The Energy of Phase Changes

Similar documents
CHEMISTRY 135 General Chemistry II. Energy of Phase Changes [1]

THE ENERGY OF PHASE CHANGES

Thermochemistry. Introduction. Pre-lab. Safety

CHEMISTRY 130 General Chemistry I. Thermochemistry

Experiment 15 - Heat of Fusion and Heat of Solution

HESS S LAW: ADDITIVITY OF HEATS OF REACTION

Chapter 11. Thermochemistry: Heat & Chemical Change

CHM201 General Chemistry and Laboratory I Laboratory 7 Thermochemistry and Hess s Law May 2, 2018

C q T q C T. Heat is absorbed by the system H > 0 endothermic Heat is released by the system H < 0 exothermic

What Do You Think? Investigate GOALS. Part A: Freezing Water

Determining the Enthalpy of a Chemical Reaction

CHAPTER 17 Thermochemistry

Calorimetry: Heat of Solution

Name Class Date. As you read Lesson 17.1, use the cause and effect chart below. Complete the chart with the terms system and surroundings.

CALORIMETRY: Heat of Fusion of Ice

ENTHALPY OF FORMATION OF MgO

Lab 5 Enthalpy of Solution Formation

COPYRIGHT FOUNTAINHEAD PRESS

DETERMINING AND USING H

Name Chemistry / / Understanding Phase Changes

To use calorimetry results to calculate the specific heat of an unknown metal. To determine heat of reaction ( H) from calorimetry measurements.

Energy and Chemical Change

Evaluation copy. The Molar Mass of a Volatile Liquid. computer OBJECTIVES MATERIALS

Name Date Class THERMOCHEMISTRY

AP Chemistry Lab #10- Hand Warmer Design Challenge (Big Idea 5) Figure 1

Calorimetry and Hess s Law Prelab

EXPERIMENT 9 ENTHALPY OF REACTION HESS S LAW

Hess' Law: Calorimetry

Phase Change Diagram. Rank Solids, liquids and gases from weakest attractive forces to strongest:

CHEMISTRY 135 General Chemistry II. Determination of an Equilibrium Constant

AP Chemistry: Designing an Effective Hand Warmer Student Guide INTRODUCTION

Chapter 12 Intermolecular Forces of Attraction

Investigation #2 TEMPERATURE VS. HEAT. Part I

SPECIFIC HEAT OF WATER LAB 11-2

LABORATORY INVESTIGATION

Experiment 12 Determination of an Enthalpy of Reaction, Using Hess s Law

Ch. 17 Thermochemistry

Topic 5: Energetics. Heat & Calorimetry. Thursday, March 22, 2012

Chemistry Heat Review. Heat: Temperature: Enthalpy: Calorimetry: Activation energy:

Just a reminder that everything you do related to lab should be entered directly into your lab notebook. Calorimetry

Mr Chiasson Advanced Chemistry 12 / Chemistry 12 1 Unit B: Thermochemical Changes

SPECIFIC HEAT CAPACITY AND HEAT OF FUSION

Chemistry 3202 Lab 6 Hess s Law 1

Chapter 17 Thermochemistry

Chapter 5 Thermochemistry

Thermodynamics: Enthalpy of Hydration of MgSO 4 A Calorimetry experiment HASPI Medical Chemistry Lab Background/Introduction

STATES OF MATTER INTRODUCTION

Enthalpies of Reaction

Unit 14. States of Matter & Thermochemistry

Name Partner. Thermal Physics. Part I: Heat of Vaporization of Nitrogen. Introduction:

Heat of Combustion: Magnesium. This equation can be obtained by combining equations (1), (2), and (3): (1) MgO(s) + 2 HCl(aq) MgCl 2 (aq) + H 2 O(l)

Experiment 6: Using Calorimetry to Determine the Enthalpy of Formation of Magnesium Oxide

EXPERIMENT 14 SPECIFIC HEAT OF WATER. q = m s T

Experiment 2 Heat of Combustion: Magnesium

So, What Does it Indicate?

