Numerical Simulation on Heat Transfer Phenomena in Microchannel Evaporator of A CO 2 Air Conditioning System

Similar documents
Characteristics of Flow Boiling Heat Transfer of Sub-Critical CO2 in Mini-Channels With Micro- Fins

Minhhung Doan, Thanhtrung Dang

Fundamental issues, mechanisms and models of flow boiling heat transfer in microscale channels

Mathematical Modelling for Refrigerant Flow in Diabatic Capillary Tube

Numerical Investigation of Effects of Ramification Length and Angle on Pressure Drop and Heat Transfer in a Ramified Microchannel

Heat transfer coefficient of near boiling single phase flow with propane in horizontal circular micro channel

IHTC DRAFT MEASUREMENT OF LIQUID FILM THICKNESS IN MICRO TUBE ANNULAR FLOW

a. Key Laboratory of Efficient Utilization of Low and Medium Grade Energy, MOE, Tianjin University, Tianjin , China

THE EFFECTS OF LONGITUDINAL RIBS ON ENTROPY GENERATION FOR LAMINAR FORCED CONVECTION IN A MICROCHANNEL

Australian Journal of Basic and Applied Sciences. Numerical Investigation of Flow Boiling in Double-Layer Microchannel Heat Sink

An experimental investigation on condensation of R134a refrigerant in microchannel heat exchanger

FIELD STUDY OF FLOW AND HEAT TRANSFER IN TUBE MICROPHONE

If there is convective heat transfer from outer surface to fluid maintained at T W.

Heat Transfer Convection

Condensation and Evaporation Characteristics of Flows Inside Three Dimensional Vipertex Enhanced Heat Transfer Tubes

CFD Analysis of Forced Convection Flow and Heat Transfer in Semi-Circular Cross-Sectioned Micro-Channel

Cooling of a multi-chip power module

Direct numerical simulation database for supercritical carbon dioxide

Boiling Heat Transfer and Pressure Drop of R1234ze(E) inside a Small-Diameter 2.5 mm Microfin Tube

Principles of Food and Bioprocess Engineering (FS 231) Problems on Heat Transfer

Prediction of Heat Transfer Coefficient in Annular Flow Regime for Flow Boiling in a Horizontal Micro Tube at a Uniform Heat Flux

Numerical Analysis and Optimization of Thermal Performance of LED Filament Light Bulb

Experimental and Numerical Investigation of a Multi Louvered Plate Fin-and-Tube Heat Exchanger using Computational Fluid Dynamics

Axial profiles of heat transfer coefficients in a liquid film evaporator

Boiling of R-134a in Horizontal Mini Tube

Optimization of flue gas turbulent heat transfer with condensation in a tube

CHAPTER 7 NUMERICAL MODELLING OF A SPIRAL HEAT EXCHANGER USING CFD TECHNIQUE

Experimental Study of Energy Efficiency of a Single Microtube

Analysis of the Cooling Design in Electrical Transformer

International Journal of Multiphase Flow

Heat Transfer Predictions for Carbon Dioxide in Boiling Through Fundamental Modelling Implementing a Combination of Nusselt Number Correlations

Fluid Flow, Heat Transfer and Boiling in Micro-Channels

ME 402 GRADUATE PROJECT REPORT ACTIVE BATTERY COOLING SYSTEM FOR ALL-ELECTRIC VEHICLES JINGWEI ZHU

An experimental study of flow pattern and pressure drop for flow boiling inside microfinned helically coiled tube

Condensation of refrigerant R407C in multiport minichannel section

GRAVITY EFFECT ON THE DISTRIBUTION OF REFRIGERANT FLOW IN A MULTI-CIRCUITED CONDENSER

FLOW BOILING HEAT-TRANSFER IN PLATE MICRO- CHANNEL HEAT SINK

Numerical Investigation of The Convective Heat Transfer Enhancement in Coiled Tubes

PHYSICAL MECHANISM OF CONVECTION

Multi-Fidelity Computational Flow Assurance for Design and Development of Subsea Systems and Equipment Simon Lo

Experimental Study of Convective Heat Transfer and Thermal Performance in the Heat-Sink Channel with Various Geometrical Configurations Fins

PREDICTION OF MASS FLOW RATE AND PRESSURE DROP IN THE COOLANT CHANNEL OF THE TRIGA 2000 REACTOR CORE

HEAT TRANSFER CAPABILITY OF A THERMOSYPHON HEAT TRANSPORT DEVICE WITH EXPERIMENTAL AND CFD STUDIES

Effect of roughness shape on heat transfer and flow friction characteristics of solar air heater with roughened absorber plate

