Microwave dielectric relaxation study of poly (methyl methacrylate) and polysulphone in dilute solutions

Similar documents
Dielectric relaxation studies of polyvinylpyrrolidone (PVP) and polyvinylbutyral (PVB) in benzene solutions at microwave frequency

journal of August 2006 physics pp

Dielectric Relaxation Studies of Binary Mixtures of Ethanol and Chlorobenzene in Benzene Solution from Microwave Absorption Data

IJST. Dielectric Relaxation Studies of 2-Alkoxyethanol with o-anisidine in benzene using frequency domain (X band) technique

Dielectric Relaxation Studies of Binary Mixtures of N-Methylformamide and Tetramethylurea in Benzene Using Microwave Absorption Data

DIELECTRIC RELAXATION STUDIES OF 1:1 COMPLEXES COMPLEXES OF ALKYL METHACRYLATE WITH PHENOLS DERIVATIVES

Microwave Dielectric Study of Tetramethylurea and N, N-Dimethylacetamide Binary Mixture in Benzene

Microwave Dielectric Relaxation of Alcohols in non polar solutions

Dielectric Relaxation Studies of Ternary Liquid Mixtures of Dimethyl Phthalate with Triethylamine in the Microwave Region

S Sahoo a * & S K Sit b. Received 13 February 2016; revised 9 September 2016; accepted 29 December 2016

Microwave Dielectric behaviour of ketones in solution state at a constant temperature

An investigation on molecular dynamics of binary mixtures of N- methylformamide and Ethanol in microwave region

Dielectric relaxation phenomena of some aprotic polar liquids under giga hertz electric field

DIELECTRIC STUDIES OF BINARY MIXTURES OF ALKOXY ETHANOLS AND ANILINE AT 9.85 GHz MICROWAVE FREQUENCY

Dielectric relaxation in ternary mixtures of benzotrifluorides

Research Article. Dielectric and refractive index studies of phenols in carbon tetrachloride, benzene and acetone through excess parameter

Dielectric absorption in dilute solutions of dibenzo-18-crown-6 in 1,4-dioxane

Effect of temperature on dielectric properties of polyvinylpyrrolidone/ polyacrylamide blend films at microwave frequency

Chapter 2. Dielectric Theories

ULTRASONIC INVESTIGATIONS IN A LIQUID MIXTURE OF ETHYLENEGLYCOL WITH n-butanol

Determination of stability constants of charge transfer complexes of iodine monochloride and certain ethers in solution at 303 K by ultrasonic method

D ielectric relaxation of some polar molecules and their binary m ixtures in non polar solvents


Viscosities of oxalic acid and its salts in water and binary aqueous mixtures of tetrahydrofuran at different temperatures

International Journal of Pharma and Bio Sciences

International Journal of Pharma and Bio Sciences V1(2)2010

International Journal of Science and Research (IJSR) ISSN (Online): Index Copernicus Value (2013): 6.14 Impact Factor (2014): 5.

Journal of Chemical and Pharmaceutical Research

VOL. 11, NO. 3, FEBRUARY 2016 ISSN

Dielectric Relaxation and Thermodynamic Study of Erythritol in DMSO Using TDR Technique

Ultrasonic studies of N, N-Dimethylacetamide and N-Methylacetamide with Alkoxyethanols in Carbon tetrachloride at different temperatures

Molecular interaction studies of acrylic esters with alcohols

Acoustic Studies on Different Binary Liquid Mixtures of LIX Reagents with Different Diluents

STUDY OF THERMOACOUSTICAL PARAMETERS OF BINARY LIQUID MIXTURES OF METHYL BENZOATE WITH 1-NONANOL AT DIFFERENT TEMPERATURES

Announcements Please contribute 1-item to the Tondo Children Project

ULTRASONIC STUDY OF INTERMOLECULAR ASSOCIATION THROUGH HYDROGEN BONDING IN TERNARY LIQUID MIXTURES

Studies on Acoustic Parameters of Ternary Mixture of Dimethyl Acetamide in Acetone and Isobutyl Methyl Ketone using Ultrasonic and Viscosity Probes

Evaluation of Thermodynamical Acoustic Parameters of Binary mixture of DBP with Toluene at 308K and at Different Frequencies

