SiC Power Module BSM300C12P3E201

Similar documents
SiC Power Module BSM600D12P3G001. Datasheet. Application Motor drive. Circuit diagram. Inverter, Converter. Photovoltaics, wind power generation.

SiC Power Module BSM300D12P2E001

SiC Power Module BSM600D12P3G001. Datasheet. Application Motor drive. Circuit diagram. Inverter, Converter. Photovoltaics, wind power generation.

SiC Power Module BSM180D12P3C007

SiC Power Module BSM300D12P2E001

SiC Power Module BSM080D12P2C008

SiC Power Module BSM180D12P2C101

Linear Regulator Application Information

Thermal Calculation for Linear Regulator

Anti-surge Chip Resistors

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (DTMOS ) TK15J60U

TOSHIBA Field Effect Transistor Silicon P-Channel MOS Type (U MOSIII) 2SJ668

< HVIGBT MODULE > CMH1200DC-34S HIGH POWER SWITCHING USE SiC Hybrid HVIGBT (High Voltage Insulated Gate Bipolar Transistor) Module

TOSHIBA Field Effect Transistor Silicon N-Channel MOS Type (π-mos VI) 2SK4108. JEDEC Repetitive avalanche energy (Note 3) E AR 15 mj

1.2 kv 16 mω 1.8 mj. Package. Symbol Parameter Value Unit Test Conditions Notes 117 V GS = 20V, T C

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (π-mosⅦ) TK12A50D

Symbol Parameter Max. Units I TC = 25 C Continuous Drain Current, V 10V I DM Pulsed Drain Current

SSF8NP60U. Main Product Characteristics: 600V V DSS. 0.73Ω (typ.) Features and Benefits: Description: Absolute max Rating:

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (π-mosvi) 2SK3667

CCS050M12CM2 1.2kV, 25mΩ All-Silicon Carbide Six-Pack (Three Phase) Module C2M MOSFET and Z-Rec TM Diode

TOSHIBA Field Effect Transistor Silicon N-Channel MOS Type (Ultra-High-speed U-MOSIII) TPCA8011-H

TPCA8107-H 4± ± M A .0±.0± 0.15± ± ± ± ± ± 4.25±0.2 5±0. 3. Maximum Ratings (Ta 25 C)

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (U-MOSIII) TPC6004

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (U-MOSII) 2SK3236

TOSHIBA Field-Effect Transistor Silicon P-Channel MOS Type SSM3J117TU. Characteristic Symbol Test Condition Min Typ. Max Unit

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (π-mosv) 2SK3538

APPLICATION Traction drives, High Reliability Converters / Inverters, DC choppers CM1000HG-130XA

N-channel TrenchMOS standard level FET

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (DTMOS) TK40J60T

BUK9Y53-100B. N-channel TrenchMOS logic level FET. Table 1. Pinning Pin Description Simplified outline Symbol 1, 2, 3 source (S) 4 gate (G)

TOSHIBA Field Effect Transistor Silicon N-Channel MOS Type (U-MOSⅤ-H) TPC8037-H

Over Current Protection Circuits Voltage controlled DC-AC Inverters Maximum operating temperature of 175 C

PINNING - TO220AB PIN CONFIGURATION SYMBOL

BUK A. N-channel TrenchMOS standard level FET

Rev Maximum Ratings, at T j = 25 C, unless otherwise specified Parameter Symbol Value Unit Continuous drain current I D.

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (U MOSⅢ) TK30A06J3

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type SSM6N15FE

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type SSM6N44FE. DC I D 100 ma Pulse I DP 200

Over Current Protection Circuits Voltage controlled DC-AC Inverters Maximum operating temperature of 175 C

< HVIGBT MODULES > CM750HG-130R. APPLICATION Traction drives, High Reliability Converters / Inverters, DC choppers CM750HG-130R

Over current protection circuits Voltage controlled DC-AC inverters Maximum operating temperature of 175 C

PSMN4R5-40PS. N-channel 40 V 4.6 mω standard level MOSFET. High efficiency due to low switching and conduction losses

