Electron impact ionization and dissociation of molecular ions

Similar documents
Absolute cross sections and kinetic energy release distributions for electron impact ionization and dissociation of CD +

Electronic and Atomic Collisions with Hydrogen and Helium Ions

Low energy ionization, charge transfer and reactive collisions for ion source and edge plasma chemistry. X. Urbain

Alex M Imai, Y. Ohta and A. Itoh Department of Nuclear Engineering, Kyoto University

The data file METHANE: Additional Atomic and Molecular Data for EIRENE

Total ionization cross-sections of atmospheric molecules due to electron impact

Vibrationally resolved ion-molecule collisions

Cross Sections: Key for Modeling

Formation of H-atom in 2s excited state of proton-lithium and proton-sodium scattering

Reactive Collisions of Electrons with H 2. cations and isotopologues : Computations and comparison with measurements

Electron impact ionization of Ar 10+

International Atomic Energy Agency, Vienna, Austria. Charge Transfer in Collisions of Ions with atoms and molecules.

Progress of the interaction between e - and molecule in Fudan University

Effect of small amounts of hydrogen added to argon glow discharges: Hybrid Monte Carlo fluid model

RGA modelling and simulation to include pressure dependence in the ion source

New Model for Electron-Impact Ionization Cross Sections of Molecules

Electron impact ionization of diatomic molecules

The electron scattering database - Is it fit for purpose? N J Mason, Open University, UK

Data Center for Plasma Properties Group Research on Procedures for Evaluation of CH4 Collision Processes. Mi-Young Song

Plasma Optimization in a Multicusp Ion Source by Using a Monte Carlo Simulation

a procedure to explore uncertainty and reliability in theoretical cross section data for electron and positron scattering Bobby Antony

Charge transfer in collisions of Be q+ (q=2-4) and B q+ (q=3-5) ions with H

Known and unknown in electron atom and molecule scattering

Collisional-Radiative Model of Molecular Hydrogen

Theoretical approaches to electronimpact

Neutron Interactions Part I. Rebecca M. Howell, Ph.D. Radiation Physics Y2.5321

Collision processes of CH y and CH y hydrocarbons with plasma electrons and protons

Beam-plasma interaction in the ITER NBI

Empirical formula for cross section of direct electron-impact ionization of ions

Matti Laan Gas Discharge Laboratory University of Tartu ESTONIA

Electron impact single ionization of copper

Ionization Detectors. Mostly Gaseous Detectors

ELECTRON IMPACT ATOMIC-MOLECULAR COLLISION PROCESSES RELEVANT IN PLANETARY AND ASTROPHYSICAL SYSTEMS - A THEORETICAL STUDY

INTERNATIONAL BULLETIN ON ATOMIC AND MOLECULAR DATA FOR FUSION

Nuclear Physics and Astrophysics

Association of H + with H 2 at Low Temperatures

in2p , version 1-28 Nov 2008

cross section (10-16 cm 2 ) electron energy (ev) Ferch J, Raith W and Schroeder K, J. Phys. B: At. Mol.Phys (1980)

Ionization Detectors

Atomic and Molecular Data Activities for Fusion Research in JAEA. T. Nakano Japan Atomic Energy Agency

3. Gas Detectors General introduction

Analysis of recombination and relaxation of non-equilibrium air plasma generated by short time energetic electron and photon beams

My view on the vapor shielding issues

Studies of Electron Capture by Multiply Charged Ions from Molecules using Translational Energy Spectroscopy

Keywords: Atomic helium; close-coupling; differential cross sections; excitation

EUV spectra from the NIST EBIT

Is plasma important? Influence molecule formation?

