Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique

Similar documents
Backscattering enhancement of light by nanoparticles positioned in localized optical intensity peaks

Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets

Equiphase-sphere approximation for light scattering by stochastically inhomogeneous microparticles

Morphology-dependent resonance induced by two-photon excitation in a micro-sphere trapped by a femtosecond pulsed laser

Investigation of the noise-like structures of the total scattering cross-section of random media

A Novel Design of Photonic Crystal Lens Based on Negative Refractive Index

Fundamentals of nanoscience

Analysis of second-harmonic generation microscopy under refractive index mismatch

Strong focusing higher-order laser modes: transverse and longitudinal optical fields

Energy transport in metal nanoparticle plasmon waveguides

Nanoscale confinement of photon and electron

Two-photon single-beam particle trapping of active micro-spheres

Routing of Deep-Subwavelength Optical Beams and Images without Reflection and Diffraction Using Infinitely Anisotropic Metamaterials

Inside-out electromagnetic cloaking

Nanojet and Surface Enhanced Raman Spectroscopy (NASERS) for Highly Reproducible and Controllable Single Molecule Detection

Single Emitter Detection with Fluorescence and Extinction Spectroscopy

Light Localization in Left-Handed Media

Optics and Spectroscopy

Citation for published version (APA): Shen, C. (2006). Wave Propagation through Photonic Crystal Slabs: Imaging and Localization. [S.l.]: s.n.

Nanomaterials and their Optical Applications

Optical Trapping Force on a Plasmonic Substrate

Exact radiation trapping force calculation based on vectorial diffraction theory

PROCEEDINGS OF SPIE. FDTD method and models in optical education. Xiaogang Lin, Nan Wan, Lingdong Weng, Hao Zhu, Jihe Du

Far-field radiation pattern in Coherent Anti-stokes Raman Scattering (CARS) Microscopy.

Morphology-Dependent Resonances of an Infinitely Long Circular Cylinder Illuminated by a Diagonally Incident Plane Wave or a Focused Gaussian Beam

Far-field mapping of the longitudinal magnetic and electric optical fields

A MATLAB GUI FOR SIMULATING THE PROPAGATION OF THE ELECTROMAGNETIC FIELD IN A 2-D INFINITE SPACE

Publication II Wiley Periodicals. Reprinted by permission of John Wiley & Sons.

Nanomaterials and their Optical Applications

Design of a Multi-Mode Interference Crossing Structure for Three Periodic Dielectric Waveguides

Scattering cross-section (µm 2 )

Temperature ( o C)

Modeling Focused Beam Propagation in scattering media. Janaka Ranasinghesagara, Ph.D.

Laser Optics-II. ME 677: Laser Material Processing Instructor: Ramesh Singh 1

Administrative details:

A Novel Self-aligned and Maskless Process for Formation of Highly Uniform Arrays of Nanoholes and Nanopillars

Near-field Raman spectroscopy using a sharp metal tip

Tunable plasmon resonance of a touching gold cylinder arrays

SNOM Challenges and Solutions

AP5301/ Name the major parts of an optical microscope and state their functions.

Analysis of Modified Bowtie Nanoantennas in the Excitation and Emission Regimes

Three-dimensional analysis of subwavelength diffractive optical elements with the finite-difference time-domain method

Prediction and Optimization of Surface-Enhanced Raman Scattering Geometries using COMSOL Multiphysics

Negative Refraction and Subwavelength Lensing in a Polaritonic Crystal

Analytical Study of Electromagnetic Wave Diffraction Through a Circular Aperture with Fringes on a Perfect Conducting Screen

Modeling Focused Beam Propagation in a Scattering Medium. Janaka Ranasinghesagara

Excitation Efficiency of a Morphology-Dependent Resonance by a Focused Gaussian Beam

SURFACE PLASMONS AND THEIR APPLICATIONS IN ELECTRO-OPTICAL DEVICES

arxiv: v1 [physics.class-ph] 10 Feb 2009

Resonances and dipole moments in dielectric, magnetic, and magnetodielectric cylinders an overview

Photonic crystal with multiple-hole defect for sensor applications

Publication I Institute of Physics Publishing (IOPP) Reprinted by permission of Institute of Physics Publishing.

