SHEAR-WAVE REFLECTION MOVEOUT FOR AZIMUTHALLY ANISOTROPIC MEDIA

Similar documents
Nonhyperbolic Reflection Moveout for Orthorhombic Media

Reflection moveout and parameter estimation for horizontal transverse isotropy

3-D description of normal moveout in anisotropic inhomogeneous media

Inversion of normal moveout for monoclinic media

AVAZ inversion for fracture orientation and intensity: a physical modeling study

Seismic inversion for the parameters of two orthogonal fracture sets in a VTI background medium

NMO ellipse for a stratified medium with laterally varying velocity

An acoustic wave equation for orthorhombic anisotropy

Moveout approximation for P waves in a homogeneous VTI medium

Traveltime approximations for inhomogeneous transversely isotropic media with a horizontal symmetry axis

3-D moveout inversion in azimuthally anisotropic media with lateral velocity variation: Theory and a case study

AVAZ inversion for fracture orientation and intensity: a physical modeling study

P-wave reflection coefficients for transversely isotropic models with vertical and horizontal axis of symmetry

arxiv: v1 [physics.geo-ph] 31 Dec 2018

Radiation pattern in homogeneous and transversely isotropic attenuating media

Effects of Fracture Parameters in an Anisotropy Model on P-Wave Azimuthal Amplitude Responses

NMO-velocity surfaces and Dix-type formulas in anisotropic heterogeneous media

AVAZ and VVAZ practical analysis to estimate anisotropic properties

A synthetic example of anisotropic P -wave. processing for a model from the Gulf of Mexico

Estimation of fracture parameters from reflection seismic data Part II: Fractured models with orthorhombic symmetry

An Improvement of Velocity Variation with Offset (VVO) Method in Estimating Anisotropic Parameters

Depth-domain velocity analysis in VTI media using surface P-wave data: Is it feasible?

Body-wave radiation patterns and AVO in transversely isotropic media

Phase-shift modelling for HTI media

SENSITIVITY ANALYSIS OF AMPLITUDE VARIATION WITH OFFSET (AVO) IN FRACTURED MEDIA

Seismic Waves in Complex 3 D Structures, 26 (2016), (ISSN , online at

Improvement of stacking image by anisotropic velocity analysis using P-wave seismic data

Stanford Exploration Project, Report 97, July 8, 1998, pages

Acoustic Anisotropy Measurements and Interpretation in Deviated Wells

Analysis of image gathers in factorized VTI media

Fowler DMO and time migration for transversely isotropic media

Chapter 1. Introduction EARTH MODEL BUILDING

Azimuthal AVO and Curvature. Jesse Kolb* David Cho Kris Innanen

6298 Stress induced azimuthally anisotropic reservoir - AVO modeling

Relationships between the velocities and the elastic constants of an anisotropic solid possessing orthorhombic symmetry

Observation of shear-wave splitting from microseismicity induced by hydraulic fracturing: A non-vti story

Exact Seismic Velocities for VTI and HTI Media and Extended Thomsen Formulas for Stronger Anisotropies. Abstract

An efficient wave extrapolation method for tilted orthorhombic media using effective ellipsoidal models

Interval anisotropic parameters estimation in a least squares sense Case histories from West Africa

Václav Bucha. Department of Geophysics Faculty of Mathematics and Physics Charles University in Prague. SW3D meeting June 6-7, 2016 C OM S TR 3 D

liya Tsvankin* and Leon Thomsent

Anisotropic inversion and imaging of PP and PS reflection data in the North Sea

Correspondence between the low- and high-frequency limits for anisotropic parameters in a layered medium

We Challenges in shale-reservoir characterization by means of AVA and AVAZ

Kirchhoff prestack depth migration in simple models with differently rotated elasticity tensor: orthorhombic and triclinic anisotropy

P306 Seismic Velocity Anisotropy in the Illizi Basin of Eastern Algeria

NMO residual reduction on medium anisotropy in field X using Fomel and Stovas method

Acoustic anisotropic wavefields through perturbation theory

Variation of P-wave reflectivity with offset and azimuth in anisotropic media

Mapping the conversion point in vertical transversely isotropic (VTI) media

TTI Anisotropic Depth Migration: Which Tilt Estimate Should We Use?

Body-wave radiation patterns and AVO in transversely isotropic media

P185 TTI Anisotropic Depth Migration - Which Tilt Estimate Should We Use?

CHARACTERIZATION OF SATURATED POROUS ROCKS WITH OBLIQUELY DIPPING FRACTURES. Jiao Xue and Robert H. Tatham

Velocity and VTI anisotropy scanning in multicomponent seismic data

Kirchhoff prestack depth migration in simple models of various anisotropy

A Case Study on Simulation of Seismic Reflections for 4C Ocean Bottom Seismometer Data in Anisotropic Media Using Gas Hydrate Model

Far-field radiation from seismic sources in 2D attenuative anisotropic media

Numerical Modeling for Different Types of Fractures

Case History. Joint inversion of PP and PS reflection data for VTI media: A North Sea case study

Direct nonlinear traveltime inversion in layered VTI media Paul J. Fowler*, Alexander Jackson, Joseph Gaffney, and David Boreham, WesternGeco

Borehole Acoustics and Logging Consortium. Annual Report

Constitutive model and wave equations for linear, viscoelastic, anisotropic media

Downloaded 08/30/13 to Redistribution subject to SEG license or copyright; see Terms of Use at