Structural Relaxation and Refractive Index of Low-Loss Poly(methyl methacrylate) Glass

Thermodynamic Properties of Water + Ethylene Glycol at , , , and K

Direct acoustic impedance measurements of dimethyl sulphoxide with benzene, carbon tetrachloride and methanol liquid mixtures

VOL. 11, NO. 3, FEBRUARY 2016 ISSN

Comparative Study of Relaxation in Polymer Blends Film

Dielectric behaviour and a.c. conductivity in Cu x Fe 3 x O 4 ferrite

Polymers. Hevea brasiilensis

Dielectric studies of binary mixtures of ethylene glycol mono phenyl ether with 1-butanol at different temperatures

TOPIC 7. Polymeric materials

Problem 1. Birefringence of a uniaxial material

Organic Catalysis in Oxidation of Isopropyl Alcohol by Pyridinium Flourochromate - A Kinetic and Mechanistic Study

2.1 Traditional and modern applications of polymers. Soft and light materials good heat and electrical insulators

R J Sengwa*, Vinita Khatri & Sonu Sankhla

Theoretical evaluation of various thermodynamic properties of acrylates with a higher straight chain alknanol at K

Structural study of aqueous solutions of tetrahydrofuran and acetone mixtures using dielectric relaxation technique

Ultrasonic velocity and viscosity studies of tramacip and parvodex in binary mixtures of alcohol + water

SITARAM K. CHAVAN * and MADHURI N. HEMADE ABSTRACT INTRODUCTION

Scholars Research Library

ULTRASONIC AND MOLECULAR INTERACTION STUDIES OF CINNAMALDEHYDE WITH ACETONE IN n-hexane

Dipole Moment Studies of H-Bonded Complexes of Anilines with Alcohol

Ultrasonic Study of Binary Mixture of Acetone with Bromobenzene and Chlorobenzene at Different Frequencies

Electrochemical studies on Dowex-50 membrane using sodium chloride and urea solutions having variable composition

INTERNATIONAL JOURNAL OF PHARMACEUTICAL RESEARCH AND BIO-SCIENCE

Macromolecules 1990,23, Conformational Characteristics of Poly(ethy1 methacrylate). Dipole Moment Measurements and Calculations

Effect of crystallinity on properties. Melting temperature. Melting temperature. Melting temperature. Why?

HEATING MECHANISM OF MICROWAVE

EXAM I COURSE TFY4310 MOLECULAR BIOPHYSICS December Suggested resolution

Part 8. Special Topic: Light Scattering

THE STUDY OF MOLECULAR INTERACTIONS IN STABILIZERS AND PLASTICIZER THROUGH ULTRASONIC MEASUREMENTS

Comparative Study of Molecular Interaction in Ternary Liquid Mixtures of Polar and Non-Polar Solvents by Ultrasonic Velocity Measurements

Study of fluid structure of polyamide-6 with polar/apolar solvents using dielectric parameters

Journal of Chemical and Pharmaceutical Research, 2012, 4(1): Research Article

Molecular Interaction Studies with Zinc Stearate, Calcium Stearate and Ethylene Glycol

Dielectric polarization of 2-pyrrolidinone molecules in benzene solution - a quantum-chemical study

Theoretical evaluation of internal pressure in ternary and sub-binary liquid mixtures at various temperatures

Dielectric Relaxation in Cd x InSe 9-x Chalcogenide Thin Films

Ultrasonic Velocities of Acrylates with 2-Hexanol

Chap. 2. Polymers Introduction. - Polymers: synthetic materials <--> natural materials

Studies on dielectric properties of a conducting polymer nanocomposite system

This lecture: Crystallization and Melting. Next Lecture: The Glass Transition Temperature

Apparent molar volume of sodium chloride in mixed solvent at different temperatures

Static permittivity, refractive index, density and related properties of binary mixtures of pyridine and 1-propanol at different temperatures

Ultrasonic studies of aqueous solutions of poly diallyl dimethyl ammonium chloride

IJBPAS, September, 2012, 1(8): MOLECULAR INTERACTION STUDIES ON SOME BINARY ORGANIC LIQUID MIXTURES AT 303K SUMATHI T* AND GOVINDARAJAN S