Name: General Chemistry Chapter 11 Thermochemistry- Heat and Chemical Change

Thermochemistry. Energy. 1st Law of Thermodynamics. Enthalpy / Calorimetry. Enthalpy of Formation

Energy Transformations

Section 9: Thermodynamics and Energy

Designing a Hand Warmer AP* Chemistry Big Idea 5, Investigation 12 An Advanced Inquiry Lab

Experiment #12 Determination of the Enthalpy of Fusion of Water. Laboratory Overview CHEM November 2012

Name Date Class THE FLOW OF ENERGY HEAT AND WORK

8.6 The Thermodynamic Standard State

ADDITIONAL RESOURCES. Duration of resource: 21 Minutes. Year of Production: Stock code: VEA12052

Post-Show HOT AND COLD. Gases. Liquids. Solids. After the Show. Traveling Science Shows

States of Matter: Solid, Liquid, and Gas

= (25.0 g)(0.137 J/g C)[61.2 C - (-31.4 C)] = 317 J (= kj)

Supplemental Activities. Module: Thermodynamics. Section: Second Law of Thermodynamics Key

I. The Nature of Energy A. Energy

Energy and Chemical Change

2 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

Heat. Heat Terminology 04/12/2017. System Definitions. System Definitions

Lab #9- Calorimetry/Thermochemistry to the Rescue

Name Chemistry / / SOL Questions Chapter 9 For each of the following, fill in the correct answer on the BLUE side of the scantron.

solid IMF>liquid IMF>gas IMF Draw a diagram to represent the 3 common states of matter of a given substance: solid liquid gas

High School Science Chemistry Unit 12 Exemplar Lesson 02: Heat Energy in Chemical Reactions

Chemical Thermodynamics

Heat Lost and Heat Gained Determining the Specific Heat of a Metal

Chapter 5. Thermochemistry

EXPERIMENT A8: CALORIMETRY. Learning Outcomes. Introduction. Upon completion of this lab, the student will be able to:

Chapter 11. Thermochemistry. 1. Let s begin by previewing the chapter (Page 292). 2. We will partner read Pages

Boiling Ice Lab. D) Materials A thermometer A beaker A stopwatch A hot plate Ice

Chemistry 212 THE ENTHALPY OF FORMATION OF MAGNESIUM OXIDE LEARNING OBJECTIVES

Lecture 26: Liquids 1: phase changes & heat capacity

2. If the volume of a container holding a gas is reduced, what will happen to the presure within the container?

Thermochemistry. The study of energy changes that occur during chemical reactions and changes in state.

Experiment #13. Enthalpy of Hydration of Sodium Acetate.

Energy and Chemical Change

Slide 2 / 118. Thermochemistry

Latent Heat of Fusion

How bad is that snack anyway?

3.3 Phase Changes 88 A NATURAL APPROACH TO CHEMISTRY. Section 3.3 Phase Changes

THERMOCHEMISTRY. This section explains the relationship between energy and heat, and distinguishes between heat capacity and specific heat.

Thermochemistry: Heat and Chemical Change

Experiment 14 It s Snow Big Deal

8 Enthalpy of Reaction

Chapter 6: Thermochemistry

Energy and Chemical Change

Enthalpy of Formation of Ammonium Chloride Version 6.2.5

SPECIFIC HEAT CAPACITY

Transcription:

The Energy of Phase Changes Introduction Consider heating a solid: as the solid is warmed, energy from the source of heat is "put into" the solid, and the solid gains energy. If the heating is continued, the warming solid will eventually reach its melting point and convert to a liquid. To complete this transformation, more energy (e.g., in the form of heat) must be added to the substance. However, as the substance changes phase, the added energy goes into accomplishing this transformation and the temperature stays the same. Thus, a single melting point temperature can be determined at which the solid converts to the liquid. This is an example of a phase transition. The amount of heat required to accomplish the solid-to-liquid phase change at the melting temperature is an enthalpy and is called the heat of fusion. Of course, if the resulting liquid is also heated its temperature will increase as more energy is put into it until the liquid eventually reaches its boiling point, at which another phase change occurs, this time from a liquid to a gas. Again, at this temperature, the continued heating provides energy for the liquidto-gas phase transition while the temperature remains the same. The heat, or enthalpy, required for the liquid-to-gas phase change is known as the heat of vaporization. It is worth noting that the above assumes the substance has both solid-to-liquid and liquid-to-gas transitions. Some substances convert directly from a solid to a gas when heated sufficiently, a process called sublimation. The heat needed for this solid-to-gas transition is called the heat of sublimation. In the processes described above, note that there are two steps. First, the substance is heated, generally by placing it in contact with another substance that is warmer (i.e., at a higher temperature, t). Energy is then transferred as heat from the warmer substance to the cooler substance (this continues until they reach the same temperature). If the two substances are in a well-insulated container such that not much heat escapes to the surroundings, the energy change of the initially cooler substance can be calculated from its mass m, temperature change Δt, and heat capacity or specific heat s, which is 4.184 J/(g o C) for water, according to the equation q = msδt (1) If the system is indeed well-insulated, then the energy change of the second, initially warmer substance is assumed to be equal, but opposite in sign, to the energy change of first substance. Second, at the temperature of the phase transition, the energy transferred as heat goes into accomplishing the change of phase while the temperature remains constant. If it is the cooler substance undergoing the phase transition, the heat energy required for the phase change comes from the warmer substance, which does change temperature as it loses heat. Thus, for a substance undergoing a phase change at the transition temperature, the heat energy required can be obtained from the change in temperature of its surroundings. The energy involved with the phase change can be stated in units of energy/g or energy/mol (typically expressed as J/g or kj/mol); the latter is the molar heat for the phase transition. Note the difference in units. In this way, the energy required to change the phase of a substance can be measured using a calorimeter by isolating the substance with, e.g., a warmer substance that provides the required heat. Then measuring the drop in temperature of this warmer substance gives the heat required for the phase transition. 1

The energies involved with phase changes are: Heat of... Symbol Phase Change Fusion ΔH fus solid liquid; melting Vaporization ΔH vap liquid gas; boiling Sublimation ΔH sub solid gas; sublimation The magnitudes of these changes are characteristic for each substance under the conditions of the experiment. The measurement of heat involved in reactions is called calorimetry (the measurement of Calories, another unit of heat energy). It has many applications. For example, the energy content of foods can be measured. Below is a link that further describes the application of this useful technique in some research projects. http://www.dairyscience.info/packaging-/119-labelling-determination-of-the-energy-content-of-food.html [You might find it interesting that for many elements, the product of the specific heat times the atomic weight has approximately the same value! This was used to determine the approximate atomic weight for some elements. (Petit and Dulong, Annales de Chimie et de Physique 10 pp. 395, 1819; and W. F. Magie, A Source Book in Physics, McGraw-Hill: NY, 1935, p. 178)] Pre-lab Safety Goggles must be worn at all times. At atmospheric pressure liquid N 2 boils at -196 C and dry ice (solid CO 2 ) sublimes at -78 C. These substances are very cold and can quickly cause frostbite to exposed skin, so care must be taken in handling them. Take care to keep the thermometer and Vernier temperature probe from direct contact with the liquid nitrogen and the dry ice. (1) List all of the chemicals you will use for this week's experiment. For each chemical, list specific safety precaution(s) that must be followed. In order to find specific safety information, please obtain a Materials Safety Data Sheet (MSDS) on the chemical of interest. MSDSs can be found through an internet search (e.g., google) or from the following website: www.hazard.com Read the MSDS and find specific safety concerns for each chemical. (2) During evaporation, molecules escape from the surface of a liquid and enter the gas phase. This physical change requires an energy input: a molecule cannot become gaseous unless it has sufficient energy to break free of its interactions with neighboring molecules. Is evaporation an exothermic or 2

