The Substitution Rule

Similar documents
MATH 151 Engineering Mathematics I

Lecture 21: Antiderivatives. Definition and computation

4. Theory of the Integral

Antiderivatives. DEFINITION: A function F is called an antiderivative of f on an (open) interval I if F (x) = f(x) for all x in I EXAMPLES:

Applications of Differentiation

Calculus I. George Voutsadakis 1. LSSU Math 151. Lake Superior State University. 1 Mathematics and Computer Science

Lecture 5: Integrals and Applications

Lecture 4: Integrals and applications

Section 4.4. Using the Fundamental Theorem. Difference Equations to Differential Equations

Study 4.10 #465, 471, , 487, , , 515, 517, 521, 523

Your signature: (1) (Pre-calculus Review Set Problems 80 and 124.)

Math RE - Calculus II Antiderivatives and the Indefinite Integral Page 1 of 5

x n cos 2x dx. dx = nx n 1 and v = 1 2 sin(2x). Andreas Fring (City University London) AS1051 Lecture Autumn / 36

Methods of Integration

Techniques of Integration

Assignment 6 Solution. Please do not copy and paste my answer. You will get similar questions but with different numbers!

Chapter 3. Integration. 3.1 Indefinite Integration

b n x n + b n 1 x n b 1 x + b 0

1 Lecture 39: The substitution rule.

Final Exam Review Quesitons

1.1 Definition of a Limit. 1.2 Computing Basic Limits. 1.3 Continuity. 1.4 Squeeze Theorem

Math 181, Exam 1, Study Guide Problem 1 Solution. xe x2 dx = e x2 xdx. = e u 1 2 du = 1. e u du. = 1 2 eu + C. = 1 2 ex2 + C

Ma 530 Power Series II

MAT 132 Midterm 1 Spring 2017

Access to Science, Engineering and Agriculture: Mathematics 2 MATH00040 Chapter 4 Solutions

Homework Problem Answers

Integration by Parts. MAT 126, Week 2, Thursday class. Xuntao Hu

Practice Problems: Integration by Parts

CHM320: MATH REVIEW. I. Ordinary Derivative:

Exam 3 review for Math 1190

Integration 1/10. Integration. Student Guidance Centre Learning Development Service

Math 162: Calculus IIA

Math Exam I - Spring 2008

Math 250 Skills Assessment Test

Lecture : The Indefinite Integral MTH 124

Summary: Primer on Integral Calculus:

Math 181, Exam 2, Study Guide 2 Problem 1 Solution. 1 + dx. 1 + (cos x)2 dx. 1 + cos2 xdx. = π ( 1 + cos π 2

Math 181, Exam 1, Study Guide 2 Problem 1 Solution. =[17ln 5 +3(5)] [17 ln 1 +3(1)] =17ln = 17ln5+12

Business and Life Calculus

Math Final Exam Review

MATH 222 SECOND SEMESTER CALCULUS

Section 5.6. Integration By Parts. MATH 126 (Section 5.6) Integration By Parts The University of Kansas 1 / 10

SOLUTIONS FOR PRACTICE FINAL EXAM

( )dt F. ( ) = y 2 sin y. ( ) = t 2 sint dt. ( ) = 1+ 2x. ( ) = 1+ 2t dt. ( ) = cos t 2. ( ) = cos x 2 ( ) ( ) = arctan 1 x 1 x 2 = 1 x 2 arctan 1 x

Section Areas and Distances. Example 1: Suppose a car travels at a constant 50 miles per hour for 2 hours. What is the total distance traveled?

OBJECTIVES Use the area under a graph to find total cost. Use rectangles to approximate the area under a graph.

Section 4.8 Anti Derivative and Indefinite Integrals 2 Lectures. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus I

7.1 Integration by Parts (...or, undoing the product rule.)

Announcements. Topics: Homework:

Calculus I Announcements

Chapter 7 Notes, Stewart 7e. 7.1 Integration by Parts Trigonometric Integrals Evaluating sin m xcos n (x)dx...

Section 5.5 More Integration Formula (The Substitution Method) 2 Lectures. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus I

dy = f( x) dx = F ( x)+c = f ( x) dy = f( x) dx

Classroom Voting Questions: Calculus II

The Product Rule state that if f and g are differentiable functions, then

Math 152 Take Home Test 1

MATH 250 TOPIC 13 INTEGRATION. 13B. Constant, Sum, and Difference Rules

f(g(x)) g (x) dx = f(u) du.

f(x) g(x) = [f (x)g(x) dx + f(x)g (x)dx

Carolyn Abbott Tejas Bhojraj Zachary Carter Mohamed Abou Dbai Ed Dewey. Jale Dinler Di Fang Bingyang Hu Canberk Irimagzi Chris Janjigian

