Solution for Final Review Problems 1

Similar documents
(1) Let f(z) be the principal branch of z 4i. (a) Find f(i). Solution. f(i) = exp(4i Log(i)) = exp(4i(π/2)) = e 2π. (b) Show that

MATH 106 HOMEWORK 4 SOLUTIONS. sin(2z) = 2 sin z cos z. (e zi + e zi ) 2. = 2 (ezi e zi )

Math Spring 2014 Solutions to Assignment # 8 Completion Date: Friday May 30, 2014

Complex Variables...Review Problems (Residue Calculus Comments)...Fall Initial Draft

Exercises for Part 1

Exercises for Part 1

Syllabus: for Complex variables

Math Final Exam.

EE2007 Tutorial 7 Complex Numbers, Complex Functions, Limits and Continuity

MTH 3102 Complex Variables Final Exam May 1, :30pm-5:30pm, Skurla Hall, Room 106

Residues and Contour Integration Problems

Evaluation of integrals

Solutions to practice problems for the final

NPTEL web course on Complex Analysis. A. Swaminathan I.I.T. Roorkee, India. and. V.K. Katiyar I.I.T. Roorkee, India

Math Spring 2014 Solutions to Assignment # 12 Completion Date: Thursday June 12, 2014

2.5 (x + iy)(a + ib) = xa yb + i(xb + ya) = (az by) + i(bx + ay) = (a + ib)(x + iy). The middle = uses commutativity of real numbers.

Solutions for Math 411 Assignment #10 1

Suggested Homework Solutions

CHAPTER 3 ELEMENTARY FUNCTIONS 28. THE EXPONENTIAL FUNCTION. Definition: The exponential function: The exponential function e z by writing

MA 201 Complex Analysis Lecture 6: Elementary functions

Complex Variables. Instructions Solve any eight of the following ten problems. Explain your reasoning in complete sentences to maximize credit.

MA 412 Complex Analysis Final Exam

Qualifying Exam Complex Analysis (Math 530) January 2019

Math 185 Fall 2015, Sample Final Exam Solutions

18.04 Practice problems exam 2, Spring 2018 Solutions

Second Midterm Exam Name: Practice Problems March 10, 2015

Math 417 Midterm Exam Solutions Friday, July 9, 2010

MATH 417 Homework 4 Instructor: D. Cabrera Due July 7. z c = e c log z (1 i) i = e i log(1 i) i log(1 i) = 4 + 2kπ + i ln ) cosz = eiz + e iz

Considering our result for the sum and product of analytic functions, this means that for (a 0, a 1,..., a N ) C N+1, the polynomial.

Complex Analysis Math 185A, Winter 2010 Final: Solutions

13 Maximum Modulus Principle

MTH 3102 Complex Variables Solutions: Practice Exam 2 Mar. 26, 2017

Math 411, Complex Analysis Definitions, Formulas and Theorems Winter y = sinα

3 Elementary Functions

Theorem [Mean Value Theorem for Harmonic Functions] Let u be harmonic on D(z 0, R). Then for any r (0, R), u(z 0 ) = 1 z z 0 r

Complex Series (3A) Young Won Lim 8/17/13

Chapter 30 MSMYP1 Further Complex Variable Theory

Math 120 A Midterm 2 Solutions

Complex Homework Summer 2014

Topic 4 Notes Jeremy Orloff

Synopsis of Complex Analysis. Ryan D. Reece

1 Discussion on multi-valued functions

1 Res z k+1 (z c), 0 =

6. Residue calculus. where C is any simple closed contour around z 0 and inside N ε.

Chapter 6: Residue Theory. Introduction. The Residue Theorem. 6.1 The Residue Theorem. 6.2 Trigonometric Integrals Over (0, 2π) Li, Yongzhao

Part IB. Complex Analysis. Year

Chapter 3 Elementary Functions

1. The COMPLEX PLANE AND ELEMENTARY FUNCTIONS: Complex numbers; stereographic projection; simple and multiple connectivity, elementary functions.

CHAPTER 4. Elementary Functions. Dr. Pulak Sahoo

Complex Variables. Cathal Ormond

1 z n = 1. 9.(Problem) Evaluate each of the following, that is, express each in standard Cartesian form x + iy. (2 i) 3. ( 1 + i. 2 i.

MTH 3102 Complex Variables Final Exam May 1, :30pm-5:30pm, Skurla Hall, Room 106

Exercises involving elementary functions

Section 7.2. The Calculus of Complex Functions

Here are brief notes about topics covered in class on complex numbers, focusing on what is not covered in the textbook.

