Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections 63 parameters

Similar documents
Methyl acetoacetate at 150 K. The crystal structure of methyl acetoacetate, C 5 H 8 O 3, at 150 K contains discrete molecules.

organic papers 2-[(Dimethylamino)(phenyl)methyl]benzoic acid

organic papers Malonamide: an orthorhombic polymorph Comment

organic papers Acetone (2,6-dichlorobenzoyl)hydrazone: chains of p-stacked hydrogen-bonded dimers Comment Experimental

Orthorhombic, Pbca a = (3) Å b = (15) Å c = (4) Å V = (9) Å 3. Data collection. Refinement

Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections

Sodium 3,5-dinitrobenzoate

Diammonium biphenyl-4,4'-disulfonate. Author. Published. Journal Title DOI. Copyright Statement. Downloaded from. Link to published version

organic papers 2-Iodo-4-nitro-N-(trifluoroacetyl)aniline: sheets built from iodo nitro and nitro nitro interactions

b = (9) Å c = (7) Å = (1) V = (16) Å 3 Z =4 Data collection Refinement

Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections 92 parameters

= (8) V = (8) Å 3 Z =4 Mo K radiation. Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections

Experimental. Crystal data. C 18 H 22 N 4 O 6 M r = Monoclinic, P2=n a = (5) Å b = (4) Å c = (5) Å = 104.

= (3) V = (4) Å 3 Z =4 Mo K radiation. Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = 1.

metal-organic compounds

Z =8 Mo K radiation = 0.35 mm 1. Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections

= (1) V = (12) Å 3 Z =4 Mo K radiation. Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections

metal-organic compounds

b = (13) Å c = (13) Å = (2) V = (19) Å 3 Z =2 Data collection Refinement

Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections 155 parameters 10 restraints

metal-organic compounds

metal-organic compounds

(+-)-3-Carboxy-2-(imidazol-3-ium-1-yl)- propanoate

metal-organic compounds

2-Methoxy-1-methyl-4-nitro-1H-imidazole

Anhydrous Polymorphs of Theophylline: The stable Form IV consists of dimer pairs, and the metastable Form I consists of H-bonded chains

metal-organic compounds

metal-organic compounds

Reactivity of Diiron Imido Complexes

metal-organic compounds

b = (2) Å c = (3) Å = (10) V = (2) Å 3 Z =2 Data collection Refinement

metal-organic compounds

electronic reprint 2-Hydroxy-3-methoxybenzaldehyde (o-vanillin) revisited David Shin and Peter Müller

organic papers 2,6-Diamino-3,5-dinitro-1,4-pyrazine 1-oxide Comment

V = (14) Å 3 Z =8 Cu K radiation. Data collection. Refinement

Experimental. Crystal data. C 18 H 18 N 2 O 4 S M r = Monoclinic, P2 1 =n a = (3) Å b = (2) Å c = (5) Å = 104.

Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections

organic compounds 2-(3-Nitrophenylaminocarbonyl)- benzoic acid: hydrogen-bonded sheets of R 4 4 (22) rings Comment

electronic reprint 3,5-Di-p-toluoyl-1,2-dideoxy-fi-1-(imidazol-1-yl)-D-ribofuranose Nicole Düpre, Wei-Zheng Shen, Pablo J. Sanz Miguel and Jens Müller

inorganic compounds Chromous hydrazine sulfate

N-[(Diphenylamino)methyl]acetamide

metal-organic compounds

Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections 245 parameters 2 restraints

metal-organic compounds

CIF access. Redetermination of biphenylene at 130K. R. Boese, D. Bläser and R. Latz

Rapid Cascade Synthesis of Poly-Heterocyclic Architectures from Indigo

metal-organic compounds

4-(4-Hydroxymethyl-1H-1,2,3-triazol-1-yl)benzoic acid

Z =4 Mo K radiation = 0.17 mm 1. Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections 205 parameters

Prakash S Nayak, B. Narayana, Jerry P. Jasinski, H. S. Yathirajan and Manpreet Kaur