N Ji INTEGRATION USING

DRAFT - Math 102 Lecture Note - Dr. Said Algarni

Grade: The remainder of this page has been left blank for your workings. VERSION D. Midterm D: Page 1 of 12

Chapter 7: Techniques of Integration

Chapter 2: Differentiation

Techniques of Integration

Solutions to Exam 1, Math Solution. Because f(x) is one-to-one, we know the inverse function exists. Recall that (f 1 ) (a) =

MATH 222 CALCULUS. Second Semester FALL 2004 UW MADISON. Lecture 3 Prof. Sigurd Angenent

6.6 Inverse Trigonometric Functions

Final Exam 2011 Winter Term 2 Solutions

Exploring Substitution

Chapter 6. Techniques of Integration. 6.1 Differential notation

Grade: The remainder of this page has been left blank for your workings. VERSION E. Midterm E: Page 1 of 12

A = (a + 1) 2 = a 2 + 2a + 1

Mathematics 136 Calculus 2 Everything You Need Or Want To Know About Partial Fractions (and maybe more!) October 19 and 21, 2016

Integration by Parts

Chapter 6. Techniques of Integration. 6.1 Differential notation

Integration by Substitution

y = x 3 and y = 2x 2 x. 2x 2 x = x 3 x 3 2x 2 + x = 0 x(x 2 2x + 1) = 0 x(x 1) 2 = 0 x = 0 and x = (x 3 (2x 2 x)) dx

Integration by Substitution

Techniques of Integration

Final Exam SOLUTIONS MAT 131 Fall 2011

Calculus II. George Voutsadakis 1. LSSU Math 152. Lake Superior State University. 1 Mathematics and Computer Science

Math 106: Review for Exam II - SOLUTIONS

Section 3.5: Implicit Differentiation

MATH 1A - FINAL EXAM DELUXE - SOLUTIONS. x x x x x 2. = lim = 1 =0. 2) Then ln(y) = x 2 ln(x) 3) ln(x)

Course Notes for Calculus , Spring 2015

Have a Safe and Happy Break

3 Algebraic Methods. we can differentiate both sides implicitly to obtain a differential equation involving x and y:

Chapter 2: Differentiation

Math 116 First Midterm October 14, 2009

sin xdx = cos x + c We also run into antiderivatives for tan x, cot x, sec x and csc x in the section on Log integrals. They are: cos ax sec ax a

CALCULUS Exercise Set 2 Integration

MATH 1207 R02 MIDTERM EXAM 2 SOLUTION

Josh Engwer (TTU) Area Between Curves 22 January / 66

Lecture Notes for math111: Calculus I.

The 2014 Integration Bee Solutions and comments. Mike Hirschhorn. u 4 du = 1 5 u5 +C = 1 5 (x3 1) 5 +C cosx dx = 1 2 x 1 2 sinx+c.

Math 122 Test 3. April 17, 2018

Math 223 Final. July 24, 2014

Techniques of Integration

Transcription:

The Sbstittion Rle Kiryl Tsishchanka THEOREM The Fndamental Theorem Of Calcls, Part II): If f is continos on [a,b], then where F is any antiderivative of f, that is F f. b a ] b fx)dx Fb) Fa) Fx) a NOTATION: To denote the set of all antiderivatives of f on an open) interval I we se the indefinite integral notation: fx)dx Fx)+C Table Of Indefinite Integrals cfx)dx c fx)dx [fx)+gx)]dx fx)dx+ x n dx xn+ +C n ) dx ln x +C n+ x e x dx e x +C a x dx ax lna +C sinxdx cosx+c cosxdx sinx+c sec xdx tanx+c csc xdx cotx+c secxtanxdx secx+c cscxcotxdx cscx+c +xdx arctanx+c dx arcsinx+c x gx)dx EXAMPLES:. x dx [PR with n ] x+ x +C + +C... 5 dx x x xdx x /5dx x x / dx x x x x / x +/ dx dx dx x x / x/ x /5 dx [PR with n /5] x /5+ /5+ +C 5 x/5 +C x +/ }{{} x / dx [PR with n /] x /+ /+ +C 7 x7/ +C x +/ / }{{} x 5/6 dx [PR with n 5/6] x 5/6+ 5/6+ +C 6 x/6 +C