Absolute angle-differential cross sections for electron-impact excitation of neon within the first 3.5 ev above threshold

Ionization Of P Atom, P2 And PC Molecules By Electron Impact: Theoretical Studies

Ab-initio Calculations for Forbidden M1/E2 Decay Rates in Ti XIX ion

Electron capture by Ne 3+ ions from atomic hydrogen

Ion Implanter Cyclotron Apparatus System

Resonances in Chemical Reactions : Theory and Experiment. Toshiyuki Takayanagi Saitama University Department of Chemistry

ATOMIC AND PLASMA MATERIAL INTERACTION DATA FOR FUSION

EXPERIMENT 5. The Franck-Hertz Experiment (Critical Potentials) Introduction

Beam-plasma atomic data needs for fusion devices

Continuum Shell Model

A global (volume averaged) model of a chlorine discharge

Studies of charge exchange in symmetric ion ion collisions

Known and unknown in electron-atom and molecule scattering: review talk

Physics with Exotic Nuclei

Detecting high energy photons. Interactions of photons with matter Properties of detectors (with examples)

Comparison of hollow cathode and Penning discharges for metastable He production

ECT Lecture 2. - Reactor Antineutrino Detection - The Discovery of Neutrinos. Thierry Lasserre (Saclay)

AMO at FLASH. FELs provide unique opportunities and challenges for AMO physics. due to essentially three reasons:

Thorium Energy Alliance Conference 6 Chicago, May 29, 2014

DISSOCIATIVE IONIZATION OF CARBON DISULPHIDE IN THE GAS PHASE. HEAT OF FORMATION OF THE CS RADICAL

(Multi-)nucleon transfer in the reactions 16 O, 3 32 S Pb

ATOMIC AND PLASMA-MATERIAL INTERACTION DATA FOR FUSION VOLUME 11

The Franck-Hertz Experiment David Ward The College of Charleston Phys 370/Experimental Physics Spring 1997

Electron impact excitation and dissociation of halogen-containing molecules

Report A+M/PSI Data Centre NRC Kurchatov Institute

Theodoros Mercouris. Publications

Internationa! Atomic Energy Agency INDC(NDS) nd IAEA Research Co-ordination Meeting on. "Atomic and Molecular Data for Plasma Edge Studies"

II: The role of hydrogen chemistry in present experiments and in ITER edge plasmas. D. Reiter

Scattering in Cold- Cathode Discharges

The influence of H photo-dissociation and (H + H+ )- radiative collisions on the solar atmosphere opacity in UV and VUV regions ABSTRACT

Defense Technical Information Center Compilation Part Notice

Ion-Molecule Reactions in Methyl Fluoride and Methyl Chloride

Calculated data up to now

PHYS 5012 Radiation Physics and Dosimetry

Collisional radiative model

Evaluated electron and positronmolecule scattering data for modelling particle transport in the energy range ev

The Doubly Excited States Description of the Negative Hydrogen Ion Using Special Forms of the Hylleraas Type Wave Functions

Plasma based modification of thin films and nanoparticles. Johannes Berndt, GREMI,Orléans

Vibrationally resolved ionization cross sections for the ground state and electronically excited states of the hydrogen molecule

Richard Miles and Arthur Dogariu. Mechanical and Aerospace Engineering Princeton University, Princeton, NJ 08540, USA

Production and Damping of Runaway Electrons in a Tokamak

He+ 6,7 Li and 6 He+ 12 C reactions. Matko Milin Ruđer Bošković Institute Zagreb, Croatia

Charge transfer processes in atom-molecule collision experiments

Plasma chemistry and surface processes of negative ions

ATOMIC AND PLASMA-MATERIAL INTERACTION DATA FOR FUSION VOLUME 9

Applicability of atomic collisional ionization cross sections in plasma environment

Advanced class Kinetics and Reaction Dynamics

A hydrocarbon reaction model for low temperature hydrogen plasmas and an application to the Joint European Torus

Atomic and Molecular Data for State-Resolved Modelling of Hydrogen and Helium and Their Isotopes in Fusion Plasma

Thermal Equilibrium in Nebulae 1. For an ionized nebula under steady conditions, heating and cooling processes that in