Research Article. Ultrasonic investigation of molecular interaction in aqueous glycerol and aqueous ethylene glycol solution

S. K. RAY, G. S. ROY, and S. TRIPATHY. Received 18 August 1994 Accepted for publication 19 January 1996

Dielectric relaxation studies of acetonitrile/propylene glycol and their binary mixtures

Polymers Dynamics by Dielectric Spectroscopy

Ultrasonic study of n-alkanols in toluene with nitrobenzene

Atomic and molecular interaction forces in biology

Thermo-acoustical molecular interaction studies in ternary liquid mixtures using ultrasonic technique at 303K

Isentropic Compressibility for Binary Mixtures of Propylene Carbonate with Benzene and Substituted Benzene

Thermodynamics of binary liquid mixtures of acrylates with dodecane-1-ol

General Chemistry A

Molecular Association Studies on Polyvinyl Alochol At 303k

PROPERTIES OF POLYMERS

International Letters of Chemistry, Physics and Astronomy Vol

Lab Week 4 Module α 3. Polymer Conformation. Lab. Instructor : Francesco Stellacci

DIELECTRIC PROPERTIES OF CEREALS AT MICROWAVE FREQUENCY AND THEIR BIO CHEMICAL ESTIMATION

MCB100A/Chem130 MidTerm Exam 2 April 4, 2013

Amorphous Polymers: Polymer Conformation Laboratory 1: Module 1

International Journal of Chemical and Physical Sciences, ISSN: IJCPS Vol. 4 Special Issue NCSC Jan

Transcription:

Indian Journal of Pure & Applied Physics Vol. 44, July 006, pp. 548-553 Microwave dielectric relaxation study of poly (methyl methacrylate) and polysulphone in dilute solutions A Tanwar, K K Gupta, P J Singh & Y K Vijay Department of Physics, M S J College, Bharatpur 31 001 Department of Physics, University of Rajasthan, Jaipur 30 004 E-mail: tanwar17msj@yahoo.com Received 3 January 006; revised 3 April 006; accepted 17 April 006 Dielectric relaxation studies of poly (methyl methacrylate) in dilute solutions of benzene and 1,4-dioxane and polysulphone in dilute solutions of 1,4-dioxane have been carried out at 8.9 GHz and temperatures 30, 40, 50, 60ºC, respectively. Average relaxation time τ 0, and relaxation times corresponding to group rotation τ (1), segmental motion τ () and dipole moment μ have been determined. The results have been interpreted by the internal and hindered rotation of ester group and sulphone unit for PMMA and polysulphone, respectively. The study reveals the existence of both, the intramolecular and overall orientations in PMMA and polysulphone. Thermodynamic parameters, viz. free energy, enthalpy and entropy of activation have been calculated using the dielectric data. Thermodynamic parameters indicate existence of cooperative orientation in the molecule resulting from the dipole-dipole interaction. Keywords: Dielectric relaxation, Poly (methyl methacrylate), Polysulphone, Dipole-dipole interaction IPC Code: G01R7/6 1 Introduction The dielectric behaviour and relaxation studies of polymers have been investigated due to its basic and applied aspects like applications of polymers in microelectronics and optical waveguide systems for their isolation, insulation and passivation properties in the past. The dielectric studies of small polar molecules and polymers in pure liquid state and dilute solutions at microwave frequencies provide vital information on the molecular configuration of a system. Polymer solutions show very complex behaviour, as a consequence of the combination of free volume and energetic contributions of the constituent components. Conformational changes originating in macromolecules as a consequence of their interaction with solvent have been the subject of large number of investigations 1,. Micro-Brownian motion of polymer chain is one of the most important subject in polymer physics 3. Microwave dielectric relaxation studies in non-polar solvents 4-9 are very useful in determining the flexibility of chains, mobility of the polymer segment, internal group rotation and steric hindrance to the internal rotation due to hydrogen bonding. Sengwa et al 10. have studied dielectric behaviour of four series of ethylene oxide condensation products in dilute solutions of carbon tetrachloride and inferred that the extensive inter and intra H-bonding exists in the molecules of monoalkyl ethers of ethylene glycol and diethylene glycol in dilute solutions of carbontetrachloride. Murthy et al. 11 have reported the dielectric constant and loss factor of poly (butyl acrylate), poly (butyl methacrylate) and poly (isobutyl methacrylate) in dilute solutions and determined the relaxation times from the Cole-Cole arc plots on three acrylates. Iwasa et al. 1 carried out dielectric measurements on dilute solutions of isotactic and syndiotactic poly (methyl methacrylate) in toluene and dioxane in the frequency range 1-150 MHz over a wide range of temperature. In the present paper, a type C polymer i.e. poly (methyl methacrylate) and a type B polymer i.e. polysulphone have been selected. The dielectric relaxation of polysulphone in dilute solutions at microwave frequencies has not been reported so far. The dilute solutions of PMMA were prepared in benzene and 1,4-dioxane whereas dilute solutions of polysulphone were prepared in 1,4-dioxane and dielectric relaxation studies were done at 8.9 GHz and at temperatures 30, 40, 50 and 60ºC. Experimental Details The polymers polysulphone (PSU), molecular weight 15000, supplied by Gharda Chemicals Ltd.

