Mathematical and Information Technologies, MIT-2016 Mathematical modeling

Similar documents
Ocean Modeling - EAS Chapter 2. We model the ocean on a rotating planet

2. Second-order Linear Ordinary Differential Equations

Two Posts to Fill On School Board

Math 211. Substitute Lecture. November 20, 2000

County Council Named for Kent

OWELL WEEKLY JOURNAL

1871. twadaa t, 30 cta. pat Haa;fe,ttaw Spiritism. From Uis luport of tie vision, and in U e n i e h t i a d i W A C h r f i

2 Lyapunov Stability. x(0) x 0 < δ x(t) x 0 < ɛ

Fall 2001, AM33 Solution to hw7


Asynchronous Training in Wireless Sensor Networks

arxiv: v2 [nlin.si] 4 Nov 2015

144 Chapter 3. Second Order Linear Equations

T e c h n i c u e. SOUTH'S LIVEST COLLEGE WEEKLY Georgia School of Technology. Phi Kappa Tau Frat Installed With WeekEnd of Activity mm

CH.3. COMPATIBILITY EQUATIONS. Multimedia Course on Continuum Mechanics

Lecture 16. Theory of Second Order Linear Homogeneous ODEs

CS205B / CME306 Homework 3. R n+1 = R n + tω R n. (b) Show that the updated rotation matrix computed from this update is not orthogonal.

Oblique derivative problems for elliptic and parabolic equations, Lecture II

PRE-LEAVING CERTIFICATE EXAMINATION, 2010

2. (a) What is gaussian random variable? Develop an equation for guassian distribution

CH.1. DESCRIPTION OF MOTION. Continuum Mechanics Course (MMC)

Chapter 3 : Linear Differential Eqn. Chapter 3 : Linear Differential Eqn.

Non-homogeneous equations (Sect. 3.6).

The second-order 1D wave equation

x 1 = x i1 x i2 y = x 1 β x K β K + ε, x i =

Special Mathematics Laplace Transform

NOTES ON SCHAUDER ESTIMATES. r 2 x y 2

' '-'in.-i 1 'iritt in \ rrivfi pr' 1 p. ru

LOWELL. MICHIGAN, OCTOBER morning for Owen J. Howard, M last Friday in Blodpett hospital.

Infinite Sequence Soliton-Like Exact Solutions of (2 + 1)-Dimensional Breaking Soliton Equation

APPLIED MATHEMATICS. Part 1: Ordinary Differential Equations. Wu-ting Tsai

" W I T H M I A L I O E T O W A R D istolste A N D O H A P l t T Y F O B, A I j L. ; " * Jm MVERSEO IT.

Errata. G. Teschl, Please send comments and corrections to Updated as of November 26, 2017

LOWELL WEEKLY JOURNAL

Traffic Flow Problems

Answers to Problem Set Number MIT (Fall 2005).

Fundamental Solution

Dynamics and Control of Rotorcraft

LOWELL WEEKLY JOURNAL

Math 220A - Fall 2002 Homework 5 Solutions

MATH 425, FINAL EXAM SOLUTIONS

Lecture 9: Modeling and motion models

Partial Differential Equations for Engineering Math 312, Fall 2012

Existence Theory: Green s Functions

Jim Lambers MAT 285 Spring Semester Practice Exam 2 Solution. y(t) = 5 2 e t 1 2 e 3t.

Extra Problems and Examples

MA6451 PROBABILITY AND RANDOM PROCESSES

UNIVERSITY of LIMERICK OLLSCOIL LUIMNIGH

Inductive and Recursive Moving Frames for Lie Pseudo-Groups

Boundary conditions and estimates for the linearized Navier-Stokes equations on staggered grids

2007 Final Exam for Random Processes. x(t)

Chapter 2: Heat Conduction Equation

ENGI 9420 Lecture Notes 1 - ODEs Page 1.01

EE538 Final Exam Fall :20 pm -5:20 pm PHYS 223 Dec. 17, Cover Sheet

Modeling and Analysis of Dynamic Systems

' Liberty and Umou Ono and Inseparablo "