2. Experimental Crystal data

= 0.09 mm 1 T = 294 (2) K. Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections

Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections 106 parameters 2 restraints

addenda and errata [N,N 0 -Bis(4-bromobenzylidene)-2,2-dimethylpropane-j Corrigendum Reza Kia, a Hoong-Kun Fun a * and Hadi Kargar b

White Phosphorus is Air-Stable Within a Self-Assembled Tetrahedral Capsule

electronic reprint Sr 5 (V IV OF 5 ) 3 F(H 2 O) 3 refined from a non-merohedrally twinned crystal Armel Le Bail, Anne-Marie Mercier and Ina Dix

metal-organic compounds

Small Molecule Crystallography Lab Department of Chemistry and Biochemistry University of Oklahoma 101 Stephenson Parkway Norman, OK

metal-organic compounds

metal-organic compounds

Anion binding vs deprotonation in colorimetric pyrrolylamido(thio)urea based anion sensors

A Straightforward Access to Stable, 16 Valence-electron Phosphine-Stabilized Fe 0 Olefin Complexes and their Reactivity

metal-organic compounds

Supporting Information

metal-organic compounds

3-methoxyanilinium 3-carboxy-4-hydroxybenzenesulfonate dihydrate.

= mm 1 T = 298 K. Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections 290 parameters 9 restraints

A two-dimensional Cd II coordination polymer: poly[diaqua[l 3-5,6-bis(pyridin-2-yl)pyrazine-2,3- dicarboxylato-j 5 O 2 :O 3 :O 3,N 4,N 5 ]cadmium]

International Journal of Innovative Research in Science, Engineering and Technology. (An ISO 3297: 2007 Certified Organization)

metal-organic papers Di-l-pyridyl-1:2j 2 N:C 2 ;2:1j 2 N:C 2 -l-tetrahydrofuran-j magnesium(ii)] tetrahydrofuran hemisolvate

Experimental. Crystal data

2. Experimental Crystal data

organic compounds 2,4,6-Trimethylphenyl isocyanide

Unexpected crystallization of 1,3-bis(4-fluorophenyl)propan-2-one in paratone oil

New Journal of Chemistry. Synthesis and mechanism of novel fluorescent coumarindihydropyrimidinone. multicomponent reaction.

Understanding the relationship between crystal structure, plasticity and compaction behavior of theophylline, methyl gallate and their 1:1 cocrystal

Small Molecule Crystallography Lab Department of Chemistry and Biochemistry University of Oklahoma 101 Stephenson Parkway Norman, OK

metal-organic compounds

metal-organic compounds

electronic reprint (2,4,6-Trinitrophenyl)guanidine Graham Smith, Urs D. Wermuth and Jonathan M. White Editors: W. Clegg and D. G.

electronic reprint (P)-Tetra-μ 3 -iodido-tetrakis[(cyclohexyldiphenylphosphine-»p)silver(i)] John F. Young and Glenn P. A. Yap

inorganic compounds Hexagonal ammonium zinc phosphate, (NH 4 )ZnPO 4,at10K

metal-organic compounds

metal-organic compounds

Experimental. Crystal data. C 8 H 8 O 5 M r = Monoclinic, P2 1 =n a = (2) Å b = (2) Å c = (2) Å = 95.

Jimmy U. Franco, Marilyn M. Olmstead and Justin C. Hammons

metal-organic compounds

Supporting Information

Supporting Information

Data collection. Refinement. R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections 184 parameters 1 restraint

2-(3-Chloro-4-hydroxylphenyl)-N-(3,4- dimethyoxyphenethyl)acetamide. Author. Published. Journal Title DOI. Copyright Statement.

metal-organic compounds

metal-organic compounds

A single crystal investigation of L-tryptophan with Z = 16

Supporting Information. Chiral phosphonite, phosphite and phosphoramidite η 6 -areneruthenium(ii)

metal-organic compounds

Supporting Information

catena-poly[[[bis(cyclohexyldiphenylphosphine-»p)silver(i)]-μ-cyano-» 2 N:C-silver(I)-μ-cyano-» 2 C:N] dichloromethane solvate]