Photoresponsive polymers for topographic simulation of the optical near-field of a nanometer sized gold tip in a highly focused laser beam

Surface Plasmon Polaritons on Metallic Surfaces

CHEM6416 Theory of Molecular Spectroscopy 2013Jan Spectroscopy frequency dependence of the interaction of light with matter

Near-field imaging and spectroscopy of electronic states in single-walled carbon nanotubes

Physics Common Assessment Unit 5-8 3rd Nine Weeks

Scanning Probe Microscopy. Amanda MacMillan, Emmy Gebremichael, & John Shamblin Chem 243: Instrumental Analysis Dr. Robert Corn March 10, 2010

Electromagnetic fields and waves

Light Scattering by Marine Particles: Modeling with Non-spherical Shapes

Applications of field-enhanced near-field optical microscopy

HYPER-RAYLEIGH SCATTERING AND SURFACE-ENHANCED RAMAN SCATTERING STUDIES OF PLATINUM NANOPARTICLE SUSPENSIONS

Multiphoton Imaging and Spectroscopy in Cell and Tissue Biophysics. J Moger and C P Winlove

PHYSICS 253 SAMPLE FINAL EXAM. Student Number. The last two pages of the exam have some equations and some physical constants.

A COMPACT POLARIZATION BEAM SPLITTER BASED ON A MULTIMODE PHOTONIC CRYSTAL WAVEGUIDE WITH AN INTERNAL PHOTONIC CRYSTAL SECTION

Plasmonic metamaterial cloaking at optical frequencies

Two-Photon Fabrication of Three-Dimensional Metallic Nanostructures for Plasmonic Metamaterials

Uncertainty Principle Applied to Focused Fields and the Angular Spectrum Representation

Lecture 19 Optical MEMS (1)

Chapter 2 Physical Principle of Optical Tweezers

Electromagnetic cloaking by layered structure of homogeneous isotropic materials

Canalization of Sub-wavelength Images by Electromagnetic Crystals

Enhancing the Rate of Spontaneous Emission in Active Core-Shell Nanowire Resonators

FDTD Simulations of Surface Plasmons Using the Effective Permittivity Applied to the Dispersive Media

Novel Nanoparticles for Ultrasensitive Detection and Spectroscopy

MINIMIZING REFLECTION AND FOCUSSING OF INCIDENT WAVE TO ENHANCE ENERGY DEPOSITION IN PHOTODETECTOR S ACTIVE REGION

THE SCATTERING FROM AN ELLIPTIC CYLINDER IRRADIATED BY AN ELECTROMAGNETIC WAVE WITH ARBITRARY DIRECTION AND POLARIZATION

Shaping the Beam of Light in Nanometer Scales: A Yagi-Uda Nanoantenna in Optical Domain

Modeling of Kerr non-linear photonic components with mode expansion

Tip-enhanced optical spectroscopy

The Zeeman Effect refers to the splitting of spectral

Solution set for EXAM IN TFY4265/FY8906 Biophysical microtechniques

Simulation of Surface Plasmon Resonance on Different Size of a Single Gold Nanoparticle

arxiv: v2 [cond-mat.other] 20 Nov 2008

Vibrational Spectroscopies. C-874 University of Delaware

B.-Y. Lin et al., Opt. Express 17, (2009).

Light transmission through a single cylindrical hole in a metallic film

Single-beam optical fiber trap

Robustness in design and background variations in metamaterial/plasmonic cloaking

Optical imaging of metallic and semiconductor nanostructures at sub wavelength regime

Mat. Res. Soc. Symp. Proc. 406, (1996).