TANWAR et al.: MICROWAVE DIELECTRIC RELATION STUDY OF POLY(METHYL METHACRYLATE) 549 Bharuch, Gujarat and poly (methyl methacrylate) or PMMA, molecular weight 15000, supplied by HiMedia Laboratories Pvt. Ltd., Mumbai were used for the study. Benzene and 1,4-dioxane, both of AR grade were procured from E Merck Ltd, Bombay. Benzene and 1,4-dioxane were distilled twice before use. The wavelength and voltage standing wave ratio were measured in the dielectric at a fixed frequency of 8.9 GHz, employing a slotted waveguide and a short circuited plunger. The permittivity and dielectric loss at four different concentrations of solute in dilute solutions of benzene and 1,4-dioxane at 8.9 GHz microwave frequency were determined by the method described by Heston et al. 13. The values of and so obtained are accurate within ±1 and ±5%, respectively. The static permittivity ( 0 ) at 100 khz was measured using a dipole meter by directly measuring the capacitance and calibrating it for standard liquids. The accuracy of this measurement is 0.1%. The optical permittivity ( ) was obtained by squaring the refractive indices of the sodium D-lines, measured with the help of an Abbe's refractometer. The accuracy of measurement of refractive indices for sodium light is about 0.03%. All these measurements were made at four temperatures 30, 40, 50 and 60 C using a temperature regulating system and constant temperature water bath. Temperature was controlled electronically within ±0.5 C. 3 Theory It has been observed that the static permittivity 0,, and the high frequency permittivity are linear functions of concentration. The linear slopes a 0, a, a and a corresponding to 0,, and versus weight fraction of solute at different concentrations have been used for the determination of the relaxation times and molecular dipole moments. The average relaxation time τ 0 and distribution parameter, α, were calculated by Higasi's 14 single frequency measurement equations: 1 1 ( α) ( A + B ) 1 τ0 1 A = and 1-α= tan ω C π B (1) where ω is the angular frequency selected for the measurement and A=a"(a 0 a ), B=(a 0 a') (a' a ) a" and C= (a' a ) + a" () The relaxation times corresponding to group rotations τ (1) and segmental reorientation τ () were calculated using the equations of Higasi et al. 15 proposed for dilute solutions () τ 1 = ω a" ( a' ) a a0 a' and τ( ) (3) = (4) ω a" Higasi et al. 15 have proved that: τ() = τ 1 (5) and τ(1) = τ 1 (1 c) + τ c (6) where τ 1 is the molecular relaxation time for overall rotation while τ arises from internal rotation of a polar group in a molecule. This shows that τ() would correspond to the dielectric relaxation time for overall or molecular orientation and τ(1) is the explicit function of τ 1 and c, the weight fraction of intramolecular relaxation mechanism. The molecular dipole moments of these molecules have been calculated using the Koga et al. 16 equation: ( ) ( + ) 7kTM a0 a μ = 4π Nd 1 01 (7) and 01 is the relative permittivity of the solvent, k the Boltzmann constant, T the absolute temperature of the material, N the Avogadro number, M the molecular weight of the solute and d 1 is the density of the solvent. The specific dipole moment μ sp is evaluated by the relation ( ) 1 μ =μ /n, where n is the degree of sp polymerization. The thermodynamic parameter, free energy (ΔF ), enthalpy (ΔH ) and the entropy of activation (ΔS ) were calculated using Eyring's 17 equations. The calculated values of τ 0, τ (1), τ (), α, μ and μ sp in 1,4-dioxane solutions of PMMA and polysulphone are reported in Table 1 and in benzene solutions of PMMA are reported in Table. The calculated values of ΔF, ΔH and ΔS are reported in Table 3. 4 Results and Discussion The values of different relaxation times τ 0, τ (1) and τ (), dipole moment (μ), μ sp and the distribution parameter (α) for PMMA and polysulphone at

