Crystal and molecular structure of cis-dichlorobis(triphenylphosphite)

Similar documents
Supporting Information

Supplementary Information. Single Crystal X-Ray Diffraction

Small Molecule Crystallography Lab Department of Chemistry and Biochemistry University of Oklahoma 101 Stephenson Parkway Norman, OK

Electronic supplementary information. Strategy to Enhance Solid-State Fluorescence and. Aggregation-Induced Emission Enhancement Effect in Pyrimidine

Matthias W. Büttner, Jennifer B. Nätscher, Christian Burschka, and Reinhold Tacke *

Supporting Information

Synthesis, Structure and Reactivity of O-Donor Ir(III) Complexes: C-H Activation Studies with Benzene

Small Molecule Crystallography Lab Department of Chemistry and Biochemistry University of Oklahoma 101 Stephenson Parkway Norman, OK

OH) 3. Institute of Experimental Physics, Wrocław University, M. Born Sq. 9, Wrocław, Poland

Redetermination of Crystal Structure of Bis(2,4-pentanedionato)copper(II)

,

CALIFORNIA INSTITUTE OF TECHNOLOGY BECKMAN INSTITUTE X-RAY CRYSTALLOGRAPHY LABORATORY

Structure Report for J. Reibenspies

APPENDIX E. Crystallographic Data for TBA Eu(DO2A)(DPA) Temperature Dependence

Impact of Ferrocene Substitution on the Electronic Properties of BODIPY Derivatives and Analogues

Crystal structure analysis of N,2-diphenylacetamide

Supporting Information for A Janus-type Bis(maloNHC) and its Zwitterionic Gold and Silver Metal Complexes

The structure of chloro-bis(triphenylphosphine)silver(i) dimethylsulfoxide solvate, [AgCl(PPh 3

Electronic Supplementary Information for: Gram-scale Synthesis of a Bench-Stable 5,5 -Unsubstituted Terpyrrole

Iterative Synthetic Strategy for Azaphenalene Alkaloids. Total Synthesis of ( )-9a-epi-Hippocasine

Supplementary File. Modification of Boc-protected CAN508 via acylation and Suzuki-Miyaura Coupling

Seth B. Harkins and Jonas C. Peters

Manganese-Calcium Clusters Supported by Calixarenes

Synthetic, Structural, and Mechanistic Aspects of an Amine Activation Process Mediated at a Zwitterionic Pd(II) Center

Iridium Complexes Bearing a PNP Ligand, Favoring Facile C(sp 3 )- H Bond Cleavage

Active Trifluoromethylating Agents from Well-defined Copper(I)-CF 3 Complexes

Fluorous Metal Organic Frameworks with Superior Adsorption and Hydrophobic Properties toward Oil Spill Cleanup and Hydrocarbon Storage

Supporting information. (+)- and ( )-Ecarlottones, Uncommon Chalconoids. from Fissistigma latifolium with Proapoptotic

Development of a New Synthesis for the Large-Scale Preparation of Triple Reuptake Inhibitor (-)-GSK

Supporting Information. Table of Contents

David L. Davies,*, 1 Charles E. Ellul, 1 Stuart A. Macgregor,*, 2 Claire L. McMullin 2 and Kuldip Singh. 1. Table of contents. General information

CHAPTER 6 CRYSTAL STRUCTURE OF A DEHYDROACETIC ACID SUBSTITUTED SCHIFF BASE DERIVATIVE

Supporting Information. Chiral phosphonite, phosphite and phosphoramidite η 6 -areneruthenium(ii)

Ethylene Trimerization Catalysts Based on Chromium Complexes with a. Nitrogen-Bridged Diphosphine Ligand Having ortho-methoxyaryl or

Remote Asymmetric Induction in an Intramolecular Ionic Diels-Alder Reaction: Application to the Total Synthesis of (+)-Dihydrocompactin

Cu(I)-MOF: naked-eye colorimetric sensor for humidity and. formaldehyde in single-crystal-to-single-crystal fashion

Supporting information

metal-organic compounds

Decomposition of Ruthenium Olefin Metathesis. Catalysts

Supporting Information

Supplementary Information

Supporting Information Strong Luminescent Copper(I)-halide Coordination Polymers and Dinuclear Complexes with Thioacetamide and N,N-donor ligands

Supplementary Information

New Journal of Chemistry. Synthesis and mechanism of novel fluorescent coumarindihydropyrimidinone. multicomponent reaction.