Kiryl Tsishchanka 5. Table Of Indefinite Integrals cfx)dx c fx)dx [fx)+gx)]dx fx)dx+ x n dx xn+ +C n ) dx ln x +C n+ x e x dx e x +C a x dx ax lna +C sinxdx cosx+c cosxdx sinx+c sec xdx tanx+c csc xdx cotx+c secxtanxdx secx+c cscxcotxdx cscx+c +xdx arctanx+c dx arcsinx+c x 5 x+7xsinx 9x 9 5 x dx 9 x / dx+ ) dx 9x 5x/ 9x + 7xsinx 9x 7 9 sinxdx 9 x dx 5 9 9 ln x 5 9 ) dx gx)dx 9 x 5 9 x / + 7 ) 9 sinx dx x / dx+ 7 sin xdx 9 x /+ /+ 7 9 cosx+c 6. 7. 9 ln x 9 x/ 7 9 cosx+c x +x+ x +x dx x + x + + ) xx +) dx + ) dx x+ ) dx x + x + x + x + [ ] x ) ) +arctanx +arctan +arctan +arctan + π x+x ) dx x +x +x ) dx x+x +x 5 )dx x +x + x6 6 +C x + x + 6 x6 +C 8. x+x ) dx x +x +x +x 6) dx x+x +x 5 +x 7 )dx 9. x +x +x6 6 + x8 8 +C x + x + x6 + 8 x8 +C x+x ) 5 dx???

ANSWER : x+x ) 5 dx Kiryl Tsishchanka x +5x +75x 98 +85x 96 +99x 9 +96x 9 +896x 9 +5775x 88 +66765x 86 +5x 8 +777787x 8 +766697x 8 +5875899x 78 +766697x 76 +97679x 7 +88675x 7 +77597695x 7 +77698675x 68 +7998795x 66 +859766975x 6 +775555676x 6 +56658676x 6 +567767x 58 +9679686x 56 +95999x 5 +79596675x 5 +79596675x 5 +95999x 8 +9679686x 6 +567767x +56658676x +775555676x +859766975x 8 +7998795x 6 +77698675x +77597695x +88675x +97679x 8 +766697x 6 +5875899x +766697x +777787x +5x 8 +66765x 6 +5775x +896x +96x +99x 8 +85x 6 +75x +5x )/+C ANSWER : x+x ) 5 dx +x ) 5 +C becase ) ) [ cf) cf +x ) 5 +C +x ) 5 +C C ] +x ) 5) [ n ) n n ] 5+x ) 5 +x ) 5+x ) 5 x x+x ) 5 THEOREM The Sbstittion Rle): If gx) is a differentiable fnction whose range is an interval I and f is continos on I, then fgx))g x)dx f)d SOLUTION: x+x ) 5 dx +x d+x ) d xdx d xdx d 5 d 5 d 5 5 +C +x ) 5 +C 5

Kiryl Tsishchanka cf)d c f)d n d n+ +C n ) n+ e d e +C sind cos+c sec d tan+c sectand sec+c +d arctan+c Table Of Indefinite Integrals [f)+g)]d f)d+ g)d d ln +C a d a lna +C cosd sin+c csc d cot+c csccotd csc+c d arcsin+c. 5x d 5x ) d x sin 5x )dx 5x dx d x dx 5 d 5 cos)+c 5 cos 5x )+C sin ) d 5 5 sin d. x+ x +x dx x +x x+)dx x +x dx +x ) d d x+)dx d / d /+ /+ +C x +x ) /+ +C x +x ) / +C /+. lnx x dx lnx x dx lnx dlnx) d dx d x d +C ln x +C. xe x + dx

Kiryl Tsishchanka cf)d c f)d n d n+ +C n ) n+ e d e +C sind cos+c sec d tan+c sectand sec+c +d arctan+c Table Of Indefinite Integrals [f)+g)]d f)d+ g)d d ln +C a d a lna +C cosd sin+c csc d cot+c csccotd csc+c d arcsin+c. xe x + dx x + dx +) d xdx d xdx d e d e d e +C ex + +C. x x+dx x+ dx+) d ) d / / )d dx d /+ /+ /+ /+ +C 5 x+)5/ x+)/ +C 5. x+5 x+ dx x+ dx+) d dx d dx d +5 ) d + d +7 d 7 d+ d d+ 7 d + 7 ln +C x+)+ 7 ln x+ +C 6. a) x+ x +x+ dx b) x+ x +x+ dx 5

Kiryl Tsishchanka Table Of Indefinite Integrals cf)d c f)d [f)+g)]d f)d+ g)d n d n+ +C n ) d ln +C n+ e d e +C a d a lna +C sind cos+c cosd sin+c sec d tan+c csc d cot+c sectand sec+c csccotd csc+c +d arctan+c d arcsin+c 6a). 6b). 7. 8. 9. x+ x +x+ dx x+ x +x+ dx + + d x +x+ dx +x+) d d ln +C lnx +x+)+c x+)dx d x+ x+ ) x+ dx + d x+ ) d + + d dx d ) d + ln + ) + arctan +C + d+ lnx +x+)+ arctan x+ +C For more details, see Appendix I) dx x dx x)+x) x + ln x + ln +x +C ln +x x +x dx e x dx + x )dx + d + x +x ) dx x dx+ +x dx +C For more details, see Appendix II) x/ dx dx/ ) d ) dx + x dx/ d dx d + d arctan+c arctan x +C 6