endothermic process? (Hint: Exothermic versus endothermic processes are explained on many reliable internet sites.) (3) Hold a small piece of ordinary ice in your hand and allow it to melt completely. Record your observations. Based on this experiment, do you think the melting process exothermic or endothermic? Explain. (4) A 46.6-g sample of warm water was combined with a sample of liquid nitrogen in a Styrofoam cup calorimeter. The liquid nitrogen sample rapidly evaporated, leaving only cool water in the calorimeter. Careful temperature measurements showed that the water cooled from an initial temperature of 74.60 C to a final temperature of 8.50 C. Calculate the amount of heat released by the water. Express your answer in units of kilojoules. (Hint: You can use the simple algebraic equation given in the Background information above!) Procedure In this three-part experiment, a measured amount of warm water will be placed into a pair of nested Styrofoam cups, and the temperature measured with a glass thermometer. A weighed amount of a cold substance undergoing a phase transition will be added to the water and the temperature of the rapidly cooling water will be monitored and recorded using a Vernier temperature probe. Using the temperature change of the water, its mass, and its heat capacity or specific heat of 4.184 J/(g o C), the heat lost by the water -- and thus the heat gained by the cold substance -- can be determined. This energy change, together with the mass of the second, cold substance, can then be used to determine the heat associated with the phase change in J/g and kj/mol. The temperature range used today will be approximately 20 ºC 70 ºC. Temperature will be measured initially with a glass thermometer and then monitored with the Vernier temperature probe. Part 1 - The Heat of Fusion of Water (Ice) In this part of the experiment you will use a simple calorimeter to determine the heat of fusion of ice. 3

1. Confirm that the Vernier LabPro interface box is connected to the computer via a USB cable. A power supply line should also run from the LabPro box to an electrical outlet. The stainless steel temperature probe should be connected to the CH1 port in the LabPro box. 2. Launch the LoggerPro software by clicking the LoggerPro icon. Configure the software for data collection by opening file number 18 from the Chemistry with Vernier folder. If the real-time temperature reading is not displayed, click the link below for the online instructions, or ask for help. http://linus.chem.ku.edu/genchemlab/softwarehardware/vernier%20documents/hardware.htm 3. Obtain 2 pairs of nested Styrofoam cups. Label each nested pair before measuring and recording their masses. In this way, you will be able to determine the mass of water and other substances that added to them. Prepare a data table in your lab notebook like the one shown below. QUANTITY TRIAL 1 TRIAL 2 TRIAL 3 m[h2o(l)] m[h2o(s)] ti[h2o(l)] tf[h2o(l)] Δt[H2O(l)] 4. Heat approximately 250 ml of water to 55 ºC - 65 ºC. 5. When the water has been heated to the desired temperature, pour approximately 60 ml into one of the nested pairs and obtain and record its mass. Preheating or precooling the nested cups with a small amount of the water is recommended to avoid heat loss from the water to the container. 6. With your second cup pair on the balance, add approximately 20 grams of ice and record the mass. (Take your glass thermometer to the balance with you so that you can measure the temperature of your warm water just before mixing it with ice in Step 7.) Will the amount of heat involved depend upon the amount of material undergoing a phase change? 7. After first confirming the actual temperature of your water, pour the ice into the nested cup pair holding the water. 8. Return to your work station and immediately place the Vernier temperature probe into the calorimeter. Click the Collect button at the top of the LoggerPro software window to initiate data collection. Stir the contents gently with the probe. When all the ice has melted and the temperature has reached a minimum and begins to rise, you may stop the data collection. By clicking on the STAT button, you can obtain the minimum temperature. Each group must collect at least three data sets for the heat of fusion. (Remember in your calculations that the water formed from the melted ice is being warmed!) Is the phase change exothermic or endothermic? 4