PINNING - TO220AB PIN CONFIGURATION SYMBOL

< HIGH VOLTAGE DIODE MODULES > RM400DG-90F. APPLICATION Traction drives, High Reliability Converters / Inverters, DC choppers

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (U-MOS IV) TPC8026

TOSHIBA Field Effect Transistor Silicon P Channel MOS Type (U-MOSⅣ) TPCA8103

PowerMOS transistor PINNING - SOT428 PIN CONFIGURATION SYMBOL. tab

FG Silicon N-channel MOS FET (FET1) Silicon P-channel MOS FET (FET2) For switching circuits. Package. Overview. Features. Marking Symbol: V7

N-channel TrenchMOS logic level FET

2SJ182(L), 2SJ182(S)

Over current protection circuits Voltage controlled DC-AC inverters Maximum operating temperature of 175 C

Over current protection circuits Voltage controlled DC-AC inverters Maximum operating temperature of 175 C

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (Ultra-High-Speed U-MOSIII) TPC8017-H

Rev Maximum Ratings, at T j = 25 C, unless otherwise specified Parameter Symbol Value Unit Continuous drain current I D

TOSHIBA Field Effect Transistor Silicon P Channel MOS Type SSM3J16TE. DC I D 100 ma Pulse I DP 200

2SJ280(L), 2SJ280(S)

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (π-mosvi) 2SK3567

PSMN4R3-30PL. N-channel 30 V 4.3 mω logic level MOSFET. High efficiency due to low switching and conduction losses

BUK B. N-channel TrenchMOS logic level FET

SPP08P06P H. SIPMOS Power-Transistor V DS -60 V I D T C = 25 C T C = 100 C. I D puls E AS I D = -8.8 A, V DD = -25 V, R GS = 25 W

2SJ332(L), 2SJ332(S)

PINNING - TO220AB PIN CONFIGURATION SYMBOL

PSMN013-80YS. N-channel LFPAK 80 V 12.9 mω standard level MOSFET

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (π MOSV) 2SK3497

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (U-MOS IV) TPC8028

CCS050M12CM2 1.2kV, 50A Silicon Carbide Six-Pack (Three Phase) Module Z-FET TM MOSFET and Z-Rec TM Diode

TPCF8402 F6B TPCF8402. Portable Equipment Applications Mortor Drive Applications DC-DC Converter Applications. Maximum Ratings (Ta = 25 C)

Chip tantalum capacitors (Fail-safe open structure type)

SLI-570 / SLA-570 Series

PINNING - TO220AB PIN CONFIGURATION SYMBOL

PINNING - TO220AB PIN CONFIGURATION SYMBOL

BSS123. Rev K/W. R thja

CoolMOS TM Power Transistor

Chip tantalum capacitors (Fail-safe open structure type)

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (L 2 π MOSV) 2SK2385

Product Summary Drain source voltage. Lead free Yes I D. I D puls -320 E AS. P tot 340 W

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (π-mosiii) 2SK2613

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type SSM3K02F

N-channel TrenchMOS standard level FET. Higher operating power due to low thermal resistance Low conduction losses due to low on-state resistance

X (11 PLACES) TERMINAL CODE 1 SUP 2 SVP 3 SWP 4 SUN 5 SVN 6 SWN 7 GUP 8 GVP 9 GWP 10 GUN (13) 11 GVN 12 GWN 13 TH1 14 TH2 (14)

TOSHIBA Field-Effect Transistor Silicon N Channel MOS Type (U-MOSⅣ) SSM6N7002BFU. DC I D 200 ma Pulse I DP 800

PSMN006-20K. N-channel TrenchMOS SiliconMAX ultra low level FET

PRELIMINARY TO-247. Conditions. T j = 100 C T j = 150 C T C = 25 C AC (2) 1/8" from case < 10 s. Symbol. R th JC R th JA

BUK B. N-channel TrenchMOS standard level FET

BSS670S2L. OptiMOS Buck converter series. Product Summary. Feature V DS 55 V. R DS(on) 650 mω. Enhancement mode I D 0.54 A. Logic Level.