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007

International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: Vol.8, No.7, pp 36-41, 2015

Supporting Information

A flexible MMOF exhibiting high selectivity for CO 2 over N 2, CH 4 and other small gases. Supporting Information

Supporting Information

Efficient, scalable and solvent-free mechanochemical synthesis of the OLED material Alq 3 (q = 8-hydroxyquinolinate) Supporting Information

Synthesis, Characterization and Reactivities of Molybdenum and Tungsten PONOP Pincer Complexes

International Journal of Innovative Research in Science, Engineering and Technology. (An ISO 3297: 2007 Certified Organization)

Fluorinated Peptide Nucleic Acids with Fluoroacetyl sidechain bearing 5- (F/CF 3 )-Uracil: Synthesis and Cell Uptake Studies. Supporting Information

metal-organic compounds

Molybdenum(0) Fischer ethoxycarbene complexes: Synthesis, X-ray crystal structures and DFT study

Prabhat Gautam, Bhausaheb Dhokale, Shaikh M. Mobin and Rajneesh Misra*

Sigma Bond Metathesis with Pentamethylcyclopentadienyl Ligands in Sterically. Thomas J. Mueller, Joseph W. Ziller, and William J.

International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: Vol.8, No.1, pp , 2015

metal-organic compounds

Z =8 Mo K radiation = 0.35 mm 1. Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections

CHAPTER 2 CRYSTALLOGRAPHIC ANALYSIS

metal-organic compounds

Impeller-like dodecameric water clusters in metal organic nanotubes

Direct observation of key intermediates by negative-ion electrospray ionization mass spectrometry in palladium-catalyzed cross-coupling

Supporting Information

Supporting Information

Ziessel a* Supporting Information (75 pages) Table of Contents. 1) General Methods S2

Reversible 1,2-Alkyl Migration to Carbene and Ammonia Activation in an NHC-Zirconium Complex.

Juan Manuel Herrera, Enrique Colacio, Corine Mathonière, Duane Choquesillo-Lazarte, and Michael D. Ward. Supporting information

= (8) V = (8) Å 3 Z =4 Mo K radiation. Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections

Supporting Information

oligomerization to polymerization of 1-hexene catalyzed by an NHC-zirconium complex

Supporting Information. Preparative Scale Synthesis of Vedejs Chiral DMAP Catalysts

Electronic Supplementary Information

= (3) V = (4) Å 3 Z =4 Mo K radiation. Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = 1.

Stephen F. Nelsen, Asgeir E. Konradsson, Rustem F. Ismagilov, Ilia A. Guzei N N

ANNEXE 1 : SPECTRES DE RÉSONANCE MAGNÉTIQUE NUCLÉAIRE DES PROTONS ET DES CARBONES-13

Synthesis and structural characterization of homophthalic acid and 4,4-bipyridine

Spain c Departament de Química Orgànica, Universitat de Barcelona, c/ Martí I Franqués 1-11, 08080, Barcelona, Spain.

1,4-Dihydropyridyl Complexes of Magnesium: Synthesis by Pyridine. Insertion into the Magnesium-Silicon Bond of Triphenylsilyls and

ion, as obtained from a search of the Cambridge Structural database (CSD), December 2013.

Nickel-Mediated Stepwise Transformation of CO to Acetaldehyde and Ethanol

Supporting Information

Supporting Information

Supporting Information for the Article Entitled

Supporting Infromation

Supporting Information

metal-organic compounds

Supporting Information

Supporting Information. Justin M. Salvant, Anne V. Edwards, Daniel Z. Kurek and Ryan E. Looper*

Orthorhombic, Pbca a = (3) Å b = (15) Å c = (4) Å V = (9) Å 3. Data collection. Refinement

Pyridyl vs bipyridyl anchoring groups of. porphyrin sensitizers for dye sensitized solar. cells

Electronic Supplementary Information

2-Methoxy-1-methyl-4-nitro-1H-imidazole

Stereoselective Synthesis of (-) Acanthoic Acid

The CB[n] Family: Prime Components for Self-Sorting Systems Supporting Information

Electronic Supplementary Information

Supporting Information

2-(3-Chloro-4-hydroxylphenyl)-N-(3,4- dimethyoxyphenethyl)acetamide. Author. Published. Journal Title DOI. Copyright Statement.