Exact elastic impedance in orthorhombic media

Migration velocity analysis in factorized VTI media

Developments in seismic anisotropy: Treating realistic. subsurface models in imaging and fracture detection

P235 Modelling Anisotropy for Improved Velocities, Synthetics and Well Ties

3D VTI traveltime tomography for near-surface imaging Lina Zhang*, Jie Zhang, Wei Zhang, University of Science and Technology of China (USTC)

Residual migration in VTI media using anisotropy continuation

The title of my presentation is Constraints on C13 for shales. -2-

Seismic anisotropy in exploration and reservoir characterization: An overview

Kirchhoff prestack depth migration in velocity models with and without rotation of the tensor of elastic moduli: Orthorhombic and triclinic anisotropy

Geophysical Journal International

Some comments on common-asymptotic-conversion-point (CACP) sorting of converted-wave data in isotropic, laterally inhomogeneous media

Estimation of interval anisotropic attenuation from reflection data

PEAT SEISMOLOGY Lecture 9: Anisotropy, attenuation and anelasticity

UNIVERSITY OF CALGARY. A comparison of different methods for estimating Thomsen's anisotropy parameters. Chunyan Xiao A THESIS

Reflection shear-wave data collected near the principal axes of azimuthal anisotropy

Velocity analysis and imaging in transversely isotropic media:

Workflows for Sweet Spots Identification in Shale Plays Using Seismic Inversion and Well Logs

Stacking-velocity tomography in tilted orthorhombic media

A case study of azimuthal AVO analysis with anisotropic spreading correction

Introduction to Seismology Spring 2008

COMPARISON OF OPTICAL AND ELASTIC BREWSTER S ANGLES TO PROVIDE INVUITIVE INSIGHT INTO PROPAGATION OF P- AND S-WAVES. Robert H.

GEOPHYSICAL PROSPECTING: DYNAMIC RESERVOIR CHARACTERIZATION AND TIME-LAPSE MULTICOMPONENT SEISMOLOGY FOR RESERVOIR MONITORING UNESCO EOLSS

EFFECTS OF FRACTURED RESERVOIR ELASTIC PROPERTIES ON AZIMUTHAL AVO. Feng Shen, Xiang Zhu, and M. Nafi Toksoz

Elastic wavefield separation for VTI media

Reflection and Transmission coefficient for VTI media

Seismic characterization of naturally fractured reservoirs using amplitude versus offset and azimuth analysis

Physical modeling and analysis of P-wave attenuation anisotropy in transversely isotropic media

Elastic wave-mode separation for VTI media

Robert W. Vestrum and R. James Brown

Maximize the potential of seismic data in shale exploration and production Examples from the Barnett shale and the Eagle Ford shale

Feasibility of estimation of vertical transverse isotropy from. microseismic data recorded by surface monitoring arrays

The Deconvolution of Multicomponent Trace Vectors

A case study of azimuthal AVO analysis with anisotropic spreading correction

The signature of attenuation and anisotropy on AVO and inversion sensitivities

Salt anisotropy: Ultrasonic lab experiments and traveltime ramifications Jingjing Zong *, Robert Stewart and Nikolay Dyaur University of Houston

Linearized AVO in viscoelastic media Shahpoor Moradi,Kristopher A. Innanen, University of Calgary, Department of Geoscience, Calgary, Canada

Transcription:

SHEAR-WAVE REFLECTION MOVEOUT FOR AZIMUTHALLY ANISOTROPIC MEDIA AbdulFattah AI-Dajani and M. Nafi Toksoz Earth Resources Laboratory Department of Earth, Atmospheric, and Planetary Sciences Massachusetts Institute of Technology Cambridge, MA 02139 ABSTRACT The presence of azimuthal anisotropy causes shear wave propagation to split into fast and slow shear waves. The most common azimuthally anisotropic models used to describe fractured reservoirs are transverse isotropy with a horizontal axis of symmetry (HTI), and orthorhombic. In this paper, we study shear-wave reflection moveout in azimuthally anisotropic media with special attention paid to orthorhombic media with horizontal interfaces. In such cases the shear-wave reflection moveout is azimuthally variant and nonhyperbolic. We analyze the azimuthal dependence of normal moveout (NMO) velocity and we validate the accuracy of the conventional hyperbolic moveout equation. The azimuthal variation of NMO velocity is elliptical for both wave modes. In the presence of anisotropy-induced, nonhyperbolic moveout (NHMO), the hyperbolic moveout equation loses its accuracy with increasing offset (e.g., offset-to-depth ratio> 1). To study the azimuthal behavior of the NHMO for shear-wave reflections, we introduce an analytic representation for the quartic coefficient of the Taylor's series expansion of the two-way traveltime. In an orthorhombic medium the quartic coefficient for shearwave reflections has a relatively simple form, especially in comparison to P-wave. The reflection moveout for each shear-wave mode in a homogeneous orthorhombic medium is purely hyperbolic in the direction normal to the polarization. The nonhyperbolic portion of the moveout, on the other hand, reaches its maximum along the polarization direction, and it reduces rapidly away from the direction of polarization. As a result, the anisotropy-induced, nonhyperbolic reflection moveout is significant in the vicinity of the polarization directions (e.g., ±30 and for large offset-to-depth ratios). The implementation of the NHM0 equation and the utilization of the moveout coefficients allow for not only enhanced seismic imaging but also provide the link between seismic signatures and medium parameters. 9-1