AN ANALYSIS OF EXPERIMENTAL DATA AND PREDICTION METHODS FOR CRITICAL HEAT FLUXES IN MICRO-SCALE CHANNELS

Heat and Mass Transfer Prof. S.P. Sukhatme Department of Mechanical Engineering Indian Institute of Technology, Bombay

A NUMERICAL STUDY ON THE FLOW AND HEAT TRANSFER FOR THE INSIDE OF A NEW DIVERSION-TYPE LNG HEATING DEVICE

Boiling and Condensation (ME742)

Development of cryogenic silicon detectors for the TOTEM Roman pots

International Communications in Heat and Mass Transfer

Evaporation Heat Transfer Coefficients Of R-446A And R-1234ze(E)

Heat and Mass Transfer Unit-1 Conduction

SEM-2017(03HI MECHANICAL ENGINEERING. Paper II. Please read each of the following instructions carefully before attempting questions.

BEJAN'S CONSTRUCTAL THEORY AND OVERALL PERFORMANCE ASSESSMENT The Global Optimization for Heat Exchanging Finned Modules

InterPACKICNMM

vector H. If O is the point about which moments are desired, the angular moment about O is given:

DETERMINATION OF R134A S CONVECTIVE HEAT TRANSFER COEFFICIENT IN HORIZONTAL EVAPORATORS HAVING SMOOTH AND CORRUGATED TUBES

Pressure Distribution of Refrigerant Flow in an Adiabatic Capillary Tube

Numerical Simulation Of Fluid Flow And Heat Transfer Of Supercritical Pressure

Numerical Investigation on The Convective Heat Transfer Enhancement in Coiled Tubes

NUMERICAL STUDY OF MICROSCALE HEAT SINKS USING DIFFERENT SHAPES & FLUIDS. Vipender Singh Negi CSIR-CSIO Chandigarh Govt. Of INDIA

Effect of Oil on Flow Boiling Heat Transfer and Flow Patterns of CO2 in 11.2 mm Horizontal Smooth and Enhanced Tube

Experimental investigation on up-flow boiling of R1234yf in aluminum multi-port extruded tubes

NUMERICAL INVESTIGATION OF COUNTER FLOW ISOSCELES RIGHT TRIANGULAR MICROCHANNEL HEAT EXCHANGER

NUMERICAL HEAT TRANSFER ENHANCEMENT IN SQUARE DUCT WITH INTERNAL RIB

CONDENSATION HEAT TRANSFER COEFFICIENT CORRELATION BASED ON SLIP RATIO MODEL IN A HORIZONTAL HEAT EXCHANGER

Analysis, Design and Fabrication of Forced Convection Apparatus

Numerical Modelling of Twin-screw Pumps Based on Computational Fluid Dynamics

A Methodology for Microchannel Heat Sink Design Based on Topology Optimization

Comparison of Heat Transfer rate of closed loop micro pulsating heat pipes having different number of turns

TWO-PHASE FLOW BOILING IN MICROCHANNELS FOR COOLING OF MICROELECTRONICS

EFFECT OF GEOMETRICAL PARAMETERS ON BOILING HEAT TRANSFER AND PRESSURE DROP IN MICRO FINNED MICRO GAP

On the influence of tube row number for mixed convection around micro tubes

Micro Cooling of SQUID Sensor

THE EFFECT OF THE CROSS-SECTIONAL GEOMETRY ON SATURATED FLOW BOILING HEAT TRANSFER IN HORIZONTAL MICRO-SCALE CHANNELS

Mechanical Engineering. Postal Correspondence Course HEAT TRANSFER. GATE, IES & PSUs

Thermodynamics 1. Lecture 7: Heat transfer Open systems. Bendiks Jan Boersma Thijs Vlugt Theo Woudstra. March 1, 2010.