Electronic Supplementary Information (ESI)

Transcription:

Molecules 2001, 6, 777-783 molecules ISSN 1420-3049 http://www.mdpi.org Crystal and molecular structure of cis-dichlorobis(triphenylphosphite) Platinum(II) Seyyed Javad Sabounchei * and Ali Naghipour Chemistry. Dept., Science Faculty, Bu-Ali-Sina University Hamadan, Iran * Author to whom correspondence should be addressed; e-mail: jsabounchei@basu.ac.ir Received: 5 December 2000; in revised form 26 August 2001 / Accepted: 27 August 2001 / Published: 31 August 2001 Abstract: The single crystal structure of cis-dichlorobis(triphenyphosphite) platinum(ii), [PtCl 2 (P(OPh) 3 ) 2 ] has been determined. This complex crystallises in the orthorhombic space group, P2 1 2 1 2 1 with cell constant, a=10.4135(13), b=14.0635(16), c=23.505(3) Ǻ and v=3448.3(7) Ǻ 3. The Pt-Cl 1 and Pt-Cl 2 distances are 2.3390(10) Ǻ and 2.3256 Ǻ, which are longer than Pt-P 1 and Pt-P 2 with 2.1985(12) Ǻ and 2.1998(10) Ǻ respectively. These data together with bond angles suggest a distorted square planar geometry for this complex with two chlorine ligands in a cis configuration. Keywords: Crystal structure, Molecular structure, Triphenylphosphite ligands, Platinum complex Introduction In spite of the extensive structural studies on platinum and palladium complexes containing a variety of P-donor ligands [1,2], X-ray structure analyses of platinum derivatives containing triphenylphosphite derivatives are scarce. To the best of our knowledge no such determinations of the

Molecules 2001, 6 778 title compound have been reported so far. We have recently reported a new procedure for the synthesis of a palladium complex [3] and herein we describe the synthesis and structure determination of an analogous platinum complex. Results and discussion Cis-dichlorobis(triphenylphophite)platinum, [PtCl 2 (P(OPh) 3 ) 2 ], (1) has been studied in solution This complex was synthesised using a new method but the IR and NMR data are in excellent agreement with an earlier conclusion [1]. However, relatively little work has been done on structural determinations of this type of complex and this lack of information is probably due to difficulty experienced in crystallising the compound from the ethanol reaction solution [4,5]. This work describes the new method of the preparation and characterisation of (1). The structure of (1) is shown in Figure 1. Figure1. Molecular structure of [PtCl 2 (P(OPh) 3 ) 2 ] showing the atom numbering scheme used.

Molecules 2001, 6 779 Crystal data, structural refinement are summarised in Table 1. Table 1. Crystal data and structure refinement Identification code jsa1 Empirical formula C 36 H 30 Cl 2 O 6 P 2 Pt Formula weight 886.59 Temperature 213(2) K Wavelength 0.71073 A Crystal system, space group orthorhombic, P 2 1 2 1 2 1 Unit cell dimensions a = 10.4315 (13 ) Ǻ alpha = 90 deg. b = 14.0635 (16) Ǻ beta = 90 deg. c = 23.505 ( 3 ) Ǻ gamma = 90 deg. Volume 3448.3 ( 7 ) Ǻ 3 Z, calculated density 4, 1.708 Mg/m 3 Absorption coefficient 4.164 mm -1 F (000) 1744 Crystal size 0.68 0.20 0.16 mm Theta range for data collection 1.73 to 24.26 deg. Index ranges -11<=h<11, -16<=k<=16, -26<=1<=26 Reflections collected / unique 22003/5449 [R(int)=0.0534] Completeness to 2theta = 24.26 98.0% Max. and min. transmission 0.5554 and 0.1640 Refinement method full-matrix least-squares on F 2 Data / restraints / parameters 5449 / 0 /424 Goodness-of-fit on F 2 0.943 Final r indices [I>2sigma(I)] R 1 = 0.0203, WR 2 = 0.0410 R indices (all data) R 1 = 0.0280, WR 2 = 0.0425 Absolute structure parameter -0.018(5) Largest diff. peak and hole 0.559 and -0.783 e.a 3 Absorption correction numerical (X-SHAPE : Stoe, 1997) T min =0.1640, T max =0.5554 22003 measured reflections 5449 independent reflections 4677 reflections with> 2sigma(I R int = 0.0534