/99 $10.00 (c) 1999 IEEE

KINK DEGENERACY AND ROGUE WAVE FOR POTENTIAL KADOMTSEV-PETVIASHVILI EQUATION

Nonconstant Coefficients

On perturbations in the leading coefficient matrix of time-varying index-1 DAEs

Application of state observers in attitude estimation using low-cost sensors

Signals and Spectra (1A) Young Won Lim 11/26/12

Alexei F. Cheviakov. University of Saskatchewan, Saskatoon, Canada. INPL seminar June 09, 2011

LOWELL JOURNAL. MUST APOLOGIZE. such communication with the shore as Is m i Boimhle, noewwary and proper for the comfort

5 Applying the Fokker-Planck equation

Photo-Acoustic imaging in layered media

Oscillations. Simple Harmonic Motion of a Mass on a Spring The equation of motion for a mass m is attached to a spring of constant k is

Math53: Ordinary Differential Equations Autumn 2004

First order differential equations

MATH 23 Exam 2 Review Solutions

Chapter Introduction. A. Bensoussan

UNIVERSITY OF MANITOBA

Honors Differential Equations

The 2D Magnetohydrodynamic Equations with Partial Dissipation. Oklahoma State University

DISCUSSION CLASS OF DAX IS ON 22ND MARCH, TIME : 9-12 BRING ALL YOUR DOUBTS [STRAIGHT OBJECTIVE TYPE]

Characteristics for IBVP. Notes: Notes: Periodic boundary conditions. Boundary conditions. Notes: In x t plane for the case u > 0: Solution:

Partial Differential Equations Separation of Variables. 1 Partial Differential Equations and Operators

Lecture 14: Strain Examples. GEOS 655 Tectonic Geodesy Jeff Freymueller

Summer 2017 MATH Solution to Exercise 5

Solutions to homework assignment #3 Math 119B UC Davis, Spring = 12x. The Euler-Lagrange equation is. 2q (x) = 12x. q(x) = x 3 + x.

Lu u. µ (, ) the equation. has the non-zero solution

Advanced Eng. Mathematics

MATH 32A: MIDTERM 2 REVIEW. sin 2 u du z(t) = sin 2 t + cos 2 2

Second Order Linear Equations

Nonlinear Control Lecture 5: Stability Analysis II

Math 333 Qualitative Results: Forced Harmonic Oscillators

P1: PBU/OVY P2: PBU/OVY QC: PBU/OVY T1: PBU JWDD JWDD027-Salas-v1 November 25, :21. is a solution. (e x +1) 2 + 1

Heat Equation on Unbounded Intervals

MATH 220: Problem Set 3 Solutions

Problem Set 1. This week. Please read all of Chapter 1 in the Strauss text.

Notes 16 Linearly Independence and Wronskians

Problem Value

UNIVERSITY OF MANITOBA

2 Symmetric Markov processes on finite spaces

L2 gains and system approximation quality 1

Laplace transform pairs of N-dimensions and second order linear partial differential equations with constant coefficients

Review For the Final: Problem 1 Find the general solutions of the following DEs. a) x 2 y xy y 2 = 0 solution: = 0 : homogeneous equation.

Proper Orthogonal Decomposition (POD) for Nonlinear Dynamical Systems. Stefan Volkwein

Structurally Stable Singularities for a Nonlinear Wave Equation

HOMEWORK # 3 SOLUTIONS

Transcription:

473

474

ρ u,t = p,x q,y, ρ v,t = q,x p,y, ω,t = 2 q + µ x,x + µ y,y, φ,t = ω, p,t = k u,x + v,y + β T,t, q,t = α v,x u,y 2 α ω + q/η, µ x,t = γ ω,x, µ y,t = γ ω,y, c T,t = 11 T,x + 12 T,y,x + 12 T,x + 22 T,y,y β T u,x + v,y + 2 q 2 /η. u v ω φ p q µ x µ y T ρ k α η c β 11 12 22 11 = 1 cos 2 φ + 2 sin 2 φ 12 = 1 2 sin φ cos φ 22 = 1 sin 2 φ + 2 cos 2 φ 1 2 t x y x y ρ u,y v,x,t = q, µ x,t µ y,t t q ω q,tt + 2 α η q,t + 2 α ω,t = α ρ q, ω,tt 2 q,t = γ ω. 475

q t=0 = q 0, q t=0,t = α v,x 0 u 0,y 2 α ω 0 + q0 = 2 α ω 0 + q0, η η ω t=0 = ω 0, ω t=0,t = 1 2 q 0 + µ 0 x,x + µ 0 2 q 0 y,y =, u 0 v 0 ω 0 q 0 µ 0 x µ 0 y q ω,t t ω,t = 1 α 2 α ρ q q,tt 2 α η q,t, ω,ttt = 2 q,tt + γ ω,t, q,tttt + 2 α η q,ttt + 4 α α q,tt ρ + γ q,tt 2 α γ η q,t = α ρ q t=0 = q 0, q,t t=0 = α v 0,x u 0,y 2 α ω 0 + q0 = 2 α η γ 2 q. ω 0 + q0 η q t=0,tt = α ρ q0 2 α 2 q 0 + µ 0 x,x + µ 0 2 α [ α α y,y η q0,t = 4 α η ω0 + η 2 1 q 0], q,ttt t=0 = α ρ q0,t 2 α = 8 α 2[ 1 α η 2 ω 0 + 1 η 2 q 0,t + γ ω 0 2 α η q0,tt = 1 + 1 η α η 2 q 0]., q ω q ω q,x ω,x q,y ω,y x y t q n+1 2 q n 1, 2 + q n 1 t 2 + α η = α ρ q n 1+1, 2 2 q n + q n 1 1, 2 x 2 q n+1 q n 1 t + α ωn+1 ω n 1 t = + qn 2 1, 2+1 qn + q n 1, 2 1 y 2, 476

= γ ω n+1 2 ω n 1, 2 + ω n 1 t 2 1 ω n 1+1, 2 2 ω n + ω n 1 1, 2 x 2 1 = 2, N 1 1 2 = 2, N 2 1 ω n+1 ω n+1 = 2 ω n 1, 2 ω n 1 + t q n+1 q n 1 t = + ωn +1 2 ωn + ω n 1 y 2, q n+1 q n 1 + + γ t2 ω n 1+1, 2 2 ω n 1, 2 + ω n 1 1, 2 x 2 + ωn 2 1, 2+1 ωn + ω n 1, 2 1 y 2. q n+1 + α ρ α γ t α + α η t + 1 t 2 q n+1 = 2 t 2 qn + α + + α η t 1 t 2 q n 1 + 2 α ω n 1 t 1, 2 ω n 1, 2 + q n 1+1, 2 2 q n 1, 2 + q n 1 1, 2 + qn 2 1, 2+1 qn + q n 1, 2 1 y 2 x 2 ω n 1+1, 2 2 ω n 1, 2 + ω n 1 1, 2 x 2 + ωn +1 2 ωn + ω n 1 y 2. η q n = λ n ˆq e i1α1+2α2, ω n = λ n ˆω e i1α1+2α2. λ n e i1α1+2α2 λ 2 + 1/λ t 2 ˆq + α λ 1/λ ˆω = α e iα 1 2 + e iα1 t ρ x 2 + eiα2 2 + e iα2 y 2 ˆq. 477