9. Find an average value for ΔH fus of ice and express it as a heat of fusion, i.e., in units of J/g, and also as a molar heat of fusion, i.e., in units of kj/mol. Add your results to the class data on the board if directed by your TA. Record all the values from all the groups for use in your lab report. Do you think the amount of heat involved in a phase change depends upon the identity of the substance being melted, vaporized, or sublimed? Part 2 - The Heat of Vaporization of Nitrogen In this part of the experiment you will use a simple calorimeter to determine the heat of vaporization of nitrogen. 1. Use the same pairs of cups as in Part 1 and be certain that they are thoroughly dry. Prepare a data table in your lab notebook analogous to the one in Part 1. 2. Heat approximately 250 ml of water to 55 ºC - 65 ºC as before. 3. When the water has been heated to the desired temperature, pour approximately 60 ml into one of the nested pairs. Obtain and record its mass as you did in Part 1. Again, preheating or precooling the nested cups with a small amount of the water, or liquid nitrogen is recommended to avoid heat loss from the water to the container, and also to reduce loss of liquid nitrogen to the atmosphere. 4. With your second cup pair on the balance, add approximately 40 grams of liquid nitrogen and record the mass. (Take your glass thermometer to the balance with you so that you can measure the temperature of your warm water just before mixing it with ice in Step 5.) 5. After first confirming the actual temperature of your water, pour the nitrogen into the nested cup pair holding the water. Liquid nitrogen changes phase quickly. In order to prevent significant loss of mass, make the transfer to the water as soon as you remove the cups containing the liquid nitrogen from the balance -- do not wait until you get back to your bench. A cloud of extremely cold vapor will form above the container. Gently fan this away. 6. Return to your computer and immediately initiate data collection using the Vernier temperature probe as you did in Part 1. Stir the contents gently with the probe. When all the liquid nitrogen has evaporated and the temperature has reached a minimum and begins to rise, you may stop the data collection. By clicking on the STAT button, you can obtain the minimum temperature. Each team must collect at least three data sets for liquid nitrogen. Is this phase change exothermic or endothermic? 7. Find average values for ΔH vap of liquid nitrogen and express as a heat of vaporization in units of J/g and as a molar heat of vaporization in kj/mol. Add your results to the class data on the board if directed by your TA. Record all the values for use in your lab report. Part 3 - The Heat of Sublimation of CO 2 (Dry Ice) In this part of the experiment you will use a simple calorimeter to determine the heat of sublimation of CO 2, otherwise known as dry ice. 1. Use the same pairs of cups as in Part 1 and be certain that they are thoroughly dry. Prepare a data table in your lab notebook analogous to the one in Parts 1 and 2. 2. Heat approximately 250 ml of water to 55 ºC - 65 ºC as before. 5

3. When the water has been heated to the desired temperature, pour approximately 60 ml into one of the nested pairs. Obtain and record its mass as you did in Part 1. Again, preheating or precooling the nested cups with a small amount of the water, or liquid nitrogen is recommended to avoid heat loss from the water to the container. 4. With your second cup pair on the balance, add approximately 15 grams of dry ice and record the mass. (Take your glass thermometer to the balance with you so that you can measure the temperature of your warm water just before mixing it with ice in Step 5.) 5. After first confirming the actual temperature of your water, pour the dry ice into the nested cup pair holding the water. (Be sure that all the dry ice is transferred!) In order to prevent significant loss of mass, make the transfer to the water as soon as you remove the cups containing the dry ice from the balance - do not wait until you get back to your bench. A cloud of extremely cold vapor will form above the container. Why? 6. Return to your computer and immediately initiate data collection using the Vernier temperature probe as you did in Part 1. Stir the contents gently with the probe. When all the dry ice has sublimed and the temperature has reached a minimum and begins to rise, you may stop the data collection. By clicking on the STAT button, you can obtain the minimum temperature. Each team must collect at least three data sets for dry ice. Is the phase change investigated exothermic or endothermic? 7. Find average values for ΔH sub of CO 2 and express as a heat of sublimation in units of J/g and as a molar heat of sublimation in kj/mol. Add your results to the class data on the board if directed by your TA. Record all the values for use in your lab report. Of the three processes you investigated today, which involved the greatest amount of heat per mole for the phase changes involved? What intermolecular changes are occurring during each of the three types of phase changes your group investigated? What average values for ΔH fus, ΔH sub, and ΔH vap were obtained by your group? How do these compare to the class results? What are possible sources of error in this experiment? How could you eliminate or minimize each of these sources of error? Significant portions of this experiment were developed from the laboratory manual Experiments to Establish Foundations of Chemistry I, by Alfred J. Lata and Clark E. Bricker, University of Kansas, 1995. (See also Burgstahler, A.W. & Hamlet, P. The Physics Teacher 1990, 28, 544-5; Burgstahler, A.W. & Bricker, C.E., Journal of Chemical Education 1991, 68, 332-3; and Spaeth, A. D. & Black, R.S., Journal of Chemical Education 2012, 89, 1078-9.) 6