Lectures on Applied Reactor Technology and Nuclear Power Safety. Lecture No 6

Radiation Heat Transfer

C ONTENTS CHAPTER TWO HEAT CONDUCTION EQUATION 61 CHAPTER ONE BASICS OF HEAT TRANSFER 1 CHAPTER THREE STEADY HEAT CONDUCTION 127

Level 7 Post Graduate Diploma in Engineering Heat and mass transfer

FE Fluids Review March 23, 2012 Steve Burian (Civil & Environmental Engineering)

Keywords: boiling in mini tube, heat transfer behavior, correlations, R-134a and R-600a 1. INTRODUCTION

Modelling of phase change for Two-Phase Refrigerant Flow inside Capillary Tube under Adiabatic Conditions

Boiling Heat Transfer and Pressure Drop of a Refrigerant Flowing in a Vertical Small Diameter Tube

R32 Heat Transfer Coefficient During Condensation In A Mini-Channel Multiport Tube

N. Lemcoff 1 and S.Wyatt 2. Rensselaer Polytechnic Institute Hartford. Alstom Power

Numerical Analysis of a Helical Coiled Heat Exchanger using CFD

ME 331 Homework Assignment #6

Principles of Convection

Effect of Channel Size on Heat Transfer and Pressure Drop in Thin Slabs Minichannel Heat Exchanger

Numerical Analysis of Tube-Fin Heat Exchanger using Fluent

An Experimental Study On Condensation Of R134a In A Multi-Port Extruded Tube

Helium two-phase flow in a thermosiphon open loop

Lectures on Applied Reactor Technology and Nuclear Power Safety. Lecture No 7

Experimental Study on Liquid Film Thickness of Annular Flow in Microchannels

Pressure drop during condensation of refrigerants in pipe minichannels

Coolant. Circuits Chip

A CRITICAL ASSESSMENT ON EVAPORATIVE COOLING PERFORMANCE OF MICRO FINNED MICRO GAP FOR HIGH HEAT FLUX APPLICATIONS

Forced Convective Boiling Heat Transfer in Microtubes at Low Mass and Heat Fluxes

Transcription:

American Journal of Engineering Research (AJER) e-issn: 2320-0847 p-issn : 2320-0936 Volume-6, Issue-2, pp-174-180 Research Paper www.ajer.org Open Access Numerical Simulation on Heat ransfer Phenomena in Microchannel Evaporator of A CO 2 Air Conditioning System Ketdoan V. Chau, ronghieu Nguyen, and hanhtrung Dang Department of hermal Engineering, Hochiminh City University of echnology and Education, Vietnam ABSRAC: he investigation presented a numerical simulation on heat transfer behaviors in microchannel evaporator of a CO 2 air conditioning system. he conditions for numerical simulation were applied by the experimental data of a CO 2 air conditioning cycle. his cycle worked with the cooler pressure of 85 bar, evaporator pressure of 37 bar, and the CO 2 flow rate of 5.2 g/s. he temperature and pressure in microchannels are uniform; they are suitable with the theory of evaporating process. he numerical results are in good agreement with those obtained from experimental data at the same condition. In addition, the vapor quality increases from 0.50 to 0.52 when the CO 2 refrigerant enters the evaporator at position of 200mm. hese results are in good agreement with experimental data. Keywords Numerical simulation, CO 2 refrigerant, air conditioning system, heat transfer, evaporator. I. INRODUCION he CO 2 air conditioning systems using microchannel heat exchangers are very interesting for scientists. hese topics related to environmental protection and energy efficiency. Regarding to CO 2 air conditioning using microchannel evaporator, Asadi et al. [1] reviewed heat transfer and pressure drop characteristics of single and two-phase microchannels. he review showed that earlier investigations were largely concentrated using experimental methods, while more recent studies (from 2003 to 2013) used numerical simulations for predicting pressure drop and heat transfer coefficients. Huang et al. [2] also studied non-linear fluid flow and the surface temperature changes inside the microchannel with temperature sensor molecule technology. Dang et al. [3, 4] studied the microchannel heat transfer of single phase flow with water as the working fluid. he results showed that the influence of gravity to the heat transfer and pressure drop characteristics of the microchannel heat exchanger is negligible. he difference of heat transfer coefficient between the experimental method and numerical simulation is less than 9%. Zhao et al. [5] investigated experimentally for the flow of CO 2 and R134a boiling in micro-channels, with the vapor quality is from 0.05 to 0.3. hey concluded that the heat transfer coefficient of CO 2 is higher than 200% with R134a. Yun et al. [6] studied the boiling heat transfer characteristics of CO 2 in the microchannel. Results showed that the average heat transfer coefficient of CO 2 is higher than 53% with R134a. Gasche [7] investigated experimentally the evaporation of CO 2 inside the tubular microphone channel with a diameter of 0.8mm. he average heat transfer coefficient of 9700 W/(m 2 C) was achieved with a standard error 35%. For the vapor quality is low (less 0.25), the slow flow is predominant; whereas, for the vapor quality is high (over 0.50), the annular flow is better. Kim and Bullard [8] researched and made a very important result for the evaporation of CO 2 refrigerant in the evaporator. In this study, the formulas of heat transfer and pressure drops due to friction for microchannel heat exchanger according to the boiling liquid and saturated vapor were mentioned from the balance mass and balances energy equations. In the two-phase flows in microchannels, Yu et al. [9] studied two-phase gas-liquid flows in microchannels using experiment and lattice Boltzmann simulation. he results showed that the two-phase flow has more advantages on the heat transfer and transmission quality than single-phase flow. Cheng and home [10] researched on the evaporation temperature of CO 2 refrigerant in the micro-channel evaporator. With the two-phase flow, CO 2 heat transfer coefficient is higher and the pressure drop is lower than that of R236fa. Pettersen [11] studied about two-phase flow in microchannel tubes using CO 2 refrigerant. he results showed that the heat transfer is much influenced by the vapor quality, especially in volume flow and temperature. home and Ribatski [12] reviewed two-phase flow and flow boiling heat transfer and pressure drop of CO 2 in macro- and micro-channel. he review addresses flow boiling heat transfer experimental studies, macro- and w w w. a j e r. o r g Page 174