Al-Dajani and Toksoz INTRODUCTION Reflection moveout is sensitive to the presence of azimuthal anisotropy. Transverse isotropy with a horizontal axis ofsymmetry (HTI) is the simplest azimuthally anisotropic model caused by vertical penny-shaped cracks embedded in an isotropic matrix. The orthorhombic model, on the other hand, is a better representative of a wide class of fractured reservoirs (e.g., orthogonal fracture systems in an isotropic matrix and a vertical fracture system in a transverse isotropic matrix such as shale). As a result, we give special attention to orthorhombic media. Both models are characterized by three orthogonal symmetry planes: (Xl, X3), (X2, X3), and (Xl, X2) given in a Cartesian coordinate system. We assume that the symmetry planes coincide with the coordinate system, and the (Xl, X2) plane (i.e., the reflector) is horizontal. Figure 1 shows an example of an orthorhombic model. The orthorhombic symmetry, the focus of this paper, is defined through nine stiffnesses of the fourth-ranked stiffness tensor Cijkl as: Cl1,C22,C33,C44,C55,C66,CI2,CI3, and C23. Here, the stiffnesses Cijkl are normalized by the medium density, p. The presence of azimuthal anisotropy causes shear-wave propagation to split into fast and slow shear waves. Assuming a medium with a horizontal interface, the interest of Our study, the particles displacements for the splitted shear waves are perpendicular to the propagation direction and are polarized parallel to the vertical symmetry planes. It is obvious that seismic surveys with a multicomponent source and receiver generate two perpendicularly polarized shear waves. In our notation, the two shear waves are called 81 and 82, where in a Cartesian coordinate system, 81 is polarized perpendicular to the (X2, X3) plane (i.e., parallel to the Xl axis), and 82 is polarized perpendicular to the (Xl, X3) plane (i.e., parallel to the X2 axis). Some studies on the kinematics of shear wave reflection moveout in azimuthally anisotropic media have been limited to zero-to-short offsets and weak anisotropy approximations (e.g., Sena, 1991; Li and Crampin, 1993). Other studies discuss the amplitude (i.e., energy) differences between the splitted shear waves (e.g., Thomsen, 1988). Key studies related to this paper include those by Thomsen (1986), Tsvankin and Thomsen (1994), Dix (1955), Tsvankin (1997a,b), Grechka and Tsvankin (1998), Al-Dajani and Tsvankin (1998), and Al-Dajani and Toksoz (1999). Reflection moveout for P-wave propagation has been discussed in detail by Al-Dajani and Toksoz (1999). In this study, we focus our attention on shear-wave reflection moveout in azimuthally anisotropic media with orthorhombic symmetry and horizontal interfaces. Our goal is to develop analytical insights into the azimuthal behavior of shearwave reflection moveout in common midpoint (CMP) gathers. We evaluate the NMO velocity equation of Grechka and Tsvankin (1998) for shear-wave propagation. As we should expect, the conventional hyperbolic normal moveout (NMO) equation parameterized by the stacking (NMO) velocity loses accuracy with increasing spreadlength due to the anisotropy-induced, nonhyperbolic moveout. As a result, we study the longspread nonhyperbolic reflection moveout (NHMO) for shear-wave propagation in azimuthally 9-2

Shear-Wave Reflection Moveout for Anisotropic Media anisotropic media. We introduce the exact representation for the quartic coefficient for shear-wave propagation and analyze the azimuthal behavior of the nonhyperbolic reflection moevout. Our study is valid for arbitrary strength of anisotropy. Ray-traced synthetic data are used to support this work. ANALYTIC APPROXIMATIONS OF REFLECTION MOVEOUT Figure 2 shows an example of an exact "ray-traced" reflection moveout for (a) an 51 wave and (b) an 52-wave propagation in an orthorhombic medium with a horizontal reflector at a depth of 1 km. The reflections are generated using a 3-D ray tracing code which is developed for 3-D laterally inhomogeneous anisotropic media (Gajewski and Psencik, 1987). The curves correspond to CMP azimuths 0, 30, 45, 60, and 90 (see Figure 3 for geometry and model parameters). The traveltime curves are displayed as a function of offset-to-reflector-depth (X/D) ratio. It is obvious that the reflection moveout for both shear waves is azimuthally variant. The Normal Moveout (NMO) "Hyperbolic" Equation Reflection moveout in common-midpoint (CMP) gathers is conventionally approximated by the hyperbolic equation: 2 2 A 2 t = to + 2X, (1) where t is the reflection traveltime at source-receiver offset x, to is the two-way zerooffset traveltime, and the quadratic moveout coefficient A 2 = 1/V;mo. Vnmo is the normal-moveout (NMO) velocity defined in the zero-spread limit. The Normal Moveout (NMO) Velocity To obtain the moveout coefficients for any (arbitrary) model, we express the two-way traveltime of any pure (non-converted) reflected mode as a double Taylor's series expansion in the vicinity of the zero-offset point. Keeping only the quartic and lower-order terms of the two-way traveltime squared, we obtain the quadratic (A 2 ) and quartic (A4) coefficients for pure mode reflection in a homogeneous arbitrary anisotropic layer. The exact derivation is discussed in detail by Al-Dajani and Toksiiz (1999). The quadratic moveout coefficient A 2 (or the NMO velocity) in a single arbitrary anisotropic layer was introduced by Grechka and Tsvankin (1998) for pure mode propagation and arbitrary strength of anisotropy as an ellipse. After recasting, it is given as: where the superscripts (1) and (2) indicate directions along the vertical planes (X2, X3) and (Xl, X3), respectively. a is the azimuth of the CMP line from one of the vertical 9-3 (2)