Molecules 2001, 6 780 The more important bond lengths and angles together with references are presented in Table 2. Table 2. Selected distances and angles for [PtCl2(P(OPh) 3 ) 2 ]. Distances (Ǻ) O1-P1 1.579(3) O6-P2 1.577(3) O2-P2 1.589(3) P1-Pt1 2.1985(2) O3-P1 1.484(3) P2-Pt1 2.1998(10) O4-P2 1.570(3) Cl1-Pt1 2.3390(10) O5-P2 1.589(3) Cl2-Pt1 2.3256(11) Angles ( ) O1-P1-O2 104.69(17) O4-P2-Pt1 117.27(14) O1-P1-O3 98.42(19) O5-P2-Pt1 111.30(13) O2-P1-O3 103.42(17) O6-P2-Pt1 119.44(13) O1-P1-Pt1 118.46(12) P1-Pt1-P2 93.56(4) O2-P1-Pt1 113.57(12) P1-Pt1-Cl2 177.20(4) O3-P1-Pt1 116.12(14) P1-Pt1Cl1 89.38(4) O4-P2-O5 104.7(2) P2-Pt1-Cl2 88.58(4) O4-P2-O6 96.90(18) P2-Pt1-Cl1 176.93(4) O 5 -P 2 -O 6 105.27(18) P 1 -Pt 1 -Cl 2 88.51(4) Data collection: EXPOSE [5]. Cell refinement: CELL [6]. Data reduction: INTEGRATE [7]. Program(s) used to solve structure: [8]. Program(s) used to refine structure: SHELXL97 [9]. Molecular graphic: ORTEP3 (Farrugia, 1997). Atomic coordinates are given in Table 3. Table 3. Atomic coordinates (x 10 4 ) and equivalent isotropic displacement parameters (A 2 x 10 3 ) U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. X Y Z U(eq) C(1) -2590(4) 790(3) 676(2) 23(1) C(2) -3845(4) 792(3) 527(2) 27(1) C(3) -4399(5) 1648(4) 360(2) 38(1) C(4) -3686(5) 2466(4) 354(2) 33(1) C(5) -2407(5) 2449(3) 506(2) 29(1) C(6) -1838(4) 1607(3) 666(2) 29(1) C(7) -1961(4) 353(3) 2097(2) 29(1)

Molecules 2001, 6 781 C(8) -2141 (4) -373(3) 2478(2) 33(1) C(9) -3208(6) -338(4) 2833(2) 43(2) C(10) -4054(6) 411(4) 2806(3) 50(2) C(11) -3837(6) 1135(4) 2425(3) 45(2) C(12) -2744(5) 1116(4) 2075(2) 37(1) C(13) -363(4) -2130(3) 1175(2) 27(1) C(14) -472(6) -2386(4) 629(3) 43(2) C(15) 169(7) -3192(4) 440(3) 59(2) C(16) 863(8) -3722(4) 806(3) 59(2) C(17) 940(9) -3467(4) 1371(3) 51(2) C(18) 327(6) -2650(4) 1571(3) 37(2) C(19) 1955(5) 1924(3) 1511(2) 29(1) C(20) 2633(7) 2444(4) 1139(3) 60(2) C(21) 2063(9) 3343(5) 949(3) 68(2) C(22) 900(10) 3581(5) 1160(4) 59(2) C(23) 272(8) 3078(5) 1545(4) 60(2) C(24) 793(6) 2243(4) 1729(3) 45(2) C(25) 2115(5) -548(3) 2526(2) 26(1) C(26) 1685(4) 120(5) 2905(2) 36(1) C(27) 2154(5) 107(5) 3455(2) 41(1) C(28) 3020(5) -574(4) 3614(2) 39(1) C(29) 3433(5) -1243(4) 3231(2) 37(1) C(30) 2986(5) -1238(3) 2681(2) 30(1) C(31) 4158(4) -1167(3) 1316(2) 24(1) C(32) 5391(5) -1294(4) 1486(3) 38(1) C(33) 5971(6) -2158(4) 1380(3) 51(2) C(34) 5323(5) -2877(4) 1112(3) 43(2) C(35) 4070(6) -2743(3) 951(2) 38(1) C(36) 3466(5) -1882(4) 1050(2) 32(1) O(1) -2095(3) -105(3) 865(1) 26(1) O(2) -868(3) 348(2) 1741(1) 26(1) O(3) -1010(3) -1320(2) 1391(1) 30(1) O(4) 2427(3) 1063(2) 1730(2) 36(1) O(5) 1607(3) -558(2) 1966(1) 28(1) O(6) 3653(3) -252(2) 1432(1) 24(1) P(1) -772(1) -267(1) 1176(1) 22(1) P(2) 2200(1) 53(1) 1446(1) 22(1)