A REVIEW OF RESIDUES AND INTEGRATION A PROCEDURAL APPROACH

PSI Lectures on Complex Analysis

Lecture 9. = 1+z + 2! + z3. 1 = 0, it follows that the radius of convergence of (1) is.

Exercises involving elementary functions

MATH 452. SAMPLE 3 SOLUTIONS May 3, (10 pts) Let f(x + iy) = u(x, y) + iv(x, y) be an analytic function. Show that u(x, y) is harmonic.

EE2007: Engineering Mathematics II Complex Analysis

n } is convergent, lim n in+1

Mid Term-1 : Solutions to practice problems

MATH 311: COMPLEX ANALYSIS CONTOUR INTEGRALS LECTURE

MA3111S COMPLEX ANALYSIS I

1. DO NOT LIFT THIS COVER PAGE UNTIL INSTRUCTED TO DO SO. Write your student number and name at the top of this page. This test has SIX pages.

Complex Function. Chapter Complex Number. Contents

Lecture 16 and 17 Application to Evaluation of Real Integrals. R a (f)η(γ; a)

TMA4120, Matematikk 4K, Fall Date Section Topic HW Textbook problems Suppl. Answers. Sept 12 Aug 31/

Conformal maps. Lent 2019 COMPLEX METHODS G. Taylor. A star means optional and not necessarily harder.

Math 715 Homework 1 Solutions

EEE 203 COMPLEX CALCULUS JANUARY 02, α 1. a t b

Lecture Notes Complex Analysis. Complex Variables and Applications 7th Edition Brown and Churchhill

MATH FINAL SOLUTION

SOLUTION SET IV FOR FALL z 2 1

NPTEL web course on Complex Analysis. A. Swaminathan I.I.T. Roorkee, India. and. V.K. Katiyar I.I.T. Roorkee, India

MATH243 First Semester 2013/14. Exercises 1

18.04 Practice problems exam 1, Spring 2018 Solutions

= 2πi Res. z=0 z (1 z) z 5. z=0. = 2πi 4 5z

PROBLEM SET 3 FYS3140

Fourth Week: Lectures 10-12

INTEGRATION WORKSHOP 2004 COMPLEX ANALYSIS EXERCISES

Complex Analysis Qualifying Exam Solutions

Complex Variables & Integral Transforms

Solutions to Selected Exercises. Complex Analysis with Applications by N. Asmar and L. Grafakos

The Calculus of Residues

NATIONAL UNIVERSITY OF SINGAPORE Department of Mathematics MA4247 Complex Analysis II Lecture Notes Part II

Types of Real Integrals

Complex Analysis for Applications, Math 132/1, Home Work Solutions-II Masamichi Takesaki

LECTURE-13 : GENERALIZED CAUCHY S THEOREM

u = 0; thus v = 0 (and v = 0). Consequently,

Complex varibles:contour integration examples

i>clicker Questions Phys 101 W2013

MTH3101 Spring 2017 HW Assignment 4: Sec. 26: #6,7; Sec. 33: #5,7; Sec. 38: #8; Sec. 40: #2 The due date for this assignment is 2/23/17.

Introduction to Complex Analysis

Complex Analysis Topic: Singularities

Math Spring 2014 Solutions to Assignment # 6 Completion Date: Friday May 23, 2014

EE2 Mathematics : Complex Variables

Man will occasionally stumble over the truth, but most of the time he will pick himself up and continue on.

Physics 307. Mathematical Physics. Luis Anchordoqui. Wednesday, August 31, 16

Transcription:

Solution for Final Review Problems Final time and location: Dec. Gymnasium, Rows 23, 25 5, 2, Wednesday, 9-2am, Main ) Let fz) be the principal branch of z i. a) Find f + i). b) Show that fz )fz 2 ) λfz z 2 ) for all z, z 2, where λ, e 2π or e 2π. Solution. a) f + i) + i) i expi Log + i)) expiln 2 + πi 4 )) e π/4 cos ln 2 2 ) + i sinln 2 2 )) b) We have Argz ) + Argz 2 ) Argz z 2 ) + 2nπ for some integer n. Since π < Argz ) π, π < Argz 2 ) π and π < Argz z 2 ) π, Therefore, 3π < 2nπ < 3π n Logz ) + Logz 2 ) Logz z 2 ) + 2nπi with n {,, } and fz )fz 2 ) fz z 2 ) 2) Do the following: a) Find sin π 3 + i). expi Log z ) expi Log z 2 ) expi Logz z 2 )) expi Log z + i Log z 2 i Logz z 2 )) exp 2nπ) {e 2π,, e 2π } b) Find the Taylor series of sin z) 2 at z. c) Show that sinz) sinh y ) for all z C, where y Imz). http://www.math.ualberta.ca/ xichen/math3f/fpsol.pdf