TOSHIBA Field Effect Transistor Silicon P Channel MOS Type (U-MOS III) TPCF8102

Rev Type Package RoHS compliant Tape and Reel Information BSP125 P-SOT-223 No

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (π-mosvi) 2SK3767

N-channel TrenchMOS logic level FET

Preliminary data. Maximum Ratings,at T j = 25 C, unless otherwise specified Parameter Symbol Value Unit Continuous drain current I D.

CoolMOS TM Power Transistor

TOSHIBA Field Effect Transistor Silicon N, P Channel MOS Type. (P Channel U MOS IV/N Channel U-MOS III) TPC8405. Rating P Channel N Channel

PHD/PHP36N03LT. 1. Product profile. 2. Pinning information. N-channel TrenchMOS logic level FET. 1.1 General description. 1.

PSMN8R3-40YS. N-channel LFPAK 40 V 8.6 mω standard level MOSFET

PMV56XN. 1. Product profile. 2. Pinning information. µtrenchmos extremely low level FET. 1.1 Description. 1.2 Features. 1.

PSMN2R6-40YS. N-channel LFPAK 40 V 2.8 mω standard level MOSFET

Package. Symbol Parameter Value Unit Test Conditions Note. V GS = 15 V, T C = 25 C Fig. 19 A 19.7 V GS = 15 V, T C = 100 C.

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (π-mosiv) 2SK3565

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type SSM3K17FU

PHM21NQ15T. TrenchMOS standard level FET

Transcription:

SiC Power Module BSM3CP3E Application Motor drive Converter Photovoltaics, wind power generation. Circuit diagram 7 9(N.C) 8 3,4 6 5 Features ) Low surge, low switching loss. *Do not connect anything to NC pin. ) Highspeed switching possible. 3) Reduced temperature dependence. Consuction This product is a chopper module consisting of SiCUMOSFET and SiCSBD from ROHM. 6 ROHM Co., Ltd. All rights reserved. / 7. Rev.D

BSM3CP3E Absolute maximum ratings (T j = 5 C) Parameter Drainsource voltage Symbol V DSS GS short Repetitive reverse voltage V DSS Clamp diode Gatesource voltage( ) Gatesource voltage( ) V GSS DS short Drain current * I D DC (T c =6 C) I DRM Pulse (T c =6 C) ms * I S DC (T c =6 C ) V GS =8V 3 Source current * Forward curent I SRM I SRM I F Pulse (Tc=6 C) ms V GS =8V * Pulse (Tc=6 C) s V GS =V * DC (T c =6 C ) V GS =8V 6 6 3 A (clamp diode) * I FRM Pulse (Tc=6 C) ms V GS =8V * 6 Total power disspation * 3 Ptot T c =5 C 36 W Max Junction Temperature Junction temperature T jmax T jop 75 4 to5 C Storage temperature 4 to5 Isolation voltage Mounting torque T stg Visol Conditions Terminals to baseplate, f=6hz AC min. Main Terminals : M6 screw Mounting to heat shink : M5 screw Limit 4 3 6 5 (*) Case temperature (T c ) is defined on the surface of base plate just under the chips. (*) Repetition rate should be kept within the range where temperature rise if die should not exceed T j max. (*3) T j is less than 75 C 4.5 3.5 Unit V Vrms N m Waveform for switching test Eon=Id Vds Eoff=Id Vds r Vsurge VDS 9% 9% ID % % % % % % % 9% VGS % 6 ROHM Co., Ltd. All rights reserved. / 7. Rev.D