λ 2 2 λ + 1 t 2 + 4 α sin 2 ρ λ α 1 /2 x 2 + sin2 α 2 /2 y 2 ˆq + α λ2 1 ˆω = 0. t λ 2 2 λ + 1 t 2 Mathematical and Information Technologies, MIT-2016 Mathematical modeling + 4 γ λ sin 2 α 1 /2 x 2 + sin2 α 2 /2 y 2 ˆω 1 λ 2 1 t ˆq = 0. ˆq ˆω λ 1 2 t 2 + 4 α λ 1λ + 1 λ A α ρ t 1 λ 2 1 λ 2 1 2 t t 2 + 4 γ = 0, λ A A = sin2 α 1 /2 x 2 + sin2 α 2 /2 y 2 a = α ρ A t2, b = γ A t2, c = α t2, λ 1 4 + 4 λ λ 1 2 a + b + 16 λ 2 a b + λ 2 1 2 c = 0, 1 + cλ 2 1 2 + 4 λ λ 1 2 a + b 1 + 16 λ 2 a b = 0. a b c b = 0 1+cλ+1 2 +4 λ a 1 = 0 λ 2 +2 λ 1 2 1 a +1 = 0 1 + c λ 1 = λ 2, λ 1 = λ 2 = 1, 1 2 1 a 2 1 0, 1 + c 1 1 2 1 a 1 a 1, 2 2 0, a 1. 1 + c 1 + c α 1, α 2 α 1 ρ t2 x 2 + 1 1. y 2 a = 0 1+cλ+1 2 +4 λ b 1 = 0 b 1 γ 1 t2 x 2 + 1 1. y 2 478

a + b = 1 1 + cλ 2 1 2 + 16 λ 2 a b = 0 z = λ 2 z 2 2 z 1 8 a b + 1 = 0 1 + c z 1 = z 2 = 1, 1 8 a b 2 a b 1 0, 1 1 8 1, 1 + c 1 + c 4 a b 1 + c, 4 a b a + b 2 + c, 0 a b 2 + c. a + b = 1 α ρ + γ sin t 2 2 α 1 /2 x 2 + sin2 α 2 /2 1. y 2 λ = 1 α 1 α 2 α ρ + γ t 2 1 x 2 + 1 1. y 2 479

x y 480

30 25 tcpu/tgpu 20 15 10 5 0 400 800 1200 1600 2000 2400 2800 3200 N 481

N N N t CP U /t GP U 1000 1000 q = ˆq e ift ky q = ˆq e ift ky ω = ˆω e ift ky f 2 + 2 i α f η + α k2 ˆq + 2 i α f ˆω = 0, ρ 2 i f γ k 2 ˆq + f 2ˆω = 0. k ± k ± = ρ f 2 α γ d ± d 2 4 α γ f ρ 2 2 i α f η 4 α α, d = ρ +γ f 2 i α γ η. f k ± = k 1 ± + i k± 2 c ± f f = ν = k ± 2 π λ ± = 1 k ± ν k + k ν = 1 α π ρ = 1022 / 3 = 1.33 10 10 / α = 0.161 γ = 10 µ η = 10 ν = 350 4 µ ˆq = e k2yˆq 1 cosft k 1 y ˆq 2 sinft k 1 y, ˆω = e k2yˆω 1 cosft k 1 y ˆω 2 sinft k 1 y. ω y k + k 1000 3 10 3 k + 5 10 4 k 482

c + c ν ν k + k λ + µm λ µm ν ν k + k ω ω y µm y µm k + k 483

Mathematical and Information Technologies, MIT-2016 Mathematical modeling Π 8 q = q y y c l q = 0 y y c > l ω,x = 0 y c l y c = 20 µ l = 10 µ 100 µ 40 µ 2560 1024 ρ = 1022 / 3 = 1.33 10 7 / α = 0.161 γ = 1 η = 100 Π q = q δx δt q = q x x c x x c = 7 µ t t q = 0 ω,y = 0 q = 0 ω = 0 10 µ 4 µ 2560 1024 = 1.33 10 10 / γ = 10 µ 484

q = q sin2 π ν t x x c l q = 0 x x c > l x c = 5 µ l = 2.5 µ ω,y = 0 ν ν = 350 485

Mathematical and Information Technologies, MIT-2016 Mathematical modeling 486