APPLICATION OF THE MAGNETIC FIELD INTEGRAL EQUATION TO DIFFRACTION AND REFLECTION BY A CONDUCTING SHEET

Research on the Wide-angle and Broadband 2D Photonic Crystal Polarization Splitter

FINITE-DIFFERENCE TIME-DOMAIN SIMULATION OF LIGHT SCATTERING FROM SINGLE CELLS

Mie theory for light scattering by a spherical particle in an absorbing medium

Bringing optics into the nanoscale a double-scanner AFM brings advanced optical experiments within reach

MICRODISK lasers supported by a pedestal to form strong

object objective lens eyepiece lens

Transmission of dipole radiation through interfaces and the phenomenon of anti-critical angles

SCATTERING OF ELECTROMAGNETIC WAVES ON METAL NANOPARTICLES. Tomáš Váry, Juraj Chlpík, Peter Markoš

Transcription:

Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique Zhigang Chen and Allen Taflove Department of Electrical and Computer Engineering, Northwestern University, Evanston, Illinois 6008 z-chen@northwestern.edu References Vadim Backman Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 6008 Abstract: We report what we believe to be the first evidence of localized nanoscale photonic jets generated at the shadow-side surfaces of micronscale, circular dielectric cylinders illuminated by a plane wave. These photonic nanojets have waists smaller than the diffraction limit and propagate over several optical wavelengths without significant diffraction. We have found that such nanojets can enhance the backscattering of visible light by nanometer-scale dielectric particles located within the nanojets by several orders of magnitude. Not involving evanescent fields and not requiring mechanical scanning, photonic nanojets may provide a new means to detect and image nanoparticles of size well below the diffraction limit. This could yield a potential novel ultramicroscopy technique using visible light for detecting proteins, viral particles, and even single molecules; and monitoring molecular synthesis and aggregation processes of importance in many areas of biology, chemistry, material sciences, and tissue engineering. 004 Optical Society of America OCIS codes: (70.070) Medical optics and biotechnology; (70.080) Microscopy; (90.090) Scattering; (90.350) Backscattering.. D. W. Pohl, W. Denk, and M. Lanz, Optical stethoscopy: Image recording with resolution λ/0, Appl. Phys. Lett. 44, 65-653 (984).. A. Lewis, M. Isaacson, A. Harootunian, and A. Muray, Development of a 500Å resolution microscope, Ultramicroscopy 3, 7-3 (984). 3. E. Betzig, A. Lewis, A. Harootunian, M. Isaacson, and E. Kratschmer, Near-field scanning optical microscopy (NSOM): Development and biophysical applications, Biophys. J. 49, 69-79 (986). 4. E. Betzig and J. K. Trautman, Near-field optics: Microscopy, spectroscopy, and surface modification beyond the diffraction limit, Science 57, 89-95 (99). 5. B. Dunn, Near-field scanning optical microscopy, Chem. Rev. 99, 89-98 (999). 6. S. M. Mansfield and G. S. Kino, Solid immersion microscope, Appl. Phys. Lett. 57, 65-66 (990). 7. L. Novotny, E. J. Sanchez, and X. S. Xie, Near-field optical imaging using metal tips illuminated by highorder Hermite-Gaussian beams, Ultramicroscopy 7, -9 (998). 8. E. J. Sanchez, L. Novotny, and X. S. Xie, Near-field fluorescence microscopy based on two-photon excitation with metal tips, Phys. Rev. Lett. 8, 404-407 (999). 9. B. B. Goldberg, S. B. Ippolito, L. Novotny, Z. Liu, and M. S. Ünlü, Immersion lens microscopy of photonic nanostructures and quantum dots, IEEE J. Sel. Top. Quant. Elect. 8, 05-059 (00). 0. A. Taflove and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech, Boston, MA, 000).. J. F. Owen, R. K. Chang, and P. W. Barber, Internal electric field distributions of a dielectric cylinder at resonance wavelengths, Opt. Lett. 6, 540-54 (98).. D. S. Benincasa, P. W. Barber, J.-Z. Zhang, W.-F. Hsieh, and R. K. Chang, Spatial distribution of the internal and near-field intensities of large cylindrical and spherical scatters, Appl. Opt. 6, 348-356 (987). 3. C. L. Adler, J. A. Lock, B. R. Stone, and C. J. Garcia, High-order interior caustics produced in scattering of a diagonally incident plane wave by a circular cylinder, J. Opt. Soc. Am. A 4, 305-35 (997). (C) 004 OSA 5 April 004 / Vol., No. 7 / OPTICS EXPRESS 4