550 INDIAN J PURE & APPL PHYS, VOL. 44, JULY 006 Table 1 Microwave dielectric relaxation time (τ), distribution parameter (α) and dipole moment (μ) of PMMA and polysulphone in 1,4-dioxane solution at temperatures 30, 40, 50 and 60ºC, respectively Temp. (T C) τ 0 (p s ) τ (1) (p s ) τ () (p s ) α μ (D) μ sp (D) PΜΜΑ 30 35.1 18.3 38.4 0.1 1.6 1.9 40 31.3 17.4 35.5 0.1 1.6 1.9 50 7. 16.3 3.3 0.1 1.7 1.9 60 3.5 15. 9. 0.0 1.6 1.9 Polysulphone 30 40.3 19.1 4.3 0. 63.3 3.76 40 35.4 17.9 38.8 0. 63. 3.76 50 9.8 16.4 34.9 0. 63. 3.76 60 5.8 15.5 31.6 0. 63. 3.76 Table Microwave dielectric relaxation time, distribution parameter and dipole moment of PMMA in benzene at temperatures 30, 40, 50 and 60ºC, respectively Temp. (T C) τ 0 (p s ) τ (1) (p s ) τ () (p s ) α μ (D) μ sp (D) 30 31.1 18.1 34.8 0.19 1.6 1.8 40 7.1 16.7 31.8 0.19 1.6 1.9 50 3.7 15.9 8.7 0.18 1.7 1.9 60 0.4 14.7 5.7 0.17 1.8 1.30 Table 3 Values of molar free energy of activation (ΔF τ ), molar entropy of activation (ΔS τ ) and molar enthalpy of activation (ΔH ) for dielectric relaxation Temp. ( C) ΔF kcal/mole Solute/Solvent ΔH kcal/mole ΔS cal/mole/deg. PMMA/1,4-dioxane 30 3.5 3.69 40 3.30 4.11.0 50 3.30 4.09 60 3.36 4.05 PSU/1,4-dioxane 30 3.3 3.19 40 3.4 3.5.4 50 3.4 3.0 60 3.4 3.0 PMMA/benzene 30 3. 3. 40 3. 3.4. 50 3.3 3.5 60 3.3 3. different temperatures in dilute solutions of 1,4- dioxane are reported in Table 1 and all these parameters for PMMA at different temperatures in dilute solution in benzene are reported in Table. The various thermodynamical parameters ΔF, ΔH and ΔS for the dielectric relaxation process are reported in Table 3. Non-zero values of α are obtained for dilute solutions of PMMA in benzene and 1,4-dioxane which indicate that besides the overall rotation, there is a large contribution of segment reorientation and group rotation to the relaxation processes. Hence, more than one relaxation processes is present in the molecules. This is further confirmed by the values of different relaxation times. As seen from Table 1, the values of τ (1) and τ () are different which indicate the existence of an intramolecular relaxation process in addition to the overall relaxation process. It has been observed that the average relaxation time τ 0 for PMMA is small in benzene solution compared with τ 0 for PMMA in 1,4-dioxane solutions. Small values of τ 0 suggest that the chain of this macromolecule is flexible. The variation of τ 0 values for the same polymer in benzene and 1,4-dioxane solvents indicates that the solvent environment affects the average relaxation time of this polymer. Higher values of τ 0 in 1,4-dioxane solution of PMMA may be because of large hindrance offered by 1,4-dioxane molecules to reorientation of polymer molecules as compared to the benzene molecules. The relaxation time τ (1), which arises from internal rotation of polar groups in the molecules, is associated with the ester group in PMMA and it is