BSM3CP3E Elecical characteristics (T j =5 C) Parameter Static drainsource onstate voltage Symbol Conditions Min. Typ. Max. Unit T j =5 C.9 3. V DS(on) I C =3A, V GS =8V V T j =5 C.7 T j =5 C 3 4.5 Drain cutoff current I DSS V DS =V, V GS =V A T j =5 C.6. Forwad Voltag V F I F =3A T j =5 C. V T j =5 C.3 3. Reverse curent I RRM Clamp diode 3. ma Gatesource threshold voltage V GS(th) V DS =V, I D =8mA.7 5.6 V V GS =V, V DS =V.5 Gatesource leakage current I GSS V GS = 6V, V DS =V.5 A t d(on), 4 t r 35 Switching characteristics t rr I D =3A 6 ns t d(off) R G =.8 55 t f inductive load 4 Input capacitance Ciss V DS =V, V GS =V,kHz 5 nf Gate Registance R Gint T j =5 C.9 NTC Rated Resistance R5 5. k NTC B Value B5/5 337 K Say Inductance Ls 3 nh Creepage Distance Clearance Distance Terminal to heat sink Terminal to heat sink 4.5. mm mm Terminal to terminal Terminal to terminal 5. 9. mm mm Junctiontocase thermal resistance Casetoheat sink Thermal resistance UMOS (/ module) * 4. R th (jc) SBD (/ module) * 4. Case to heat sink, per module, R th (cf) Thermal grease appied * 5.35 C/W (*4) In order to prevent self turnon, it is recommended to apply negative gate bias. (*5) Measurement of Tc is to be done at the point just under the chip. (*6) Typical value is measured by using thermally conductive grease of λ=.9w/(m K). (*7) SiC devices have lower short cuicuit withstand capability due to high current density. Please be advised to pay careful attention to short cuicuit accident and y to adjust protection time to shutdown them as short as possible. (*8) If the Product is used beyond absolute maximum ratings defined in the Specifications, as its internal sucture may be dameged, please replace such Product with a new one. 6 ROHM Co., Ltd. All rights reserved. 3/ 7. Rev.D

BSM3CP3E Fig. Typical Output Characteristics [ ] Fig. DrainSource Voltage vs. Drain Current 6 5 4 3 V GS =8V V GS =V V GS =4V V GS =6V V GS =V V GS =V DrainSource Voltage : V DS 8 7 6 5 4 3 V GS =8V T j =5ºC 4 6 8 3 4 5 6 DrainSource Voltage : V DS DrainSource Voltage : V DS Fig.3 DrainSource Voltage vs. GateSource Voltage [ ] 5 4 3 I D =3A I D =A I D =5A I D =A 4 6 8 4 Fig.4 Static Drain Source OnState Resistance vs. Junction Temperature Static Drain Source OnState Resistance : R DS(on) [m ] 5 5 I D =3A V GS =V V GS =4V V GS =6V V GS =8V V GS =V 5 5 5 GateSource Voltage : V GS Junction Temperature : T j [ºC] 6 ROHM Co., Ltd. All rights reserved. 4/ 7. Rev.D

BSM3CP3E Fig.5 Forward characteristic of Diode Fig.6 Forward characteristic of Diode 6 5 Source Current : Is T j =5ºC Source Current : Is 4 3 T j =5ºC 3 4 3 4 SourceDrain Voltage : V SD SourceDrain Voltage : V SD Fig.7 Drain Current vs. GateSource Voltage Fig.8 Drain Current vs. GateSource Voltage 6.E+3 5 4 3 V DS =V T j =5ºC.E+.E+.E+.E.E.E3 V DS =V T j =5ºC 5 5.E4 5 5 GateSource Voltage : V GS GateSource Voltage : V GS 6 ROHM Co., Ltd. All rights reserved. 5/ 7. Rev.D

BSM3CP3E Fig.9 Switching Characteristics [ ] Fig. Switching Characteristics [ ] R G =.8 4 6 R G =.8 4 6 Fig. Switching Characteristics [ T j =5ºC ] R G =.8 4 6 Fig. Switching Loss vs. Drain Current [ ] 8 6 4 8 6 4 R G =.8 4 6 6 ROHM Co., Ltd. All rights reserved. 6/ 7. Rev.D

BSM3CP3E 8 6 4 8 6 4 Fig.3 Switching Loss vs. Drain Current [ ] R G =.8 8 6 4 8 6 4 Fig.4 Switching Loss vs. Drain Current [ T j =5ºC ] R G =.8 4 6 4 6 Fig.5 Recovery Characteristics vs. Drain Current [ ] Fig.6 Recovery Characteristics vs. Drain Current [ ] Recovery Time : t rr [ns] R G =.8 Irr r Recovery Current : I rr Recovery Time : t rr [ns] R G =.8 Irr r Recovery Current : I rr 3 4 5 6 3 4 5 6 6 ROHM Co., Ltd. All rights reserved. 7/ 7. Rev.D