4. J. A. Lock, C. L. Adler, and E. A. Hovenac, Exterior caustics produced in scattering of a diagonally incident plane wave by a circular cylinder: semiclassical scattering theory analysis, J. Opt. Soc. Am. A 7, 846-856 (000). 5. Z. Chen, A. Taflove, and V. Backman, Equivalent volume-averaged light scattering behavior of randomly inhomogeneous dielectric spheres in the resonant range, Opt. Lett. 8, 765-767 (003). 6. Z. Chen, A. Taflove, and V. Backman, Concept of the equiphase sphere for light scattering by nonspherical dielectric particles, J. Opt. Soc. Am. A, 88-97 (004). 7. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 983). 8. J.-P. Berenger, A perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys. 4, 85-00 (994).. Introduction Optical microscopy and spectroscopy technologies are well established and are remarkably powerful. Critical to any discussion of them are the fundamental limitations of conventional microscopy. In the case of imaging objects with optical fields propagating in the far-field zone, the fundamental constraint is the diffraction of light which limits conventional optical microscopy to a spatial resolution comparable to one-half wavelength, or about 00 nm for visible light. As problems of interest push further into the nanometric regime, the importance of imaging techniques that allow nanoscale resolution or sensitivity has been steadily increasing. Near-field optical techniques making use of the evanescent field have been developed to overcome the diffraction limit of far-field optics. In particular, a proximal-probe technique called near-field scanning optical microscopy (NSOM) has extended the range of optical measurements beyond the diffraction limit and stimulated interest in many disciplines, especially material and biological sciences [-5]. However, the low light-collection efficiency, relatively slow image-acquisition rate, and incapability to image or sense objects below the surface of NSOM fundamentally limits its utility. An alternative to NSOM, solid immersion lens (SIL) microscopy [6], reduces the wavelength by immersing the object space in a material with a high refractive index. This improves resolution without a large loss of light. More recently, a tip-enhanced near-field optical microscopy technique has been developed [7-9]. This technique combines SIL microscopy with enhanced focusing caused by a strongly peaked electric field adjacent to a sharply pointed metal tip. With this technique, spectroscopic measurements having a spatial resolution of 0 nm have been achieved [8]. In this paper, we report what we believe to be the first evidence of localized photonic nanojets generated at the shadow-side surfaces of micron-scale, circular dielectric cylinders illuminated by a plane wave. Using high-resolution finite-difference time-domain (FDTD) numerical modeling [0], we have found that photonic nanojets have waists smaller than the diffraction limit and propagate over several optical wavelengths without significant diffraction. We have further found that such nanojets can enhance the backscattering of visible light by nanometer-scale dielectric particles located within the nanojets by several orders of magnitude. This may provide a new ultramicroscopy technique for using visible light to detect and image nanoparticles such as proteins, viral particles, and even single molecules; and monitoring molecular synthesis and aggregation processes of importance in many areas of biology, chemistry, material sciences, and tissue engineering.. Photonic nanojets Several calculations have been reported for the spatial distributions of the internal and nearexternal electromagnetic fields of plane-wave-illuminated infinite circular dielectric cylinders [-]. These calculations have shown that high-intensity peaks can exist in both the internal and near-external fields along the incident axis even for nonresonant conditions. The location and the intensity of these near-field peaks depend upon the refractive index contrast between the cylinder and its surrounding medium, as well as the size parameter x = ka = πa λ of the cylinder (where a is the radius and λ is the incident wavelength) (C) 004 OSA 5 April 004 / Vol., No. 7 / OPTICS EXPRESS 5