Al-Dajani and Toksoz planes (i.e., the (Xl, xa) plane). Ax) is a cross-term which absorbs the mutual influence of all principal planes. For any horizontal, azimuthally anisotropic medium with a horizontal symmetry plane (e.g., HTI, orthorhombic, and monoclinic), Ax) = 0 and equation (2) reduces to, after recasting V2 ( ) = v 2 V 2 orno,1 nmo,2 nrno Q' v2 2 V2. 2 1 nrno, 1 COS Q:' + orno, 2 Sin a where the semi-axes of the NMO ellipse: Vnmo,l and I'nmo,2 are the NMO velocities along the two vertical symmetry planes, (X2,Xa) and (Xl,Xa), respectively. a is the azimuth of the emp gather relative to one of the symmetry planes (e.g., the positive xl-axis of the (Xl, xa) plane). Here, we assume that the coordinate system coincides with the principal planes. The NMO velocity for shear-wave propagation in an HTI medium is given in Tsvankin (1997a). Following the suggestion of Grechka and Tsvankin (1998) for P-wave propagation, the components of the NMO velocity for shear-wave propagation in an orthorhombic medium are obtained. They are given as: (3) ( For 51-wave propagation: V;mo 1 = c66, v 2 _ (cl3 2 + 2cl3c55 + c55 2 + ch(-c33 + c55)) nmo,2 - (-c33 + c55). In Tsvankin's (1997b) notation: 2mo,1 = Vo, (2,./1) +1), while V;mo,2 = Vo, (20-(2) + 1). ( For 52-wave propagation: v 2 _ (c23 2 + 2c23c44 + c44 2 + c22(-c33 + c44)) nmo,l - (-c33 + c44) ( V;mo,2 = c66. Similarly, in Tsvankin's (1997b) notation: V;mo,l = VOl (20-(1) +1), while V;mo,2 = V S 2 01 (2,.(2) + 1). Note that Vso, is equivalent to Tsvankin's (1997b) Vso, while o-(i) = (e(i) _o(i))vflo/v S 2 0., where i = 1,2. Vpo, e(i), o(i),,.(i) are Tsvankin's (1997b) parameters for orthorhombic' media, defined analogously to Thomsen's parameters for VTI. V SO, and Vso, are two vertical velocities for shear-wave propagation. It is clear that VOl (2,.(2) + 1) = Vo, (2,.(1) + 9-4

Shear-Wave Reflection Moveout for Anisotropic Media 1). Note that the shear-wave splitting parameter,,(5) "" (VOl - V02)/{2Vi02) h(l) -,(2))/{1 + 2,(2)) (Tsvankin, 1997b). Figure 4 shows a schematic diagram for the azimuthal variation of the quadratic coefficient A 2 and its inverse (the square of the NMO velocity). Note that Figures 4a,b correspond to the case of an arbitrary medium, while Figures 4c,d correspond to an azimuthally anisotropic medium with horizontal reflector and symmetry planes (e.g., HTI and orthorhombic). As seen in Figures 4b,d, the azimuthal variation of the NM0 velocity in azimuthally anisotropic media is elliptical. Next, let us verify the accuracy of the analytical representation of the NMO velocity (equation (3)) for 81- and 82-wave types for an orthorhombic medium. We also evaluate the hyperbolic moveout equation (I). The moveout velocity on finite spreads can be obtained by least-squares fitting of a hyperbolic moveout equation to the calculated traveltimes, i.e., (4) where Xj is the offset of the j-th trace, tj is the corresponding two-way reflection traveltime, to is the two-way vertical traveltime, and N is the number of traces. As seen in Figure 5, the moveout velocity obtained from the exact traveltimes using equation (4) in general coincides with the analytic NMO value (compare Figure 5 with Figure 6). Surprisingly, this is true even at large offset-to-depth (X/D) ratios and for most azimuth ranges. It is obvious that the conventional NMO equation (I), which is parameterized by the azimuthally-dependent NMO velocity (equations (2) and (3)), accurately represents the reflection moveout for shear-wave propagation {especially for conventional spreadlengths (X/D :$ 1)). Interestingly, the anisotropy-induced deviations of the moveout curve from a hyperbola, a phenomenon which is well-known for P wave propagation in azimuthally anisotropic media (Al-Dajani and Tsvankin, 1998; Al Dajani and Toksiiz, 1999), is rather different in the case of shear-wave propagation in orthorhombic media. To understand this difference we need to look at the nonhyperbolic portion of the reflection moveout for shear-wave propagation. The Nonhyperbolic Moveout (NHMO) Equation The reflection moveout for pure shear wave propagation in azimuthally anisotropic media is nonhyperbolic (except for the cases where we have elliptical anisotropy and/or fast shear-wave reflection moveout in HTI media). The nonhyperbolic moveout (NHMO) equation originally developed by Tsvankin and Thomsen (1994) for VTI media is used as a basis for our study: (5) 9-5