micro-scale heat transfer prediction methods for CO 2. Ducoulombier et al. [13] studied carbon dioxide flow boiling in a single microchannel. However, this study mentioned about pressure drop only. Yun et al. [14] carried out two experiments for two-phase flow in microchannel, using R410A refrigerant. he hydraulic diameters are 1.36 and 1.44 mm. As the saturation temperatures were maintained at 0, 5 and 10 C, the mass flux was varied from 200 to 400 kg/m 2 s, heat flux from 10 to 20 kw/m 2. However, this study did not use CO 2 as the working fluid. Cheng et al. [15] researched the updated model of CO 2 flow in the pipe diameters from 0.6 to 10 mm, mass velocities from 50 to 1500 kg /m 2 s, heat fluxes from 1.8 to 46 kw/m 2 and saturation temperatures from -28 to 25 0 C. However, studies in [14, 15] did not mention the complete CO 2 air conditioning cycle using microchannel evaporator. Schael and Kind [16] studied the flow patterns and heat transfer characteristics of CO 2 in the micro fin tube and compared with smooth pipes. he results showed that the thermal conductivity in micro-channel fins tube is significantly higher than the smooth tube. From literature reviews above, there are no more numerical studies on heat transfer phenomena in microchannel evaporator of a complete CO 2 air conditioning system. hey did not indicate phase transition of CO 2 air conditioning cycle clearly. So, it is essential to investigate heat transfer phenomena on microchannel evaporator of a CO 2 air conditioning system by using numerical simulation. II. MEHODOLOGY 2.1 Mathematical Model he governing equations describing the microchannel evaporator consist of the continuity equation, momentum equations, and energy equation [3, 15, 16]. Fluid properties equations in 3D Cartesian coordinates can be shown by: ( u. ) u 2 2. pi ( ) u ( u) ( )(.u) I ki F 3 3.( u) 0 ( u. ) k.. k pk k 2 ( u. ).. Ce 1 Pk Ce2, ep e K K C u..q Q Q Q p p vd q k. Equations for solid can be shown by: C u..q Q Q p q k. Equations for change phase can be shown by: C u..q Q Q Q q k. (1 ) 1 ted p p vd phase1 phase2 m Cp phase 1 Cp, phase1 (1 ). phase2 Cp, phase2 L K k (1 ) K phase1 phase2 1 (1 ) m 2 (1 ) Equations for wall: phase2 phase1 phase1 phase2 w w w. a j e r. o r g Page 175