[]. More recently, interior and exterior caustics produced in the scattering of a diagonally incident plane wave by a circular cylinder have been examined using ray theory [3] and the semiclassical limit of electromagnetic wave scattering theory [4]. Using high-resolution FDTD numerical solutions of Maxwell s equations, we have revisited the phenomenology of the generation of peaks of the internal and near-external fields of a plane-wave-illuminated dielectric cylinder. Previously, the FDTD method has shown promise in calculating scattering by realistic particles because of its ability to model complex surface shapes and internal structures [0, 5, 6]. The two-dimensional (-D) transverse magnetic (TM) case has been considered, i.e., wherein the incident magnetic field vector is perpendicular to the axis of an infinitely long cylinder of fixed cross section. Optical wavelengths of about 500 nm and cylinder diameters of about 5 µm have been investigated. Our FDTD computer code was first verified by calculating the differential scattering cross section of several homogeneous, isotropic, circular dielectric cylinders and comparing these results to the exact solution based on the separation-of-variables method [7]. The perfectly matched layer (PML) absorbing boundary condition [8] was used in our FDTD simulations to efficiently terminate the outer boundary of the computational lattice. With the FDTD space lattice having a uniform square cell size of.5 nm (finer than /00 th dielectric wavelength for all computer runs), the results for the scattering cross section agreed with the exact solution to within ±.5 db over the entire range of scattering angles for all cases studied. Typical computational dynamic ranges for this level of agreement were 60 db. Having validated the FDTD numerical modeling procedure, we proceeded to study in detail the internal and near-external fields of a series of homogeneous, isotropic, circular dielectric cylinders. Figure shows key results that illustrate the evolution of a photonic nanojet as the refractive index of the cylinder is changed relative to that of its surrounding medium. In this case, we consider an infinite dielectric circular cylinder of diameter d = 5 µm and refractive index n embedded within an infinite vacuum medium of refractive index of n =.0. The cylinder is normally illuminated by a rightward-propagating sinusoidal plane wave of wavelength λ = 500 nm in medium. Figures (a), (b), and (c) visualize the FDTD-calculated envelope of the sinusoidal steady-state electric field for n = 3.5,.5, and.7, respectively. With each decrease of n, it is evident that the internal electric-field peak shifts toward the shadow-side surface of the cylinder along the forward direction. Finally, the electric-field peak emerges from the shadow-side surface of the cylinder in Fig. (c) as a strong jet-like distribution. The most striking feature of this photonic jet is that it is neither evanescent nor diffracting. It has a length of about 900 nm (slightly less than λ ) and a full width at half maximum (FWHM) waist of about 50 nm ( 0.5λ ). In terms of intensity (defined as squared electric field) distribution, it has a waist of about 00 nm, smaller than one-half wavelength. The emergence of a photonic jet from the shadow-side surface of this dielectric cylinder for n ~ is primarily consistent with previous work on optical caustics generated by dielectric circular cylinders [3, 4]. For scattering of a normally incident plane wave, the position of the cusp point focal line of the interior cusp caustics generated by dielectric circular cylinders embedded within an infinite vacuum medium is given by [3] p f = a( ) ( p n ) () whereas the cusp point focal line of the exterior caustics consisting of a p = near-zone cylindrical aberration cusp caustic is given by [3, 4] f = an [( n )] () (C) 004 OSA 5 April 004 / Vol., No. 7 / OPTICS EXPRESS 6