Reversible dioxygen binding on asymmetric dinuclear rhodium centres

Supplementary Information. Single Crystal X-Ray Diffraction

Transcription:

organic compounds Acta Crystallographica Section E Structure Reports Online ISSN 1600-5368 Urea N,N-dimethylacetamide (1/1) Refinement R[F 2 >2(F 2 )] = 0.050 wr(f 2 ) = 0.150 S = 0.89 939 reflections 63 parameters H atoms treated by a mixture of independent and constrained refinement max = 0.31 e Å 3 min = 0.39 e Å 3 Philippe Fernandes, a Alastair J. Florence, a * Francesca Fabbiani, b William I. F. David b and Kenneth Shankland b a Solid-State Research Group, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 27 Taylor Street, Glasgow G4 0NR, Scotland, and b ISIS Facility, STFC Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX, England Correspondence e-mail: alastair.florence@strath.ac.uk Received 16 November 2007; accepted 16 December 2007 Key indicators: single-crystal X-ray study; T = 120 K; mean (O C) = 0.003 Å; disorder in main residue; R factor = 0.050; wr factor = 0.150; data-to-parameter ratio = 14.9. Urea forms a 1:1 solvate with N,N-dimethylacetamide (DMA) [systematic name: diaminomethanal N,N-dimethylacetamide (1/1), C 4 H 9 NOCH 4 N 2 O] with both molecules positioned on a twofold axis, giving rise to rotational disorder of the DMA molecule. The molecules display a layered structure in which urea molecules form hydrogen-bonded ribbons bounded by molecules of solvent. Related literature For details on experimental methods used to obtain this crystalline compound, see: Florence et al. (2003). For crystal structures of urea, see: Fernandes et al. (2007); Vaughan & Donohue (1952), and references therein; Swaminathan et al. (1984); Pryor & Sanger (1970); Guth et al. (1980); Weber et al. (2002). For related literature, see: Etter (1990). Experimental Crystal data C 4 H 9 NOCH 4 N 2 O M r = 147.18 Monoclinic, C2=c a = 7.2770 (3) Å b = 17.5394 (9) Å c = 7.3789 (4) Å = 119.450 (3) Data collection Bruker Nonius KappaCCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2007) T min = 0.867, T max =1 (expected range = 0.864 0.996) V = 820.11 (7) Å 3 Z =4 Mo K radiation = 0.09 mm 1 T = 120 K 0.40 0.12 0.04 mm 5338 measured reflections 941 independent reflections 552 reflections with I > 2.0(I) R int = 0.048 Table 1 Hydrogen-bond geometry (Å, ). D HA D H HA DA D HA N3 H31O2 i 0.87 (2) 2.06 (2) 2.930 (2) 180 (3) N3 H32O9 ii 0.87 (2) 2.09 (2) 2.878 (3) 149.7 (19) Symmetry codes: (i) x þ 1 2 ; y þ 1 2 ; z þ 1; (ii) x; y þ 1; z þ 1. Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: encifer (Allen et al., 2004) and publcif (Westrip, 2008). The authors thank the Basic Technology programme of the UK Research Councils for funding this work under the project Control and Prediction of the Organic Solid State (http:// www.cposs.org.uk). We also thank the EPSRC National X-ray Crystallography Service at the University of Southampton for the data collection. Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GA2020). References Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335 338. Altomare, A., Cascarano, G., Giacovazzo, G., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487. Bruker (2007). SADABS. Version 2007/2. Bruker AXS Inc., Madison, Wisconsin, USA. Etter, M. C. (1990). Acc. Chem. Res. 23, 120 126. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. Fernandes, P., Florence, A. J., Fabbiani, F., David, W. I. F. & Shankland, K. (2007). Acta Cryst. E63, o4861. Florence, A. J., Baumgartner, B., Weston, C., Shankland, N., Kennedy, A. R., Shankland, K. & David, W. I. F. (2003). J. Pharm. Sci. 92, 1930 1938. Guth, H., Heger, G., Klein, S., Treutmann, W. & Scheringer, C. (1980). Z. Kristallogr. 153, 237 254. Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453 457. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307 326. New York: Academic Press. Pryor, A. W. & Sanger, P. L. (1970). Acta Cryst. A26, 543 558. Swaminathan, S., Craven, B. M. & McMullan, R. K. (1984). Acta Cryst. B40, 300 306. Vaughan, P. & Donohue, J. (1952). Acta Cryst. 5, 530 535. Weber, H. P., Marshall, W. G. & Dmitriev, V. (2002). Acta Cryst. A58 (Suppl.), C174. Westrip, S. P. (2008). publcif. In preparation. doi:10.1107/s1600536807067232 # 2008 International Union of Crystallography o355

