kΩ R R 5kΩ ( R ) r 100kΩ o e o S. Lneykn, ntroducton to electroncs Slde [80] 14

2. amplfer Pcture from ref [3] S. Lneykn, ntroducton to electroncs Slde [81] -example 10, 1mA, O 5 A 100, β100, S 10fA Fnd: Grapcal soluton, BB, B, R Small sgnal parameters Draw a small sgnal equalent crcut Sole te crcut S. Lneykn, ntroducton to electroncs Slde [82] 15

-grapcal soluton S. Lneykn, ntroducton to electroncs Slde [83] Q-pont soluton,, BB, B, R R B R 10uA 1.01mA BB 0 O α R O O + 4.95kΩ 5 T ln S 5.656 S. Lneykn, ntroducton to electroncs Slde [84] 16

Small sgnal equalent crcut parameters o fe m re β 100 T re g e ( 1+ β ) α 1 0.04 r Ω e r A 0 26Ω + r e 2.6kΩ 105kΩ S. Lneykn, ntroducton to electroncs Slde [85] Small Sgnal equalent crcut Pcture from ref [3] S. Lneykn, ntroducton to electroncs Slde [86] 17

R n Pcture from ref [3] S. Lneykn, ntroducton to electroncs Slde [87] R O Pcture from ref [3] S. Lneykn, ntroducton to electroncs Slde [88] 18

3. B amplfer Pcture from ref [3] S. Lneykn, ntroducton to electroncs Slde [89] B-example 10, 1mA, O 5 A 100, β100, S 10fA Fnd: Grapcal soluton, BB, B, R Small sgnal parameters Draw a small sgnal equalent crcut Sole te crcut S. Lneykn, ntroducton to electroncs Slde [90] 19

B grapcal soluton S. Lneykn, ntroducton to electroncs Slde [91] Q-pont soluton,, BB, B, R R B BB B T + O 10uA β ln + 1.01mA S O 5kΩ 656m S. Lneykn, ntroducton to electroncs Slde [92] 20

Small sgnal equalent crcut parameters o fe m re β 100 T re g e ( 1+ β ) α 1 0.04 r Ω e r A 0 26Ω + r e 2.6kΩ 105kΩ S. Lneykn, ntroducton to electroncs Slde [93] Small Sgnal qualent rcut S. Lneykn, ntroducton to electroncs Slde [94] 21

B: A S. Lneykn, ntroducton to electroncs Slde [95] B: Rn, Ro S. Lneykn, ntroducton to electroncs Slde [96] 22