where a is the radius of the cylinder, n is the refractive index of the cylinder, and p denotes the number of internal chords of the ray trajectories, i.e., the family of rays that produces either an interior or exterior caustic has undergone p internal reflections before the caustic is formed. Equations () and () may be used to approximately predict the position of the internal electric field peak and analyze the evolution of photonic jets. (b) (a) (c) Fig.. Evolution of a photonic nanojet as the refractive index of a plane-wave-illuminated circular dielectric cylinder decreases. The FDTD-calculated envelope of the sinusoidal steadystate electric field is visualized for a d = 5 µm circular cylinder of uniform refractive index n embedded within an infinite vacuum medium of refractive index n =.0. Light of wavelength λ = 500 nm propagates from left to right in medium. (a) n = 3.5; (b) n =.5; (c) n =.7. #399 - $5.00 US (C) 004 OSA Received 6 February 004; revised 7 March 004; accepted 8 March 004 5 April 004 / Vol., No. 7 / OPTICS EXPRESS 7

(a) (b) (c) Fig.. Generation of photonic nanojets similar to that in Fig. (c) for three different combinations of d, n, n, and λ : (a) d = 5 µm, n = 3.5, n =.0, λ = 50 nm; (b) d = 6 µm, n =.375, n =.33, λ = 300 nm; (c) d = 0 µm, n =.375, n =.33, λ = 300 nm. The photonic nanojet shown in Fig. (c) can be made thinner by increasing the refractive index of the surrounding medium, which is equivalent to decreasing the wavelength of the incident light. This is shown in Fig. (a), which visualizes the FDTD-calculated envelope of the sinusoidal steady-state electric field distribution for the parameter set of d = 5 µm, n = 3.5, n =.0, and λ = 50 nm. The photonic jet of Fig. (a) has a waist of about 60 nm and a length of about 400 nm. In terms of intensity distribution, it has a waist of about 0 nm, smaller than one-half wavelength. We have determined that photonic nanojets similar to that in Fig. (a) can be generated using a variety of combinations of d, n, n, and λ provided that n n and d λ are not changed from the case of Fig. (a). This is shown in Fig. (b), which visualizes the FDTD-calculated envelope of the sinusoidal steady-state electric field distribution for the parameter set of d = 6 µm, n =.375, n =.33, and λ = 300 nm. The photonic jet of Fig. (b) has a waist of about 00 nm and a length of about 500 nm. In terms of intensity distribution, it has a waist of about 30 nm, smaller than onehalf wavelength. As a final example, Fig. (c) illustrates the photonic nanojet produced by the parameter combination d = 0 µm, n =.375, n =.33, and λ = 300 nm. All #399 - $5.00 US (C) 004 OSA Received 6 February 004; revised 7 March 004; accepted 8 March 004 5 April 004 / Vol., No. 7 / OPTICS EXPRESS 8