Kiryl Tsishchanka cf)d c f)d n d n+ +C n ) n+ e d e +C sind cos+c sec d tan+c sectand sec+c a + d a arctan a +C Table Of Indefinite Integrals [f)+g)]d f)d+ g)d d ln +C a d a lna +C cosd sin+c csc d cot+c csccotd csc+c a d arcsin a +C 9. e x dx x d x) d dx d dx d e d) e d e +C e x +C. sin 5x)dx 5x d 5x) d 5dx d dx 5 d sin ) d 5 5 sin d 5 cos)+c 5 cos 5x)+C. sinx)dx 7

Kiryl Tsishchanka sinx)dx sinx sinxcosxdx dsinx) d cosxdx d d x dx) d sinx)dx dx d dx d sin ) d +C sin x+c sind cos)+c cosx)+c THEOREM The Sbstittion Rle for Definite Integrals): If g is continos on [a,b] and f is continos on the range of gx), then b fgx))g x)dx gb) f)d a ga). Find π/ sinx)dx. INCORRECT!!!: π/ sinx)dx π/ sinxcosxdx sinx dsinx) d cosxdx d π/ d ] π/ ] π/ π ) sin x sin sin ) METHOD : sinx)dx sinxcosxdx sinx dsinx) d cosxdx d d +C sin x+c Therefore π/ sinx)dx sin x ] π/ π ) ) sin sin. METHOD : π/ sinx)dx π/ sinxcosxdx sinx dsinx) d cosxdx d sinπ/) sin ] ) d / 8

Kiryl Tsishchanka. x +8 x x +8) dx +8) d dx x dx d x dx d +8 ) +8 7 d d [ ] 7 9 7,7. 5. 6. 7. 9 x x + dx x x+) dx x + dx +) d xdx d xdx d x ) xdx x+ d x+) d dx d x dx d x x x d x) d dx d dx )d + + / d 9+ d + 9 / d d [ ) ] d [ ] d [ 5 5/ / x+ x x ) dx+) d dx x+ dx d dx d + + ] / / )d [ / / ] 9 [ ] + [ ] d [ 5 ] 5 ) / d 9 / / )d 8. θ+cos θ ) dθ 6 θ 6 ) θ 6 θ d d 6 dθ 6d /6 /6 [ / / / / ] 9 6+cos)6d 6 /. d+6 / cos d [ 6 ] / +6[sin] / 7.77 9

Kiryl Tsishchanka To find Appendix I x+ dx, we first rewrite the denominator as x +x+ x +x+ x +x + x +x + ) ) + x+ ) ) + x+ ) + We have x+ x+ x +x+ dx x+ ) x+ dx + d x+ ) d + + d dx d + + d + d+ + d + d+ Note that and hence + v d + d + ) dv d dv d dv +a d Therefore x+ x +x+ dx a a + )d a a + + d+ x+ ) + ) d + v dv ln v +C ln + ) +C a v d dv d a) a) + d dv a a d adv v + dv a arctanv +C a arctan a +C ) d arctan )+C + v + adv ) d ln + ) + arctan )+C lnx +x+)+ arctan x+ +C

Kiryl Tsishchanka To find Indeed, Appendix II dx x, we first note that x x)+x) x + ) +x x + ) +x +x x)+x) + ) x x)+x) +x+ x x)+x) Therefore We have dx x x + ) dx +x dx d x dx+ x)+x) x)+x) +x dx x x dx d x) d dx d d ln +C ln x +C and +x dx +x d+x) d dx d d ln +C ln +x +C It follows that dx x x dx+ +x dx ln x + ln +x +C ln x +ln +x )+C ln +x x +C

Kiryl Tsishchanka EXAMPLE: Find x+ a) dx x Soltion: a) We have b) Appendix III x + x dx x+ dx x x + )dx x x +x / ) dx ] [x+ x /+ /+ ] [x+ x/ / [ x+ x ] + ) + ) b) We have x + x dx + x x x ) ) d [ ] [ +ln [ +ln) dx d ) dx )d + + )d + d + ) d + ) d + We can apply the -sbstittion in a bit different way: + x x d+ x) d x + x dx dx d x dx xd dx )d ) )] +ln +ln )] [ ln ] ln + + )d [by the above] ln REMARK: Problem b) was given in Fall Calcls II, qiz ). Nobody solved this problem correctly.