supporting information [doi:10.1107/s1600536807067232] Urea N,N-dimethylacetamide (1/1) Philippe Fernandes, Alastair J. Florence, Francesca Fabbiani, William I. F. David and Kenneth Shankland S1. Comment The crystal structure of urea has been widely studied (see for example, Vaughan and Donohue (1952) and references therein; Swaminathan et al. (1984), Pryor and Sanger (1970), Guth et al. (1980) and Weber et al. (2002)). This previously unreported crystalline solvate of urea was discovered during an investigation into the influence of different crystallization solvents on urea crystal morphology (see also Fernandes et al., 2007). The sample was obtained by slow evaporation from a saturated N,N-dimethylacetamide (DMA) solution at 298 K and identified by using multi-sample foil transmission X-ray powder diffraction analysis (Florence et al., 2003). Subsequent recrystallization produced a single-crystal suitable for X-ray diffraction at 120 K (Fig. 1). Both molecules lie over a two fold rotation axis resulting in the DMA being disordered (see refinement section for details). Each urea molecule interacts with adjacent urea molecules via contact 1 (Fig. 2, entry 1, Table 1), forming a hydrogen bonded ribbon that runs in the direction [-1 0 1]. Molecules of DMA lie on the edge of the ribbons, connected through a second hydrogen bond (contact 2), (entry 2, Table 1).The DMA-bordered ribbons of urea pack side-by-side to form a two-dimensional sheet. S2. Experimental The compound was sourced from Sigma-Aldrich and used as supplied. A single-crystal sample of the 1/1 solvate was recrystallized from a saturated N,N-dimethylacetamide solution by isothermal solvent evaporation at room temperature (298 K). S3. Refinement The DMA moiety was found to be disordered over a 2-fold rotation axis, with atoms C7 and O9 sitting on this axis. The site occupancies of N4 and C8 were consequently fixed to 1/2, whilst that of C6 was fixed to 1.0 as this atom acts as a methyl carbon both attached to N4 and to C8 in the disordered model. All non-h-atoms were modelled with anisotropic displacement parameters. H-atoms attached to N3 were located in a difference Fourier map and their positions were freely refined. H-atoms attached to C6 and C7 were positioned geometrically, taking into account disorder and occupancy of the parents atoms, and their positions were fixed during refinement. U iso (H) were assigned in the range 1.2 1.5 times U eq of the parent atom. Note that both the (1 1 0) and the (-2 0 2) reflections were excluded from the final refinement as they were significant outliers on the F o versus Fc plot. sup-1

Figure 1 The molecular structure of the title compound showing 50% probablility displacement ellipsoids. Hydrogen atoms have been omitted for clarity. A twofold axis runs through C 1, O 2 of urea and O 9, C 7 of DMA, giving rise to the rotational disorder of the DMA molecule. Symmetry codes: (i) -x, y, 1/2 - z. (ii) -x, y, 3/2 - z. Figure 2 Selected molecular packing, viewed down the a axis, of the title compound illustrating the hydrogen bonded network. Urea molecules (green) form an R 22 (8) motif (Etter, 1990) involving contact 1 (entry 1, Table 1) that propagates to form an infinite ribbon. DMA molecules (shown in blues with rotational disorder) are hydrogen bonded via N H O contacts 2 (entry 2, Table 1) at the edges of the ribbon. Hydrogen bonds are shown as dashed lines and hydrogen atoms have been omitted for clarity. Symmetry codes: (a) -x, 1 - y, 1 - z; (b) 1/2 - x, 1/2 - y, 1 - z. sup-2