BSM3CP3E Recovery Time : t rr [ns] Fig.7 Recovery Characteristics vs. Drain Current [ T j =5ºC ] I D =3A r Irr Recovery Current : I rr Fig.8 Switching Characteristics vs. Gate Resistance [ ] I D =3A 3 4 5 6 Fig.9 Switching Characteristics vs. Gate Resistance [ ] I D =3A Fig. Switching Characteristics vs. Gate Resistance [ T j =5ºC ] I D =3A 6 ROHM Co., Ltd. All rights reserved. 8/ 7. Rev.D

BSM3CP3E Fig. Switching Loss vs. Gate Resistance [ ] 6 5 4 3 I D =3A Fig. Switching Loss vs. Gate Resistance [ ] 6 5 4 3 I D =3A Fig.3 Switching Loss vs. Gate Resistance [ T j =5ºC ] 6 5 4 3 I D =3A Capasitance : C [F] Fig.4 Typical Capacitance vs. DrainSource Voltage.E7.E8.E9 V GS =V khz C iss C oss C rss.e.. DrainSource Voltage : V DS 6 ROHM Co., Ltd. All rights reserved. 9/ 7. Rev.D

BSM3CP3E GateSource Voltage : V GS Fig.5 Gate Charge Characteristics 5 5 5 I D =3A 4 6 8 Total Gate charge : Qg [nc] Normalized Transient Thermal Impedance : Rth Fig.6 Normalized Transient Thermal Impedance. Per unit base UMOS part :.K/W SBD part :.K/W.... Time [s] Single Pulse T c =5ºC 6 ROHM Co., Ltd. All rights reserved. / 7. Rev.D

Notice Notes ) ) 3) 4) 5) 6) 7) 8) 9) ) ) ) The information contained herein is subject to change without notice. Before you use our Products, please contact our sales representative and verify the latest specifications. Although ROHM is continuously working to improve product reliability and quality, semiconductors can break down and malfunction due to various factors. Therefore, in order to prevent personal injury or fire arising from failure, please take safety measures such as complying with the derating characteristics, implementing redundant and fire prevention designs, and utilizing backups and failsafe procedures. ROHM shall have no responsibility for any damages arising out of the use of our Poducts beyond the rating specified by ROHM. Examples of application circuits, circuit constants and any other information contained herein are provided only to illusate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production. The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by ROHM or any other parties. ROHM shall have no responsibility whatsoever for any dispute arising out of the use of such technical information. The Products specified in this document are not designed to be radiation tolerant. For use of our Products in applications requiring a high degree of reliability (as exemplified below), please contact and consult with a ROHM representative : ansportation equipment (i.e. cars, ships, ains), primary communication equipment, affic lights, fire/crime prevention, safety equipment, medical systems, and power ansmission systems. Do not use our Products in applications requiring exemely high reliability, such as aerospace equipment, nuclear power conol systems, and submarine repeaters. ROHM shall have no responsibility for any damages or injury arising from noncompliance with the recommended usage conditions and specifications contained herein. ROHM has used reasonable care to ensure the accuracy of the information contained in this document. However, ROHM does not warrants that such information is errorfree, and ROHM shall have no responsibility for any damages arising from any inaccuracy or misprint of such information. Please use the Products in accordance with any applicable environmental laws and regulations, such as the RoHS Directive. For more details, including RoHS compatibility, please contact a ROHM sales office. ROHM shall have no responsibility for any damages or losses resulting noncompliance with any applicable laws or regulations. When providing our Products and technologies contained in this document to other counies, you must abide by the procedures and provisions stipulated in all applicable export laws and regulations, including without limitation the US Export Adminisation Regulations and the Foreign Exchange and Foreign Trade Act. 3) This document, in part or in whole, may not be reprinted or reproduced without prior consent of ROHM. Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact us. ROHM Customer Support System http:///contact/