Al-Dajani and Toksoz where A 4 is the quartic coefficient of the Taylor series expansion for t 2 (x 2 ), and A = A4/(I/Vh2or-l/Vrtmo); Vbor is the horizontal velocity. The denominator of the nonhyperbolic term ensures the convergence of this approximation at infinitely large horizontal offsets. Although equation (5) was originally designed for VTI media, it is generic and can be used in arbitrary anisotropic media if the appropriate coefficients (A 2, A 4, and A) were found, honoring the azimuthal anisotropic dependency. In fact, earlier studies by Al-Dajani and Tsvankin (1998) and Al-Dajani and ToksDz (1999) demonstrate the accuracy of equation (5) for P-wave propagation in azimuthally anisotropic media. Our objective is to study the validity of equation (5) for shear-wave propagation. Figure 7 shows the time residuals (nonhyperbolic portion) of the reflection moveout as a function ofoffset-to-depth ratio (X/D) for an 51-wave and an 52-wave propagation in an orthorhombic layer, given in Figure 3. The time residuals are computed by taking the difference between the exact reflections (Figure 2) and the computed traveltimes using the hyperbolic moveout equation (1) which is parameterized by the analytic NMO velocity equation (3). The anisotropy-induced nonhyperbolic moveout causes deviations in the reflection moevout from a hyperbola (I.e., nonzero time difference). Interestingly, the nonhyperbolic reflection moveout (I.e., time residuals) is maximum along the direction parallel to the polarization and it rapidly decreases away from the polarization direction. Obviously, the reflection moveout for both wave types are purely hyperbolic along the directions that are perpendicular to their polarizations (Figure 7). This observation can be explained by studying the nonhyperbolic moevout coefficient (A 4 ). ( The NHMO Coefficient Application of the nonhyperbolic moveout equation (5) requires knowledge of the quartic moveout coefficient A4. The quartic coefficient A4 for pure mode reflection in a homogeneous arbitrary anisotropic layer is given by AI-Dajani and ToksDZ (1999) as: A 4(a) Al) sin 4 a + A2) cos 4 a + Ax) sin 2 a cos 2 a + AXl) sin a cos 3 a + AX2) sin 3 a cos a, (6) where Al) and A2) are the components of quartic coefficient along the two vertical principal planes (in Cartesian coordinates, (X2,Xa) and (Xj,xa), respectively). Ax), AXl), and AX2) are cross-terms which absorb the mutual influence from all principal planes. The components of the quartic coefficient are presented in terms of the medium parameters, while the azimuthal dependence is governed by trigonometric functions. Again, a is the azimuth of the CMP line from one of the vertical planes (I.e., (Xl, X3) plane). No assumptions have been made about the type of symmetry to which the medium might pertain, nor about the wave type or the strength of anisotropy. The only assumptions made so far are the fact that we have a horizontal symmetry plane in order to have analytic representation, and that the medium symmetry (if any) coincides with our Cartesian coordinate system. In fact, equation (6) represents all sources of 9-6

Shear-Wave Reflection Moveout for Anisotropic Media nonhyperbolic moevouts (e.g., lateral heterogeneity, structure, anisotropy, etc.), and it has important applications in moveout analysis and seismic imaging. Our focus is on the anisotropy-induced nonhyperbolic reflection moveout. Because an anisotropic symmetry plane is transversely isotropic (TI), the moveout coefficients along the vertical symmetry planes are given analogously to the VTI, which is discussed in detail by Tsvankin (1997a,b) and Al-Dajani and Toksoz (1999). The problem, however, is to obtain the components of the moveout coefficients outside the symmetry planes. As we expect, the more complicated the anisotropy model (lower symmetry), the more involved is the quartic coefficient given by equation (6). For example, in the case of VTI symmetry, equation (6) reduces to the known azimuthally independent quartic coefficient A 4 given by Tsvankin and Thomsen (1994). In the case of HTI, on the other hand, with a horizontal symmetry axis in the (Xl, X3) plane, the components Ax), AXI), AX2), and Al) vanish, and equation (6) reduces to the expression of Al-Dajani and Tsvankin (1998): A4 = A2) cos 4 a. For such HTI symmetry and unlike SI-wave (= SV) propagation, the reflection moveout for S2-wave (= SH) propagation is purely hyperbolic (I.e., A 4 = 0). The quartic coefficient for shear-wave propagation in a HTI medium is provided in Al-Dajani and Tsvankin (1998). In the case of a single homogeneous orthorhombic medium, both AXl) vanish, and equation (6) reduces to: and AX2) Equation (7) is valid for models with arbitrary strength of anisotropy and can be used for any pure-mode reflection moveout. Following the derivation of Al-Dajani and Toksoz (1999) for shear-wave propagation, we obtain that For SI-wave propagation, Al) = 0, while A2) = (c55(cl3 + c55)2(-c33 + c55) (cl3 2 + 2cl3c55 + c33c55 + cll(-c33 + c55)))j ((cl3 2 - cllc33 + cllc55 + 2cl3c55 + c55 2 )4t02) 9-7