un. 0 2 2 u 3 3 w u u ( u. n) n u ( u) ( )(. u) I ki n utang tang 2 Ck kn. 0, K. Equations for inlet:. v w ( u. n) d ds m bc 3 k ( Uref / ), C 2 Equations for outlet: 2 3/4 k L 3/2 2 2 pl ( ) u ( u) ( )(. u).i ki n pon 3 3 k. n 0,. n 0 1/4 1/2 w nq C pc k Initial conditions for temperature: 0 Initial conditions for heat flux: -n.q=q 0 where p is pressure, p 0 is pressure at the outlet, u is velocity field, is temperature, Q is heat transfer rate, Q i is internal heat generation, k is thermal conductivity, is dynamic viscosity, is density, u is velocity in the x-direction, v is velocity in the y-direction, w is velocity in the z-direction, q is heat flux, c is specific heat, m is mass flow rate, S is area, k is turbulent kinetic energy, n is normal vector, is turbulent dissipation rate, u tang is velocity field, L is turbulence length scale, l is urbulent intensity, U ref is is velocity Reference, K is Average viscous stress, α is thermal diffusivity and θ is phase indicator. 2.2 Design and numerical simulation he heat transfer process of this microchannel evaporator is carried out between the CO 2 refrigerant and air. Fig. 1 shows the dimensions of the evaporator. he material for this heat exchanger is aluminum, used as a substrate with the thermal conductivity of 237 W/(mºC), density of 2,700 kg/m 3, and specific heat at constant pressure of 904 J/(kgºC). Fig. 1 Dimensions of the microchannel evaporator w w w. a j e r. o r g Page 176

he evaporator has six passes (29 channels in the total). Microchannels have a square cross-section with the side of 900 m. he total heat transfer area of this evaporator is 2.5 m 2. o simplify the numerical simulation for the microchannel evaporator, the sample for simulation is the microchannel section from the inlet of evaporator to the position of 200 mm, as indicated in Fig.1. he dimensions of the microchannel section for simulation are shown in Fig.2. Numerical study of the behavior of the microchannel section of evaporator with 3D was done by using the COMSOL Multiphysics software, version 5.2a. he mesh diagram of the microchannel section of evaporator is shown in Fig.3. he nodalization of this model was done by using 244329 mesh elements. he solution time of this model was 1505 seconds; the number of degrees of freedom was 287833 (plus 58627 internal DOFs); a relative tolerance was 10-6. Fig. 3 Grid mesh diagram of the microchannel section of evaporator III. RESULS AND DISCUSSION he simulation conditions were based on the thermodynamic parameters of the CO 2 air conditioning system in Fig. 4. he principle of CO 2 air conditioning cycle was indicated in [17]. Fig. 4 he thermodynamic points of the cycle on p-h diagram w w w. a j e r. o r g Page 177

Fig. 5 emperature profiles of the microchannel section of the evaporator his cycle operated with the cooler pressure of 85 bar, evaporator pressure of 37 bar (corresponding with the evaporating temperature of 5 C), and the CO 2 flow rate of 5.2 g/s. he numerical results in Fig. 5 show temperature profiles of the microchannel section. It is observed that the temperature in microchannels is uniform; it is suitable with the theory of evaporating process. he numerical results in Fig. 5 are in good agreement with those obtained from experimental data at the same condition (as shown in Fig. 6). Fig. 6 A picture of microchannel evaporator using thermal camera Fig. 7 Pressure profiles of the microchannel section of the evaporator w w w. a j e r. o r g Page 178