parameters for this case are the same as for Fig. (b) except that the cylinder diameter is increased from 6 µm to 0 µm. Here, the jet has a length of about 000 nm and a waist of about 00 nm. In terms of intensity distribution, it has a waist of about 40 nm, smaller than one-half wavelength. From these studies, we conclude that the length of the photonic nanojet is effectively controlled by the size of the cylinder whereas the waist of the photonic nanojet is determined by the incident wavelength in the surrounding medium. 0 6 0 7 change due to insertion of a 5 nm nanoparticle isolated 5 nm nanoparticle 0 6 0 7 change due to insertion of a 0 nm nanoparticle isolated 0 nm nanoparticle Differential Cross Section (m) 0 8 0 9 0 0 0 Differential Cross Section (m) 0 8 0 9 0 0 0 0 0 0 3 70 75 80 85 90 Scattering angle (degrees) (a) 0 3 70 75 80 85 90 Scattering angle (degrees) Fig. 3. FDTD numerical results illustrating photonic nanojet enhanced backscattering of light by dielectric nanoparticles. The parameter set of Fig. (b) ( d = 6 µm, n =.375, n =.33, and λ = 300 nm) is assumed. A square, n =.5 dielectric nanoparticle of side dimension s is inserted at the center of the photonic jet on the surface of the 6-µm cylinder. (a) Absolute value of the change of the differential scattering cross section within ±0 of backscatter for s = 5 nm compared with the differential scattering cross section of the isolated nanoparticle. (b) Repeated studies of (a) for a nanoparticle of side dimension s = 0 nm. (b) 3. Photonic nanojet enhanced backscattering of light by nanoparticles Our further computational investigations of the photonic nanojets illustrated in Figs. (c) and indicate that such jets can greatly enhance the effective backscattering of light by nanometer-scale dielectric particles located within the jets. Figures 3 and 4 provide the results of FDTD numerical experiments that illustrate this phenomenon. Here, we consider the case of Fig. (b) ( d = 6 µm, n =.375, n =.33, and λ = 300 nm) with a square, n =.5 dielectric nanoparticle inserted at the center of the photonic jet on the surface of the 6-µm cylinder. We have adopted double-precision representations for data in our FDTD computer code in order to detect the nanoparticles with fine resolution in our computer experiments. Figures 3(a) and 3(b) graph the absolute value of the change of the FDTD-calculated differential scattering cross section within ±0 of backscatter when a nanoparticle of side dimension s = 5 nm and s = 0 nm, respectively, is inserted at the center of the photonic nanojet. These figures also graph the corresponding differential scattering cross section of the isolated nanoparticle. We see that the effective backscattering cross section of each 4 nanoparticle is enhanced by several orders of magnitude, specifically by ~ 0 for the 5-nm object and ~ 0 3 for the 0-nm object. In addition, the side lobes of the differential cross section near backscattering of the 0-nm object are wider than those of the 5-nm object. This may serve as another indicator for detecting nanoparticles of different sizes. Figure 4 graphs the backscatter enhancement factor as a function of the size of the nanoparticle. It is apparent that the photonic nanojet created by the much larger 6-µm (C) 004 OSA 5 April 004 / Vol., No. 7 / OPTICS EXPRESS 9

cylinder provides a dimensional increase in the effective backscattering cross section of the nanoparticle relative to the case where the nanoparticle is isolated. 0 7 Backscattering enhancement factor 0 6 0 5 0 4 0 3 (.5 nm) (5 nm) (0 nm) (5 nm) (0 nm) (40 nm) (60 nm) 0 0 0 0 30 40 50 60 Side dimension s of nanoparticle (nm) Fig. 4. FDTD numerical results illustrating backscattering enhancement factor as a function of side dimension s of nanoparticles. The parameter set of Fig. (b) ( d = 6 µm, n =.375, n =.33, and λ = 300 nm) is assumed. A square, n =.5 dielectric nanoparticle of side dimension s is inserted at the center of the photonic jet on the surface of the 6-µm cylinder. 4. Conclusions In conclusion, we have reported what we believe to be the first evidence of localized nanoscale photonic jets generated at the shadow-side surfaces of micron-scale, circular dielectric cylinders illuminated by a plane wave. These photonic nanojets have waists smaller than the diffraction limit and propagate over several optical wavelengths without significant diffraction. Such nanojets enhance the backscattering of visible light by nanometer-scale dielectric particles located within the jets by several orders of magnitude. Not involving evanescent fields and not requiring mechanical scanning, photonic nanojets may provide a new means to detect and image nanoparticles of size well below the diffraction limit. This could yield a potential novel ultramicroscopy technique using visible light for detecting proteins, viral particles, and even single molecules; and monitoring molecular synthesis and aggregation processes of importance in many areas of biology, chemistry, material sciences, and tissue engineering. Acknowledgments This work was supported by National Science Foundation grant BES-038903. (C) 004 OSA 5 April 004 / Vol., No. 7 / OPTICS EXPRESS 0