AI-Dajani and Toksoz AX) = -((c55(c12 2 (c33 - c55)2 + c23 2 c55 2 + 2c23c44c55 2 + c44c55 3-2c23c33c55c66 2c33c44c55c66 + 2c23c55 2 c66 + 3c44c55 2 c66 c55 3 c66 + c33 2 c66 2-2c33c55c66 2 + c55 2 c66 2 + c13 2 (c23 2 + 2c23c44 + c44c55 + c44c66 - c55c66) 2c12(c33 - c55)(c23c55 + c44c55 - c33c66 + c55c66) - 2c13(c12(c23 + c44)(c33 - c55) c23 2 c55-2c23c44c55 -c44c55 2 +c23c33c66 + c33c44c66 -c23c55c66-2c44c55c66 + c55 2 c66)))/((-c44 + c55) (c13 2 + 2c13c55 + c55 2 + cll(-c33 + c55))2c66 2 tq2)). For 52-wave propagation, A2) = 0, while Al) = (c44(c23 + c44) 2 ( -c33 + c44) (c23 2 + 2c23c44 + c33c44 + c22(-c33 + c44)))/ ((c23 2 - c22c33 + c22c44 + 2c23c44 + c44 2 )4tQ2) AX) = -((c44(c12 2 (c33 - c44)2 + c13 2 (c23 + c44)2 + c23 2 c44c55 + 2c23c44 2 c55 + c44 3 c55 c23 2 c44c66-2c23c44 2 c66 - c44 3 c66 + c23 2 c55c66-2c23c33c55c66 + 4c23c44c55c66 2c33c44c55c66 +3c44 2 c55c66 +c33 2 c66 2 2c33c44c66 2 +c44 2 c66 2-2c12(c33 - c44)(c23c55 + c44c55 - c33c66 + c44c66) + 2c13(c23 + c44)(c12(-c33 + c44) + c23c55 + c44c55 - c33c66 + c44c66))) /((c23 2 + 2c23c44 + c44 2 + c22(-c33 + c44))2 (c44 - c55 )c66 2 t0 2 )). Hence, the quartic coefficient for both modes of shear-wave propagation in an orthorhombic medium reduces to a simple form with only two components. Similar to the NMO velocity, we can conveniently represent the quartic coefficient for orthorhombic 9-8

Shear-Wave Reflection Moveout for Anisotropic Media media in terms of Tsvankin's (1997b) notation by applying the following substitutions: c33 = Vo c44 VOl 2 2 c55 = V S0 = V S 02 cll Vfo (2 (2) + 1) c22 = Vfo(2 (1) + 1) c66 V S 2 01 (2-P) + 1) = Vo2(2-P) + 1) cl3 V(dl(2Vf o 6(2) + dl)) - V 2 S02 c23 V(d2(2Vfo6(1) + d2)) - VOl cl2 = V(d3(2Vfo(2 (2) + 1)6(3) + d3)) - VOl (2,(2) + 1), where dl = Vfo - V 2 S02, d2 = Vfo - VOl' and d3 = Vfo(2 (2) +1) - VOl (2,(2) + 1). 6(3) is Tsvankin's (1997b) notation, defined analogously to Thomsen's 6 parameter for VTI. To perform the transformation, however, we need either the two vertical shear velocities and one, or one vertical shear velocity and two,(s). Despite the complexity of the orthorhombic symmetry, it is interesting to note that the reflection moveout for any shear-wave mode is purely hyperbolic in the direction normal to the polarization, and that the nonhyperbolic portion of the moveout reduces rapidly away from the direction of the polarization. In fact, the quartic coefficient in the case of shear-wave propagation is simple compared to the case of P-wave propagation. Figure 8 shows a schematic diagram for the azimuthal variation ofthe quartic coefficient A 4 A sketch of the general representation (equation (6)) is given in Figure 8a. Figures 8b,c,d, on the other hand, show sketches for the azimuthal variation of the quartic coefficient for the three pure wave modes in the case of an orthorhombic medium with a horizontal interface (equation (7)). The shapes given in Figure 8 might vary depending on the relative magnitudes of the components of the quartic coefficient. For example, in some cases oforthorhombic media and according to equations (6) and/or (7), the quartic coefficient for P-wave reflections (Figure 8b) might appear as a flower-like shape (e.g., imagine Figures 8c and 8d combined). Here, we are interested in the quartic coefficient for shear-wave propagation. It is obvious from Figures 8c and 8d that the quartic coefficient, hence the nonhyperbolic reflection moveout, is significant in the vicinity of the polarization directions for 51- and 52-waves (e.g., ±30 and for large ofiset-to-depth ratios). Away from the polarization directions, the quartic coefficient decreases rapidly and vanishes along perpendicular directions relative to the polarizations. This fact can be used, in addition to the ellipticity of the NMO velocity, to detect the orientation of the principal symmetry planes of the medium (hence, the fractures orientation) from shear-wave reflection moveout. As mentioned earlier, the equivalence between orthorhombic and VTI media along the symmetry planes allows the application of VTI expressions along those directions. 9-9