CONTRIBUTION FUNCTION OF MOLYBDENUM ATOM AND IONS IN ASTROPHYSICAL AND LABORATORY PLASMA AS A FUNCTION OF ELECTRON TEMPERATURE

A Comparison between Channel Selections in Heavy Ion Reactions

Time-dependent kinetics model for a helium discharge plasma

Transcription:

Electron impact ionization and dissociation of molecular ions P. DEFRANCE 1 J. LECOINTRE 1, J.J. JURETA 1.2, D.S. BELIC 3 R.K. JANEV 4 1 Département de Physique-PAMO, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium 2 Institute of Physics, Belgrade, P.O. Box 68, Belgrade, Serbia 3 Faculty of Physics, P.O. Box 386, Belgrade, Serbia 4 Macedonia Academy of Sciences and Art IAEA-November 2009 pierre.defrance@uclouvain.be

OUTLINE Introduction Experimental set-up Measurements and results: Absolute Cross sections for dissociative excitation (DE) and for dissociative ionization (DI) Kinetic Energy Release Distributions (KERD) Conclusion

Introduction Accurate values of electron impact ionization and dissociation cross sections of molecular ions are usefull: in laboratory plasmas [1]: Important as impurities in plasmas of fusion reactors Present in some plasma processing also in natural plasmas [2]: Modelling planetary or cometary's atmospheres Studying the evolution and composition of interstellar gas clouds [1] G.H.Dunn, 1992, Nucl. Fusion Suppl. 2, 25A. [2] Sternberg and A. Dalgarno, 1995, Astrophys. J., Suppl. Ser. 99, 565

Introduction Processes concerned with ion collection: Single Ionization (SI) AB + + e - AB ++ + 2 e - Dissociative Ionization (DI) AB + + e - A + + B + + 2 e - Dissociative Excitation (DE) AB + + e - A + + B + e - A + B + + e -

Introduction

Introduction Atmospheric ions: H 2+, D 2+, D 3+, CO +, N 2+, O 2+, CO 2+. Thermonuclear fusion plasmas: Hydro(deutero)-carbon ions: C 2 H +, C 2 D + ; C 2 H 2+, C 2 HD +, C 2 D 2+, CD n+ (n=1 4) Other ions: NeD + - Lecointre et al, J. Phys. B: At. Mol. Opt. Phys. 39 (2006) 3275 - Lecointre et al, J. Phys. B: At. Mol. Opt. Phys. 40 (2007) 85

Introduction Absolute cross sections for electron impact single ionization (SI), dissociative excitation (DE) and dissociative ionization (DI), are measured from their respective thresholds up to 2.5 kev. The animated crossed beams method is applied contributions from different reaction channels (DE and DI) are separated kinetic energy release distribution (KERD) of the fragment ions are determined. Lecointre et al, J. Phys. B: At. Mol. Opt. Phys. 39 (2006) 3275

Introduction Particular difficulties affect electron impact experiments for molecular ions: Complex structure, many-body problem Excited or metastable targets High Kinetic Energy Release (KER) Difficulty to collect the fragments

Experimental set-up NeD + Example: NeD + + e - Ne + +... Analysing magnet Fragments Ne + NeD + K A L E F S L E F f S C K: Cathode A: Anode L: Lens E: Collision region F,f: Wires S: Suppressor C: Collector

Kinetic Energy Release Distribution KERD 3.5 3.0 Ee = 100 ev 2.5 2.5 2.0 Ee = 100 ev dσ / dv (10-8 cm.s) 2.0 1.5 DE dσ / dker (10-17 cm²/ev) 1.5 1.0 1.0 0.5 DI DE DI backward: v<vc forward: v>vc v c 0 0 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 0 2 4 6 8 10 12 14 16 0.5 Fragments velocity: v (10 5 cm/s) 2. The velocity distribution in the laboratory frame Kinetic Energy Release: KER (ev) 3. Estimate KERD via the following differentiation of the velocity distribution: dσ( EKER) -2µ v c d 1 dσ( v) = deker m² ( 1-ε 2) dv v dv