Diaminomethanal N,N-dimethylacetamide solvate (1:1) Crystal data C 4 H 9 NO CH 4 N 2 O M r = 147.18 Monoclinic, C2/c Hall symbol: -C 2yc a = 7.2770 (3) Å b = 17.5394 (9) Å c = 7.3789 (4) Å β = 119.450 (3) V = 820.11 (7) Å 3 Z = 4 Data collection Bruker Nonius KappaCCD diffractometer Radiation source: Bruker-Nonius FR591 rotating anode Graphite monochromator Detector resolution: 9.091 pixels mm -1 φ & ω scans Absorption correction: multi-scan (SADABS; Bruker, 2007) Refinement Refinement on F 2 Least-squares matrix: full R[F 2 > 2σ(F 2 )] = 0.050 wr(f 2 ) = 0.150 S = 0.89 939 reflections 63 parameters 0 restraints Primary atom site location: structure-invariant direct methods F(000) = 320 D x = 1.192 Mg m 3 Melting point: 406 K Mo Kα radiation, λ = 0.71073 Å Cell parameters from 2218 reflections θ = 3 27 µ = 0.09 mm 1 T = 120 K Lath, colourless 0.40 0.12 0.04 mm T min = 0.867, T max = 1 5338 measured reflections 941 independent reflections 552 reflections with I > 2.0σ(I) R int = 0.048 θ max = 27.6, θ min = 3.4 h = 9 9 k = 22 22 l = 9 9 Hydrogen site location: geom + difmap H atoms treated by a mixture of independent and constrained refinement Method = Modified Sheldrick w = 1/[σ 2 (F 2 ) + ( 0.07P) 2 ], where P = (max(f o2,0) + 2F c2 )/3 (Δ/σ) max = 0.000129 Δρ max = 0.31 e Å 3 Δρ min = 0.39 e Å 3 Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å 2 ) x y z U iso */U eq Occ. (<1) C1 0.0000 0.30587 (14) 0.2500 0.0293 O2 0.0000 0.23473 (9) 0.2500 0.0380 N3 0.1649 (2) 0.34642 (10) 0.3935 (3) 0.0360 N4 0.0668 (4) 0.37977 (18) 0.7962 (5) 0.0347 0.5000 C6 0.2835 (3) 0.40670 (13) 0.9670 (4) 0.0525 C7 0.0000 0.29897 (16) 0.7500 0.0508 C8 0.0735 (5) 0.4351 (2) 0.6946 (6) 0.0347 0.5000 O9 0.0000 0.50307 (11) 0.7500 0.0628 H31 0.264 (3) 0.3224 (11) 0.499 (4) 0.0365* H32 0.158 (3) 0.3959 (13) 0.393 (3) 0.0360* H71 0.1409 0.2969 0.6380 0.0608* 0.5000 H72 0.0074 0.2760 0.8696 0.0608* 0.5000 H73 0.0908 0.2732 0.7124 0.0608* 0.5000 sup-3