AI-Dajani and Toksoz This fact was useful to Tsvankin (1997b) when he introduced the anisotropic parameters for orthorhombic media, and following the notation of the well-known Thomsen's (1986) coefficients E, (j and 'Y for vertical transverse isotropy. As seen above, the anisotropyinduced nonhyperbolic reflection moveout for shear-wave propagation is significant in the vicinity of the symmetry planes. An earlier work by Tsvankin and Thomsen (1994) on shear-wave reflection moveout for vertical transverse isotropy (VTI) demonstrated that the NHMO equation (5) is accurate for offset-to-depth ratios of 1.7-2. This conclusion remains valid for shear-wave propagation in orthorhombic media. In fact, the 3-D representation of both NMO velocity and the quartic coefficient, in azimuthally anisotropic media, makes the NHMO equation (5) more accurate for longer offset-todepth ratios, especially outside the symmetry planes. In order to implement equation (5), we need to obtain the horizontal velocity Vhor as well. From the VTI equivalence along the horizontal symmetry plane, however, we can represent the phase velocity analytically, and hence obtain the horizontal group velocity which is evaluated at the azimuth of the source-to-receiver (emp) gather. In multilayered anisotropic media, on the other hand, both the quadratic and quartic moveout coefficients are averaged using Dix-type equations and using the interval values which honor the azimuthal dependence of each layer (Al-Dajani and Tsvankin, 1998; Al-Dajani and Toks6z, 1999). CONCLUSIONS The use of multicomponent sources and receivers to acquire seismic data over azimuthally anisotropic media and/or the propagation of shear waves at normal incidence over fractured media cause the presence of two pure modes for shear waves: fast and slow waves. We have presented analytic descriptions for the quadratic (A 2 ) and quartic (A 4 ) coefficients of the Taylor's series expansion of the two-way traveltime for both modes of shear waves in azimuthally anisotropic media, with special attention paid to orthorhombic media with horizontal interfaces. In such media, the 81 and 82 shear waves are polarized parallel to the horizontal principal axes. The conventional NMO equation, which is parameterized by the azimuthally dependent NMO velocity for shear-wave propagation, accurately represents the reflection moveout (especially for conventional spreadlengths (X/D ::::: 1)). The azimuthal variation of the NMO velocity is elliptical for shear-wave propagation. On the other hand, the azimuthally-dependent quartic coefficient for pure shear-wave propagation, in a homogeneous arbitrary anisotropic layer with arbitrary strength of anisotropy, has a relatively simple trigonometric form. For an orthorhombic medium with a horizontal interface, the quartic coefficient for pure 81 and 82-wave reflection moveout has a simple azimuthal representation. The reflection moveout for any shear-wave mode in a homogeneous orthorhombic medium is purely hyperbolic in the direction normal to the polarization, and the nonhyperbolic portion of the moveout reduces rapidly away from the direction of polarization. As a result, the need for NHMO treatment for shear-wave propagation is significant in the vicinity of the polarization directions and for large offsets (e.g., ±30 and for offset-to-depth 9-10

Shear-Wave Reflection Moveout for Anisotropic Media ratio > 1). The NHM0 equation, which is parameterized by the analytic NM0 velocity and quartic coefficient for shear-wave propagation, provides more accurate moveout representation than the hyperbolic equation at large offsets (e.g., offset-to-depth ratios > 1). In multilayered anisotropic media, the moveout coefficients are averaged using Dix-type equations and using the interval values which honor the azimuthal dependence of each layer. The implementation of the NHMO equation and the utilization of the moveout coefficients allow for not only enhanced seismic imaging, but also provide the link between seismic signatures and the medium parameters. ACKNOWLEDGMENTS We thank Prof. John Grotzinger and Dr. Dan Burns from the Massachusetts Institute of Technology for their useful input. Al-Dajani would like to acknowledge the financial support from the Saudi Arabian Oil Company. This work was also supported by the Borehole Acoustics and Logging/Reservoir Delineation Consortia at the Massachusetts Institute of Technology. 9-11

AI-Dajani and Toksoz REFERENCES AI-Dajani, A., and Toksoz, M.N., 1999, Nonhyperbolic reflection moveout for azimuthally anisotropic media, MIT Borehole Acoustics Logging/Reservoir Delineation Consortia Annual Report (also in Expanded Abstmcts, 68th Ann. Internat. Mtg., Soc. Expl. Geophys., 1998, pp. 1497-1482). AI-Dajani, A. and Tsvankin, 1., 1998, Nonhyperbolic reflection moveout for horizontal transverse isotropy, Geophysics, 63, 1738-1753. Dix, CR., 1955, Seismic velocities from surface measurements, Geophysics, 20, 68-86. Gajewski, D., and Psencik, 1., 1987, Computation of high-frequency seismic wavefields in 3-D laterally inhomogeneous anisotropic media, Geophys. J. R. astr. Soc., 91, 383-411. Grechka, V., and Tsvankin, 1., 1998, 3-D description of normal moveout in anisotropic inhomogeneous media, Geophysics, 63, 1079-1092. Li, X.-Y., and Crampin, S., 1993, Approximations to shear-wave velocity. and moveout equations in anisotropic media, Geophys. Prosp., 41, 833-858. Sena, A.G., 1991, Seismic traveltime equations for azimuthally anisotropic and isotropic media: Estimation of internal elastic properties, Geophysics, 56, 2090-2101. Thomsen, L., 1986, Weak elastic anisotropy, Geophysics, 51, 1954-1966. Thomsen, L., 1988, Reflection seismology over azimuthally anisotropic media, Geophysics, 53, 304-313. Tsvankin, 1., 1997a, Reflection moveout and parameter estimation for horizontal transverse isotropy, Geophysics, 62, 614-629. Tsvankin, 1., 1997b, Anisotropic parameters and P-wave velocity for orthorhombic media, Geophysics, 62, 1292-1309. Tsvankin, 1., and Thomsen, L., 1994, Nonhyperbolic reflection moveout in anisotropic media, Geophysics, 59, 1290-1304. 9-12