Example : the methane family CD + n Absolute cross sections and kinetic energy release distributions for electron impact ionization and dissociation of CD n + (n=1-4). P. Defrance, J. Lecointre and R.K. Janev APID (2009) Analytic Representation of Cross Sections for Electron-Impact Dissociative Excitation and Ionization of CH y + (y = 1 4) Ions R.K. Janev, J. Lecointre, R.E.H.Clark, D. Humbert, P. Defrance and D. Reiter APID (2009)

20 e + CD + (DE) Absolute Cross Section (10-17 cm²) 15 10 5 0 3 10 30 100 300 1000 Electron energy (ev) Present absolute dissociative excitation cross sections for C + (, σ 1 ) and for D + (, σ 2 ) versus electron energy.

Potential energy curves for CH + ( ) and for CH (-----).

E KER Threshold (E th ) E KER DE CD + + e - Present results (ev) Other results (ev) Theoretical results (5), (6), (7) (± 0.1 ev) C + 5.5 ± 1.0 < 3 (1) 5.6 (4.4) D + 5.1 ± 0.5 4.5 (2) Molecular state Dissociation limit b 3 Σ (v' 4) / c 3 Σ + C + ( 2 P) + D( 2 S) Theoretical results (7) (± 0.2 ev) 9.0 (7.8) c 3 Σ + 7.3 6.5 (5.3) b 3 Σ (v'>10) C( 3 P) + D + 0.1 8.8 (7.6) d 3 Π 3.6 8.2 (7.0) 2 1 Σ + C( 1 D) + D + 1.2 12.7 (11.5) 2 1 Π 5.9 13.0 (11.8) 3 1 Σ + C( 1 S) + D + 3.7 Present results (ev) 1.6 0 15 ± 1 (3.5 ± 0.5) 0 9 ± 1 (3.8 ± 0.5) DI C + + D + 22.1 ± 0.5 24.1 (4) 29.0 (3) 24.1 (22.9) 2 Σ + C + ( 2 P) + D + 6.0 0 15 ± 1 (5 7 ± 1) ADI C 2+ +... 29.7 ± 0.5 --- --- --- --- --- C 3+ +... 105 ± 5 --- --- --- --- --- 0 40 ± 2 (2.0 ± 0.1) 0 40 ± 2 (15 ± 1) (1) Bannister et al (2003), (2) Djuric et al (1997), (3) Janev and Reiter (2002), (4) Kim et al (2000), (5) Saxon et al (1983), (6) Green et al (1972) and (7) Lorquet et al (1971). Note: Threshold energies in brackets are calculated from the metastable state a 3 Π (1.2 ev above the ground state X 1 Σ + ). E KER values in brackets represent the mean kinetic energy release for specific electron energies.

Total kinetic energy release distributions for C + fragments, for indicated electron energies.

Total kinetic energy distribution for electron impact upon CD4+

NeD + + e - NeD + 2e - Single Ionisation simple (SI) Ne + + D + e - Dissociative excitation (DE) (σ 1 ) Ne + D + + e - (σ 2 ) NeD + + e - (NeD )* + 2e - Ne + + D + + 2e - Dissociative Ionisation (DI) (σ 3 ) Ne + Asymmetric DI (ADI) (σ 4 ) Ne + (σ 5 ) 2008 Absolute cross sections and kinetic energy release distributions for electron impact dissociative excitation and ionization of NeD +. J. Lecointre, J.J. Jureta, J.B.A. Mitchell, V. Ngassam, A.E. Orel and P. Defrance, J. Phys. B: At. Mol. Opt. Phys. 41 (2008) 045201.