H61 0.2880 0.4608 0.9665 0.0542* 0.5000 H62 0.3056 0.3894 1.0980 0.0542* 0.5000 H63 0.3889 0.3866 0.9409 0.0542* 0.5000 H64 0.2827 0.3526 0.9657 0.0542* 0.5000 H65 0.3108 0.4244 1.0994 0.0542* 0.5000 H66 0.3885 0.4250 0.9377 0.0542* 0.5000 Atomic displacement parameters (Å 2 ) U 11 U 22 U 33 U 12 U 13 U 23 C1 0.0239 (11) 0.0284 (14) 0.0251 (13) 0.0000 0.0038 (10) 0.0000 O2 0.0315 (9) 0.0245 (10) 0.0342 (11) 0.0000 0.0022 (8) 0.0000 N3 0.0289 (8) 0.0261 (9) 0.0325 (10) 0.0009 (6) 0.0006 (7) 0.0011 (7) N4 0.0290 (18) 0.0271 (17) 0.038 (2) 0.0003 (11) 0.0085 (16) 0.0020 (14) C6 0.0327 (10) 0.0554 (14) 0.0474 (14) 0.0003 (9) 0.0026 (10) 0.0046 (11) C7 0.0663 (19) 0.0236 (14) 0.059 (2) 0.0000 0.0286 (17) 0.0000 C8 0.0332 (19) 0.030 (2) 0.031 (2) 0.0004 (14) 0.0084 (16) 0.0008 (16) O9 0.0855 (16) 0.0210 (11) 0.0587 (16) 0.0000 0.0176 (13) 0.0000 Geometric parameters (Å, º) O9 C8 1.288 (4) C6 H63 0.9500 O9 C8 i 1.288 (4) C6 H64 0.9500 O2 C1 1.248 (3) C6 H65 0.9500 N4 C6 1.531 (4) C6 H61 0.9500 N4 C8 1.339 (5) C6 H66 0.9500 N4 C7 1.483 (4) C7 H72 i 0.9500 N3 C1 1.348 (2) C7 H73 i 0.9500 N3 H32 0.87 (2) C7 H71 i 0.9500 N3 H31 0.87 (2) C7 H71 0.9500 C6 C8 i 1.488 (5) C7 H72 0.9500 C6 H62 0.9500 C7 H73 0.9500 C6 N4 C7 124.9 (2) C8 i C6 H61 72.00 C6 N4 C8 115.5 (3) H62 C6 H63 110.00 C7 N4 C8 119.4 (3) H62 C6 H64 72.00 C1 N3 H32 119.8 (14) C8 i C6 H66 109.00 H31 N3 H32 120.7 (19) N4 C7 H71 i 75.00 C1 N3 H31 118.4 (14) N4 C7 H72 i 119.00 N4 C8 C6 i 114.0 (3) N4 C7 H73 109.00 O9 C8 N4 114.2 (3) H71 C7 H72 110.00 O9 C8 C6 i 131.8 (3) H71 C7 H73 110.00 N4 C6 H61 109.00 N4 C7 H73 i 126.00 N4 C6 H62 109.00 H71 C7 H71 i 176.00 N4 C6 H63 109.00 H71 C7 H72 i 68.00 N4 C6 H64 72.00 H71 C7 H73 i 68.00 H61 C6 H63 110.00 H72 C7 H73 110.00 H61 C6 H64 178.00 N4 i C7 H72 119.00 sup-4

H61 C6 H65 72.00 H71 i C7 H72 68.00 H61 C6 H66 68.00 N4 i C7 H71 75.00 N4 C6 H65 124.00 N4 i C7 H73 126.00 N4 C6 H66 122.00 H71 i C7 H73 68.00 H61 C6 H62 110.00 N4 i C7 H71 i 109.00 H62 C6 H66 126.00 N4 i C7 H72 i 109.00 C8 i C6 H62 121.00 N4 i C7 H73 i 109.00 H63 C6 H64 68.00 H71 i C7 H72 i 110.00 H63 C6 H65 123.00 H71 i C7 H73 i 110.00 C8 i C6 H63 125.00 N4 C7 H71 109.00 H64 C6 H65 110.00 N4 C7 H72 109.00 H64 C6 H66 110.00 O2 C1 N3 121.84 (12) C8 i C6 H64 109.00 O2 C1 N3 ii 121.84 (12) H65 C6 H66 110.00 N3 C1 N3 ii 116.3 (2) C8 i C6 H65 109.00 Symmetry codes: (i) x, y, z+3/2; (ii) x, y, z+1/2. Hydrogen-bond geometry (Å, º) D H A D H H A D A D H A N3 H31 O2 iii 0.87 (2) 2.06 (2) 2.930 (2) 180 (3) N3 H32 O9 iv 0.87 (2) 2.09 (2) 2.878 (3) 149.7 (19) Symmetry codes: (iii) x+1/2, y+1/2, z+1; (iv) x, y+1, z+1. sup-5