2 d) Let C R denote the semicircle { z i R, Imz) }. Show that dz R C R z 2 sin z Solution. a) π ) sin 3 + i 2i eiπ/3+i) e iπ/3+i) ) 2i e e πi/3 ee πi/3 ) e cos π 2i 3 + i sin π 3 ) ecos π 3 i sin π ) 3 ) 3 e + ) + i e ) 4 e 4 e b) We have ) e sin z) 2 iz e iz 2 2i 4 e2iz + e 2iz 2) 2i) n z n 2i) n z n + 4 n! 4 n! 2 2 2i) 2n z 2n 2 2n)! 2 ) n 2 2n z 2n 2n)! ) n 2 2n z 2n ) n+ 2 2n z 2n 2n)! 2n)! n c) By triangle inequality, sin z e iz e 2iz 2i 2 n e iz e iz e ix y e ix+y 2 2 e y e y sinh y sinh y ) d) When z C R, Imz). Therefore, sin z sinh). And since for z C R, z z i) + i z i R z 2 sin z R ) 2 sinh)

3 for z C R. Therefore, dz C R z 2 sin z dz R ) 2 sinh) C R Since πr R R ) 2 sinh) we conclude R C R dz z 2 sin z πr R ) 2 sinh) 3) For each of the following functions, do the following: find all its singularities in C; write the principal part of the function at each singularity; for each singularity, determine whether it is a pole, a removable singularity, or an essential singularity; compute the residue of the function at each singularity. ) a) fz) z) exp b) fz) z 2 + c) fz) tan z e z d) fz) z 2 z ) z 2 Solution. a) fz) has a singularity at. At z, ) z) exp z)e /z2 z) z 2 n!)z 2n z + So the principal part is n n!)z 2n n!)z 2n n n!)z 2n n n!)z 2n n!)z 2n n n!)z 2n Consequently, fz) has an essential singularity at and Res z fz)!

4 b) fz) has two singularities at ±i. We write z 2 + z i)z + i) i 2 z + i ) z i At i, the principal part of fz) is it has a pole of order and i 2 z i Res zi fz) i 2 At i, the principal part of fz) is it has a pole of order and i 2 z + i Res z i fz) i 2 c) fz) has singularities at {cos z } {z kπ + π/2 : k Z}. At z kπ + π/2, we let w z kπ π/2. Then tanz) tan w + kπ + π ) cotw) 2 cos w ) sin w ) n w 2n ) ) n w 2n+ 2n)! 2n + )! ) ) n w 2n ) ) n w 2n w 2n)! 2n + )! ) ) w2 w 2! + w4 4!... w2 3! + w4 5!... w + a n w n z kπ π/2 + a n z kπ π/2) n So the principal part of fz) at kπ + π/2 is z kπ π/2

5 fz) has a pole of order at kπ + π/2 and e z z 2 z ) z 2 Res fz) zkπ+π/2 d) fz) has two singularities at and. At z, ) z n ) z n n! z 2 + z! +... ) + z +...) z + 2z) + a 2 n z n z 2 2 z + a n z n So the principal part of fz) at is z 2 2 z it has a pole order 2 at and Res fz) 2 z At z, we let w z and then e z z 2 z ) e w+ + w) 2 w e w ew + w) 2 ) e ) w n ) ) n n + )w n w n! e + w ) w! +... 2w +...) e w + a n w n e z + a n z ) n So the principal part of fz) at is e z it has a pole of order and then Res fz) e z 4) Let fz) be an entire function. If fz) z 2 for all z, then fz) az 2 for some constant a C satisfying a.

6 Proof. Since fz) is entire, fz) for all z. By Cauchy Integral Formula, f n) ) 2πi f n) ) z n n! z R fz)n! z dz n+ for all n and R >. Since fz) z 2, fz)n! z n+ n! n! z n z R R n for z R. Therefore, ) ) fz)n! 2πi z dz n! n+ 2πR) n! 2π R n R. n 2 And since R n!/r n 2 for n > 2, fz)n! dz R 2πi zn+ z R and hence f n) ) for all n > 2. And since R n!/r n 2 for all n < 2, fz)n! dz R 2πi z R zn+ and hence f n) ) for all n < 2. In conclusion, fz) f ) z 2 az 2 2 for some constants a. Finally, by az 2 z 2, we obtain that a. 5) Let z 3 fz) z 2 3z + 2 Find the Laurent series of fz) in each of the following domains: a) < z < 2; b) 2 < z < ; c) < z <.