TANWAR et al.: MICROWAVE DIELECTRIC RELATION STUDY OF POLY(METHYL METHACRYLATE) 551 found to be lower than τ () in both the solvents. τ (1) depends on the energy barriers to rotation at the side group site. It is independent of molecular weight and the value 18 of (glass transition temperature T g ). The higher values of τ (1) in 1,4-dioxane in comparison to values in benzene solutions may be due to larger hindrance to intramolecular rotation offered by 1,4- dioxane. In both solvents, it has been observed that τ () is usually higher than the corresponding average relaxation time τ 0 (Table 1). The higher values of the segmental relaxation time τ () in comparison with the average relaxation time τ 0 suggest that intramolecular H-bonding exist in the folded structure of the chains of these molecules in dilute solutions. The relaxation time τ () is found to be solvent density dependent. The conformational energy of a polymer chain depends, among other factors, i.e. on the presence of side groups, steric interactions between side groups and/or between side groups and the main polymer chain are reflected to some extent in the backbone flexibility. The higher τ () values of PMMA also confirm that the presence of side groups increases hindrance to the segmental reorientation to a greater extent. In dilute solution, the molecule exists in quasiisolated state; because of the coiling of the chain there is much intramolecular H-bonding in dilute solutions in addition to intermolecular H-bonding. The observed values of relaxation times in 1,4-dioxane confirm that the steric hindrance to the reorientation motion of PMMA structure increases due to formation of H-bonds between the ester group of PMMA monomer and 1,4-dioxane molecules (Fig. 1). Moreover, it seems that H-bonding with benzene (Fig. 1) is weak in comparison to H-bonding of PMMA monomers with 1,4-dioxane molecules. Hence, increased hindrance in 1,4-dioxane results in higher values of relaxation times in dioxane solutions. From Table 1, we find finite values of α, for polysulphone in 1,4-dioxane, which suggest the presence of more than one relaxation process in dilute solutions of polysulphone in 1,4-dioxane. The different values of τ (1) and τ () indicate the existence of an intramolecular relaxation process in addition to the over all relaxation process. Large values of τ 0 suggest that the chain of this macromolecule is not highly flexible. In general, the value of τ 0 increases with increase in the size of Fig. 1 Solute-solvent interactions: (a) PMMA in benzene (b) PMMA in 1,4-dioxane molecules of oligomers 19, as it is evident from τ 0 values of polysulphone and PMMA in 1,4-dioxane. The relaxation time τ (1) for polysulphone arises from internal rotation of polar group which is also found to be higher than τ (1) values of PMMA in 1,4- dioxane. It is because the dipole in polysulphone is in the main chain in the sulphone unit (-C 6 H 4 -SO -C 6 H 4 -) and hindered rotation of polar group affects the relaxation time τ (1). The dipole in polysulphone experiences more hindrance to rotation as compared to dipole in PMMA which lies in the side chain and experience less hindrance to rotation. The segmental relaxation time τ () is found to be higher than average relaxation time τ 0. This suggests that intramolecular hydrogen bonding exists in dilute solutions of polysulphone in 1,4-dioxane. Large values of τ () show that higher rigidity in the chains of these molecules offers greater steric hindrance for segmental reorientation which may be attributed to increase in intramolecular hydrogen bonding and the probability of formation of intermolecular hydrogen bonds between adjacent chains. Hydrogen on the isopropylidene unit in polysulphone may interact with oxygen in 1,4- dioxane (Fig. ). This intermolecular hydrogen