he pressure profiles of microchannel section of evaporator are shown in Fig. 7. he pressure value in microchannels is also uniform with the values around 37 bar; it also is suitable with the theory of evaporating process. he numerical results in Fig. 7 are in good agreement with those obtained from experimental data in Fig. 4. However, in Fig. 4, the pressures at the outlets of the evaporator are lower than those obtained from the inlet ones. It is due to pressure drop of the heat exchanger and suction force of the compressor. In this experiment, the liquid and flash refrigerant had the vapor quality of 0.5; this value was used to simulate. he numerical results in Fig. 8 show the phase change in the microchannels. It is observed that the vapor quality increases from 0.50 to 0.52 when the CO 2 refrigerant enters evaporator at position of 200mm. hese results are in good agreement with experimental data (the experimental data of vapor quality at the position of 200 mm was estimated about 0.53). It is noted that the results in Figs. 5-8 have rarely seen in literature reviews. hese numerical results will be valuable to investigate the evaporation and condensation in microchannels, especially for CO 2 refrigerant. Fig. 8 Phase transition in the microchannels IV. CONCLUSION A numerical simulation on heat transfer behaviors in microchannel evaporator of a CO 2 air conditioning system was done. he numerical results were compared with experimental data of a CO 2 air conditioning cycle. his cycle operated with the cooler pressure of 85 bar, evaporator pressure of 37 bar (corresponding with the evaporating temperature of 5 C), and the CO 2 flow rate of 5.2 g/s. he temperature and pressure in microchannels are uniform; they are suitable with the theory of evaporating process. he numerical results of temperature and pressure are in good agreement with those obtained from experimental data at the same condition. In this study, the vapor quality increases from 0.50 to 0.52 when the CO 2 refrigerant enters evaporator at position of 200 mm. hese results are in good agreement with experimental data. It is noted that the numerical results have rarely seen in literature reviews. ACKNOWLEDGEMENS he supports of this work by the project No.B2015.22.01 (sponsored by Vietnam Ministry of Education and raining) are deeply appreciated. REFERENCES [1] Masoud Asadi, Gongnan Xie, Bengt Sunden, A review of heat transfer and pressure drop characteristics of single and two-phase microchannels, International Journal of Heat and Mass ransfer, 79, 2014, 34 53. [2] Chih-Yung Huang, Cheng-Min Wu, Ying-Nung Chen, ong-miin Liou, he experimental investigation of axial heat conduction effect on the heat transfer analysis in microchannel flow, International Journal of Heat and Mass ransfer, 70, 2014, 169 173. [3] hanhtrung Dang, Jyh-tong eng, Jiann-cherng Chu, A study on the simulation and experiment of a microchannel counter-flow heat exchange, Applied hermal Engineering, 30, 2010, 2163-2172. [4] hanhtrung Dang, Jyh-tong eng, he effects of configurations on the performance of microchannel counter-flow heat exchangerse - An experimental study, Applied hermal Engineering, 31, 2011, 3946-3955. [5] Xiumin Zhao, P.K. Bansal, Flow boiling heat transfer characteristics of CO 2 at low temperaturess, International Journal of Refrigeration, 30, 2007, 937-945. [6] Rin Yun, Yongchan Kim, Min Soo Kim, Convective boiling heat transfer characteristics of CO 2 in microchannel, International Journal of Heat and Mass ransfer, 48, 2005, 235 242. w w w. a j e r. o r g Page 179

[7] José L. Gasche, Carbon Dioxide Evaporation in a Single Microchannel, Journal of the Brazilian Society of Mechanical Sciences, 28 (1), 2006. [8] Man-Hoe Kim, Clark W. Bullard, Development of a microchannel evaporator model for a CO2 air-conditioning system, Energy, 26, 2001, 931 948. [9] Zhao Yu, Orin Hemminger, Liang-Shih Fan, Experiment and lattice Boltzmann simulation of two-phase gas liquid flows in microchannels, Chemical Engineering Science, 62, 2007, 7172 7183. [10] Lixin Cheng, John R. home, Cooling of microprocessors using flow boiling of CO2 in a micro-evaporator: Preliminary analysis and performance comparison, Applied hermal Engineering, 29, 2009, 2426 2432. [11] Jostein Pettersen, Flow vaporization of CO2 in microchannel tubes, Experimental hermal and Fluid Science, 28, 2004, 111 121. [12] John R. home, Gherhardt Ribatski, State-of-the-art of two-phase flow and flow boiling heat transfer and pressure drop of CO2 in macro- and micro-channel, International Journal of Refrigeration, 28, 2005, 1149 1168. [13] Maxime Ducoulombier, Stéphane Colasson, Jocelyn Bonjour, Philippe Haberschill, Carbon dioxide flow boiling in a single microchannel Part I: Pressure drop, Experimental hermal and Fluid Science, 35, 2011, 581 596. [14] R. Yun, J.Y. Heo, Y. Kim, Evaporative heat transfer and pressure drop of R410A in microchannels, International Journal of Refrigeration, 29, 2006, 92-100. [15] Lixin Cheng, Gherhardt Ribatski, Jesús Moreno Quibén, John R. home, New prediction methods for CO 2 evaporation inside tubes: Part I A two-phase flow pattern map and a flow pattern based phenomenological model for two-phase flow frictional pressure drop, International Journal of Heat and Mass ransfer, 51, 2008, 111 124. [16] Arndt-Erik Schael, Matthias Kind, Flow pattern and heat transfer characteristics during flow boiling of CO 2 in a horizontal micro fin tube and comparison with smooth tube data, International Journal of Refrigeration, 28, 2005, 1186 1195. [17] ankhuong Nguyen, ronghieu Nguyen, hanhtrung Dang, and Minhhung Doan, An experiment on a CO 2 air conditioning system with Copper heat exchangers, International Journal of Advanced Engineering, Management and Science, Vol. 2, 2016, 2058-2063. w w w. a j e r. o r g Page 180