NeH + : potential energy of singlet states and of some states of NeH and of NeH 2+. 50 40 (a) NeH + : Singlet states A 1 Π B 1 Σ + C 1 Σ + D 1 Π E 1 Σ + F 1 Π Potential energy (ev) 30 20 10 NeH 2+ NeH + NeH** X 2 Π X 1 Σ + Ne* + (1s 2 2s2p 6, 2 S) + H(1s, 2 S) Ne + (1s 2 2s 2 2p 5, 2 P) + H + Ne + (1s 2 2s 2 2p 5, 2 P) + H*(3s, 2 S) Ne + (1s 2 2s 2 2p 5, 2 P) + H*(2s, 2 S) Ne*(1s 2 2s 2 2p 5 3s, 1,3 P) + H + Ne + (1s 2 2s 2 2p 5, 2 P) + H(1s, 2 S) Ne*(1s 2 2s 2 2p 5 3s, 1,3 P) + H(1s, 2 S) Ne(1s 2 2s 2 2p 6, 1 S) + H + 0 NeH A 2 Σ + Ne(1s 2 2s 2 2p 6, 1 S) + H*(3s, 2 S) Ne(1s 2 2s 2 2p 6, 1 S) + H*(2s, 2 S) -10 X 2 Σ + Ne(1s 2 2s 2 2p 6, 1 S) + H(1s, 2 S) 0 2 4 6 8 10 12 14 16 R (a.u.)

NeH + : potential energy of triplet states and of some states of NeH and of NeH 2+. Potential energy (ev) 50 40 30 20 10 0-10 NeH 2+ NeH + NeH** NeH (b) NeH + : Triplet states X 2 Π X 1 Σ + A 2 Σ + X 2 Σ + Ne* + (1s 2 2s2p 6, 2 S) + H(1s, 2 S) Ne + (1s 2 2s 2 2p 5, 2 P) + H + a 3 Σ + b 3 Π c 3 Σ + d 3 Π e 3 Σ + f 3 Π g 3 Σ + Ne + (1s 2 2s 2 2p 5, 2 P) + H*(3s, 2 S) Ne + (1s 2 2s 2 2p 5, 2 P) + H*(2s, 2 S) Ne*(1s 2 2s 2 2p 5 3s, 1,3 P) + H + Ne + (1s 2 2s 2 2p 5, 2 P) + H(1s, 2 S) Ne*(1s 2 2s 2 2p 5 3s, 1,3 P) + H(1s, 2 S) Ne(1s 2 2s 2 2p 6, 1 S) + H + Ne(1s 2 2s 2 2p 6, 1 S) + H*(3s, 2 S) Ne(1s 2 2s 2 2p 6, 1 S) + H*(2s, 2 S) Ne(1s 2 2s 2 2p 6, 1 S) + H(1s, 2 S) 0 2 4 6 8 10 12 14 16 R (a.u.)

Absolute cross sections NeD + + e - Ne + + D + e - Production du Ne + 8 Total : σ 1.3 DE : σ 1 Section efficace absolue (10-17 cm 2 ) 6 4 2 0 5 10 30 100 300 1000 3000 Energie des électrons (ev) σ = σ + σ = σ+ σ 1.3 DE DI 1 3

Absolute cross sections NeD + + e - Ne + D + + e - 12 Production du D + Section efficace absolue (10-17 cm 2 ) 10 8 6 4 2 Total : σ 2.3 DE : σ 2 0 5 10 30 100 300 1000 3000 Energie des électrons (ev) σ = σ + σ = σ + σ 2.3 DE DI 2 3

Resonances 8 Excitation dissociative Ne: Anneaux de stockage (Novotny, 2006) D + : Louvain-la-Neuve NeD + + e - Ne + D + + e - Section efficace absolue (10-17 cm 2 ) 6 4 2 0 1 3 10 30 100 300 1000 3000 Energie des électrons (ev)

Dissociative Ionisation NeD + + e - Ne + + D + + 2e - 8 DI : σ 3 Section efficace absolue (10-17 cm 2 ) 6 4 2 E th = 35.1 ev E th = 26.8 ev 0 10 30 100 300 1000 3000 Energie des électrons (ev)