Molecules 2001, 6 782 Cl(1) -175(1) -72(1) -151(1) 30(1) Cl(2) 2851(1) 175(1) 153(1) 32(1) Pt(1) 1005(1) -26(1) 694(1) 18(1) The structural analysis proved a cis-distorted square planar arrangement for 1, and different interatomic distances and bond angles in comparison with [PtCl 4 ] 2 - (2) was observed. The Pt-P and Pt- Cl bonds are approximately within the same range of other phosphine complexes [1,2], but the Pt-Cl distances are significantly shorter than Pt-P (see Table 3). This causes a big distortion which leads to asymmetric structure and is much bigger than what we observed in cis-[pdcl 2 (P(OPh) 3 ) 2 ] (3) structure [3]. Evidently the small difference between Cl 2 -Pt 1 -P 1 [177.20 (4)] and Cl 1 -Pt 1 -P 2 [176.93 (4)] angles also confirms the distorted square planar geometry of 1. This is in contrast with what has been observed in solution [5]. Discussion of bond-length in 1 [in comparison with 2 containing a C 2 axis] in relation to the above configuration is quite interesting. We noticed that 1 with the different P 1 -Pt 1 -P 2 [93.56 (4)], P 1 -Pt 1-Cl 1 [89.38 (4)], P 2 -Pt 1 -Cl 2 [88.58 (4)] and Cl 1 Pt 1 -Cl 2 [88.51 (4)] angles is completely asymmetrical. Not only it changes from D 4h and C 2v symmetry from 2 and 3 respectively but it is also consistent with C 1 symmetry structure. These can be taken probably as a structural confirmation of the effect of different metal atoms in 1 and 3 or a larger proportion of σ -donor character in the Pt-P bonds for 1 in comparison with the Pd-P bonds of 3, which results in a greater strict effect of the phosphite ligands. All the bond lengths (Table 2) are approximately within the normal range compared with other phosphine complexes [1,2]. Finally as one can see the P 1 -Pt 1 -Cl 2 angle [88.51 (4)] is narrower than the P 1 -Pt 1 -P 2 [93.56 (4)] angle and this is apparently due to the steric effect of phosphite ligands. Acknowledgements We thank the University of Bu-Ali-Sina for grant support to A.N and Dr. Jamie F. Bickley, University of Liverpool, UK, for the crystal structure analysis. Experimental Refluxing PtCl 2 and POPh 3 at 60 ºC in a molar ratio of 1:2 in toluene for 6 h. gave a yellowish precipitate, which was extracted from the obtained suspension. Colourless crystals suitable for X-ray diffraction analysis were obtained by slow addition of methanol to a chloroform solution containing the compound. Crystallographic data was recorded on a Stoe IPDS diffractometer using graphite monochromated Mokα-radiation (λ = 0.71073 Å), T = 200 K. Structures were solved by direct methods and refined by full-matrix least squares against F 2 using all data. Supplementary material, comprising

Molecules 2001, 6 783 crystallographic experimental details, positional parameters for all atoms, bond distances and angles, anisotropic thermal parameters and hydrogen atoms coordinates has been deposited with the Cambridge Crystallographic Database. The deposition code is CCDC144750. References 1. Kitano, Y.; Ashida, T. Acta Crystallogr., 1983, C39, 1015. 2. Davies, J.A.; Pinkerton, A.A.; Staples, R.J. Acta Crystallogr., 1990, C48, 48. 3. Sabounchei, S.J.; Naghipour, A; Bickley, J.F. Acta Crystallgr., 2000, C56, 280. 4. Allen, F.A.; Pidcok, A.; Waterhouse, C.R. J. Chem. Soc. (A), 1970, 2087. 5. Ahmed, N.; Ainscough, E.W.; James, T.A.; Robinson, S.D. J. Chem. Soc. Dalton Trans., 1973, 1148. 6. EXPOS, Stoe IPDS Software for Publication, version 2.79; Stoe IPDS, Darmstadt, Germany, Stoe 1997a. 7. Cell Program for Cell Refinement; Version 2.79, Stoe IPDS, Darmstadt, Germany, Stoe 1997b. 8. INTEGRATE Program for Reduction of IPDS Data, Version 2.79 Stoe IPDS, Darmstadt, Germany Stoe 1997c. 9. Sheldrick, G.M. Acta Crytallogr., 1990, A46, 467. 10. Sheldrick, G.M. SHELXL 97 release 97-1; Program for Refinement of [3d] Crystal Structure, University of Göttingen, Germany, 1997. Sample Availability: The product reported in this paper is available from MDPI 2001 by MDPI (http://www.mdpi.org). Reproduction is permitted for noncommercial purposes.