Shear-Wave Reflection Moveout for Anisotropic Media Figure 1: Orthorhombic media (shown above) have three mutually orthogonal planes of mirror symmetry. One of the reasons for orthorhombic anisotropy is a combination of parallel vertical cracks and vertical transverse isotropy (e.g., due to thin horizontal layering) in the background medium. 9-13

Al-Dajani and Toksoz 1.2 1.6 (a) azm"" 0 0 azm = 30 0 2zm = 45 2zm = 60 2zm = 90 0 2.4 2.8 a 0.5 1.0 1.5 X/D 2.0 2.5 1.2 (b) azm = 0 0 azm = 30 0 azm = 45 azm::: 60 0 azm = 90 0 2.4 2.8 a 0.5 1.0 1.5 X/D 2.0 2.5 Figure 2: Exact ray-traced reflection moveout for (a) 51-wave and (b) 52-wave propagation. The curves correspond to emp azimuths 0, 30, 45, 60, and 90. The traveltime curves are displayed as a function of offset-to-reflector-depth (X/D) ratio. The geometry and model parameters are given in Figure 3. 9-14

Shear-Wave Reflection Moveout for Anisotropic Media CMPAzimuth (Survey Lines) VpO = 2 km/s, VsO = 1.0 km/s y(l)= 0.1, y(2) = _ 0.1 (I)= 0.25, (2)= _ 0.05 Offset (km) 8(1)= 0.1, 8(2)= _ 0.15, 8(3)= - 0.05 1.0 _ Figure 3: Orientation of the emp azimuths (survey lines) over a horizontal orthorhombic layer. The model parameters are provided using Tsvankin's notation (see Tsvankin, 1997b; Al-Dajani aud Toksiiz, 1999). 9-15

(c) x 2 A2 Al-Dajani and Toksoz General NMO Velocity Horizontal Symmetry Xl 2 Vnmo (d) x 2 2 o Xl Figure 4: A plan view of the general behavior of the quadratic coefficient (A 2 ) and its inverse (V;mo) for both modes of shear-wave propagation in an arbitrary medium (a and b), and in an orthorhombic medium with a horizontal reflector (c and d). 9-16

Shear-Wave Reflection Moveout for Anisotropic Media IA 0 0 12 >,1.3...,.", "", ",,,,,,.,,, "". 30 0... ""'" "" azm = 0 azm = 30 azm::: 45 azm = 60 azm = 90 ". '" '" 'u o ---------------------------- ------- 03 450 1.2._._._._._._._._._._._._._._._._._._._._._._._._._._._._._._ o:2: 60 0.. Z 1.1 F- 90'_0 _' 1 1---- 9Oo!: 1.6 ] Q.- g 1.4 azm", 0 azm::: 30 azm '" 45 azm", 60 azm = 90...60... 0........ '". 03 45 0 ()....-..._...,.._._._._.-...-...,-,_...,_... :2: Z 1.2 )90 - - - - - - 0 0,... "",... "... """... """.""... ",...,"""""""""""""""""""""" 1.0 L...,;7-----;C';;-""',,---,-'z-"i'7r-----; OA 0.8 1.2 1.6 2.0 2A XID Figure 5: Estimated NMO velocity as a fllllction of spreadlength-to-depth (X/D) ratio for (a) 51-wave (b) 52-wave propagation (equation (4)). The curves correspond to emp azimuths 0, 30, 45, 60, and 90 (see Figures 2 and 3). The anisotropy-induced, nonhyperbolic moveout causes deviation (error) in the NMO velocity estimates. The error is proportional to the nonhyperbolic reflection rnoevout. 9-17

Al-Dajani and Toksoz Moveout Velocity for 51 and 52 1.8,----------,----------,---------, 1.6 E "".i::' 'g 1.4 ill > o :2z 1.2. : S2...,,,...,.: r---:::::-,,...,. Sl' ".,,,., - - 1.0+-------,--------i--------1 o 30 60 90 Azimuth (Degrees) Figure 6: Exact azimuthal variation of NMO velocity for 81- and 82-wave modes, as computed using equation (3). The model parameters and geometry are given in Figure 3. 9-18

Shear-Wave Reflection Moveout for Anisotropic Media -.2 -.1 (a) azm", a" azm = 30" azm = 45" azm = 60" azm = 90".- OJ <l.l 0 8 f-<.1.... :":' ':':.7... -.. -..... -... 0 """ -......... '.2 0 0.5 -.2 (b) -.1 1.0 1.5 X/D 2.0 azm = a" azm = 30" azm = 45" azm '" 60" azm '" 90" 2.5 OJ <l.l 0 8.- f-<.1.2 0 0.5 1.0 1.5 X/D 2.0 2.5 Figure 7: Time residuals (nonhyperbolic portion) of the reflection moveout as a function of offset-to-depth ratio (X/D) for (a) SI-wave and (b) S2-wave propagation. The anisotropy-induced nonhyperbolic moveout causes deviations in the reflection moevout from being hyperbolic (i.e., nonzero time residuals). 9-19

Al-Dajani and Toksoz (a) / K2 /' 4 - /X j "-...II (b) (c) X2 (Sl) A 4 (d) X 2 (S2) I 1\ A 4 I 1/ '\ \, / /X j \ (') L--- X j Figure 8: A plan view of the general behavior of the quartic coefficient A 4 in azimuthally anisotropic media. (a) shows a sketch of in an arbitrary medium, while (b), (c), and (d) show sketches of A 4 for P, 81, and 82, in an orthorhombic medium with a horizontal interface, respectively. 9-20