7 Solution. We write fz) as a sum of partial fractions: fz) z + 3 + 8 z 2 z Then a) For < z < 2, fz) z + 3 + 8 z 2 z 4 z + 3 z/2) ) z /z) z + 3 4 2 n z n z z n z + 3 z 2 2 n z n 2 2 n z n n2 z n n z n b) For 2 < z <, fz) z + 3 + 8 z 2 z z + 3 + 8 ) ) z 2/z) z /z) z + 3 + 8z 2 n z n z z n z + 3 + z + 3 + z + 3 + 2 n+3 z n 2 n+3 )z n 2 n+2 )z n n z n

8 c) For < z <, fz) z + 3 + 8 z 2 z 8 z + 3 + z ) z z + 3 8 z ) n z 4 7z ) 8 n2 z ) n z 6) Compute the integrals: π a) 2 cos θ) dθ 2 cos2x) b) + x + x dx 2 Solution. a) We parameterize the circle z with z e iθ for π θ π. Then π 2 cos θ) dθ π 2 2 2 2 2 π π π π π π π π 2i 2i 2 cos θ) 2 dθ 2 e iθ + e iθ )/2) 2 dθ 4 e iθ e iθ ) 2 dθ e 2iθ 4e iθ e 2iθ ) 2 dθ π C e iθ 4e iθ e 2iθ ) 2 deiθ ) z 4z z 2 ) 2 dz

9 C and z z dz 2πi Res 4z z 2 ) 2 z2 3 4z z 2 ) 2 z 2πi Res z2 3 z 2 3)) 2 z 2 + 3)) 2 ) z 2πi z 2 + 3)) 2 z2 3 3π 9 i Therefore, π 2 cos θ) dθ 2 3π 2 9 b) Obviously, cos2x) dx Re + x + x2 Re R ) + z + z dz 2 R R + z + z 2 dz We integrate along the closed contour going from R to R and then the semicircle C R { z R, Imz) } counterclockwise. Then R R + z + z dz + e CR 2iz 2 + z + z dz 2 2πi Res z + 3i)/2 + z + z 2 2πi z 3i)/2 2π 3 e 3 cos i sin ) z + 3i)/2 by Cauchy Integral Theorem. For z on C R, e 2y, z 2 + z + z 2 z R 2 R and hence + z + z 2 R 2 R. )

Therefore, And since + z + z dz 2 CR we conclude that Thus, and R R R R R πr R 2 R. πr R 2 R, CR dz. + z + z2 2π dz e 3 cos i sin ) + z + z2 3 cos2x) 2π dx e 3 cos. + x + x2 3 7) Compute the following contour integrals. You may apply Cauchy integral theorem and its corollaries wherever possible. a) zdz, b) c) d) L where L is the polygonal path ABC with A, B + i and C i. L z 2 dz where L is the curve in part a). C dz sin 2 z where C is the circle z oriented counter-clockwise. C z 29 z 2 + z + dz where C is the circle z 2 oriented counter-clockwise.

L Solution. a) zdz zdz + AB + BC zdz + i)td + i)t) + i) t) + i) + t i)d t) + i) + t i)) i)tdt 2i 2t)i)dt t 2 2i t + i4 ) 2t)2 2i b) Since z 2 is entire, z 2 has a complex anti-derivative z 3 /3 in C and z 2 dz z3 i 3 2 3 2 3 i L c) /sin z) 2 has singularities at kπ for k Z. Hence z dz sin z) 2 2πi 3 Res zkπ k 3 At z kπ, we let w z kπ and then sin z) 2 sinw + kπ)) 2 sin w) 2 ) 2 ) n w 2n+ 2n + )! sin z) 2 ) 2 ) n+ w 2n w 2 2n + )! n ) n+ w 2n m + ) w 2 2n + )! m n ) m So the Laurent series of /sin w) 2 at w only has terms w n with n even. Therefore, Res zkπ sin z) Res 2 w sin w) 2

2 Consequently, z dz sin z) 2 d) We first show that all zeroes of z 2 + z + lie in z < 2. Otherwise, suppose that z 2 + z + for some z 2. Then + z 29 + z 2. But + z 29 + z 2 z 29 z 2 2 29 2 > 2 for z 2. Contradiction. So all zeroes of z 2 + z + lie in z < 2. Therefore, z/z 2 + z + ) is analytic in z > 2. It follows that z 29 z 29 dz 2πi Res C z 2 + z + z z 2 + z + ) z 29 2πi Res z z 2 z 2 + z + 2πi Res z z + z 29 + z 2 ) 2πi