55 INDIAN J PURE & APPL PHYS, VOL. 44, JULY 006 molar entropy of activation (ΔS ). The negative values of ΔS show that the activated state is more ordered as compared to the normal state due to better alignment of dipoles in the activated state. Further, it is the indication of existence of cooperative orientation in the molecules resulting from the dipoledipole interaction in the molecules of PMMA and PSU. Fig. Solute (PSU)-solvent (1,4-dioxane) interactions bonding results in hindrance towards segmental reorientation giving rise to higher values of relaxation time τ (). In dilute solutions of polysulphone, oxygen of SO group in sulphone unit may form bond with hydrogen of 1,4-dioxane (Fig. ). Intermolecular H- bonding gives rise to hindered rotation which results in increased values of relaxation times. The distribution parameter α decrease with increasing temperature and the relaxation time also decrease with increasing temperature (Table 1). The decrease in relaxation time with increasing temperature may be explained on the basis of the fact that there is probably greater uniformity in the energy barriers hindering the dipolar or molecular orientations in the solutions 0. The increase in dipole moment (μ sp ) with temperature may be attributed to lengthening of the dipoles with increase in temperature. The ΔF values in dilute solutions of PMMA and PSU increases with increase in temperature (Table 3). This may be attributed to the decreasing viscosity of the medium with rise in temperature. When we compare the molar enthalpy of activation (ΔH ) values for dilute solutions of PMMA and PSU with corresponding free energy (ΔF ) values, they are found to be less. Lesser values of ΔH than the corresponding ΔF values which result in the negative 5 Conclusions It is observed that the intramolecular and overall orientation are present giving rise to different values of τ(1) and τ(). The relaxation times τ 0, τ(1) and τ() are higher for dilute solutions of PSU in 1,4-dioxane than those for dilute solutions of PMMA in 1,4- dioxane at each temperature. It is inferred that the dipole moment of PSU is higher when compared to PMMA at each temperature. In dilute solutions of PSU and PMMA in 1,4-dioxane with dipole moment does not change with temperature but for PMMA in benzene the dipole moment increases with increase in temperature. ΔF and ΔH values for PSU are found to be higher when compared with the corresponding values for PMMA. Intermolecular and intramolecular H-bonding affects the relaxation times for both the polymers. The solute-solvent interactions are present in dilute solutions of PSU and PMMA in 1,4-dioxane and dilute solutions of PMMA in benzene. Acknowledgement One of the authors (AT) would like to thank UGC, Bhopal, for awarding a teacher research fellowship and Dr A Raja, Gardha Chemicals Ltd, Bharuch, Gujarat, for fruitful discussion. The authors are also grateful to the Principal, M S J College, Bharatpur, for providing experimental facilities. References 1 Sengwa R J & Chaudhary R, Polymer International, 50 (001) 433. Fried J R, Polymer Science and Technology (Pentice-Hall, Englewood Cliffs), 1995. 3 Bailey R T, North A M & Pethrick R A, Molecular motion in high polymers (Oxford University Press, Oxford), 1981. 4 Gupta K K, Bansal A K, Singh P J & Sharma K S, Indian J Pure & Appl Phys, 4 (004) 849. 5 Singh P J & Sharma K S, Indian J Pure & Appl Phys, 34 (1996) 1. 6 Gupta K K & Singh P J, Indian J Phys, 77B (003) 673. 7 Sengwa R J, Polymer International, 45 (1998) 43. 8 Sengwa R J, Abhilasha & More N M, Polymer, 44 (003) 577.

TANWAR et al.: MICROWAVE DIELECTRIC RELATION STUDY OF POLY(METHYL METHACRYLATE) 553 9 Block H & North A M, Advan Mol Relaxation Processes, 1 (1970) 309. 10 Sengwa R J & Kaur K, Indian J Pure & Appl Phys, 37 (1999) 899. 11 Murthy V R K, Kadaba P K & Bhagat P K, J Polym Sci: Polym Phys, 117 (1979) 1485. 1 Iwasa Y, Mashimo S & Chiba A, Polymer Journal, 8 (1976) 401. 13 Heston W N, Franklin A D, Hennely E J & Smyth C P, J Am Chem Soc 7 (1950) 3443. 14 Higasi K, Bull Chem Soc Japan, 39 (1966) 157. 15 Higasi K, Koga Y & Nakamura M, Bull Chem Soc Japan, 44 (1971) 988. 16 Koga Y, Takahashi H & Higasi K, Bull Chem Soc Japan, 46 (1973) 3359. 17 Glasstone S, Laidler K J & Erying H The theory of rate processes" (McGraw-Hill Book Co New York, London), 1941. 18 Mikhailov G P, Borisova T I & Dmitrochenko D A, Sov Phys Tech Phys, 1 (1956) 1857. 19 Purohit H D & Sengwa R J, J Mol Liq, 39 (1988) 43. 0 Smyth C P, Dielectric behaviour and structure (McGraw- Hill, New York), 1955.