KERD Fragments Ne + and D + Production du Ne + Production du D + dσ / de KER (10-17 cm²/ev) 0.5 0.4 0.3 0.2 0.1 21.1 ev 45.1 ev 95.1 ev 295.1 ev dσ / de KER (10-17 cm²/ev) 1.5 1.0 0.5 15.1 ev 25.1 ev 45.1 ev 95.1 ev 295.1 ev 0 0 DE DI 0 5 10 15 20 E KER (ev) 0 5 10 15 E KER (ev)

Energy thresholds and E KER Thresholds (ev) E KER (ev) NeD + + e - Present results (± 0.5 ev) Theory Molecular state Dissociation limit D 0 (± 0.1 ev) Theory (± 0.2 ev) Present results 18.8 a 3 Σ + 8.3 20.3 a 3 Π 9.8 Ne + (1s 2 2s 2 2p 5, 2 P) + H(1s, 2 S) (10.5) 21.3 A 1 Π 10.8 22.6 A 1 Σ + 12.1 DE Ne + 9.1 13.1 30.2 b 3 Π 30.3 B 1 Π 9.6 32.0 c 3 Σ + 11.3 Ne + (1s 2 2s 2 2p 5, 2 P) + H*(2s, 2 S) (20.7) 32.4 C 1 Σ + 11.7 9.5 1 9 ± 1 34.0 C 1 Π 13.3 34.0 c 3 Π 13.3 D + 10.0 14.1 DI Ne + + D + 26.8 35.1 29.7 b 3 Σ + Ne*(1s 2 2s 2 2p 5 3s, 1, 3 P) + H + (19.2) 10.5 30.3 B 1 Σ + 11.1 35.6 X 2 Π Ne + (1s 2 2s 2 2p 5, 2 P) + H + (24.1) 11.5 0 3 ± 1 0 18 ± 2 3 15 ± 1

Dissociative ionisation Forme de Bethe NeD + + e - Ne + + D + + 2e - Section efficace Energie des électrons (10-17 cm².ev) 4000 3000 2000 1000 0 σ a E = b EeI + I 3 ln e I: energy threshold (ev) 10 30 100 300 1000 3000 Energie des électrons (ev)

(a) Ne 2+ Multicharged fragments NeD + + e - Ne 2+ + (σ 4 ) Ne 3+ + (σ 5 ) (b) Ne 3+ 6 20 Section efficace absolue: σ 4 (10-18 cm 2 ) 5 4 3 2 1 0 50 100 200 500 1000 2000 Section efficace absolue: σ 5 (10-20 cm 2 ) 15 10 5 0 100 200 500 1000 2000 Energie des électrons (ev) Energie des électrons (ev)

NeD + : σ I = σ 3 + σ 4 + σ 5 Total ionization 8 NeD + : σ I Ne: Almeida et al (1995) Ne: Schram et al (1966) Section efficace absolue (10-17 cm²) 6 4 2 0 'isoelectronic effect': good agreement with Ne 10 30 100 300 1000 3000 - Almeida et al, J. Phys. B. 28 (1995) 3335 - Schram et al, Physica 32 (1966) 185 Energie des électrons (ev)

Theory: cross sections ionization crossections are estimated by: Binary-Encounter Encounter-Bethe, BEB, Kim et al Deutsch-Märk Formalism, DM, Deutsch et al Semi-empirical model of R.K. Janev and D. Reiter for dissociative excitation (DE) and for dissociative ionization (DI) - Kim et al, J. Res. Nat. Stand. Technol. 105 (2000) 285 - Deutsch et al, Int. J. Mass Spectrom. Ion Processes 137 (1994) 77 - Janev RK and Reiter D, Phys. Plasmas 9 (2002) 4071

Conclusion Absolute cross sections for electron impact single ionization (SI), dissociative excitation (DE) and dissociative ionization (DI), are measured from the respective thresholds up to 2.5 kev for molecular ions. The animated crossed beams experiment is applied contributions from different reaction channels are separated, kinetic energy release distributions are determined (KERD) for the fragment ions. data are included in the data base: cross sections, threholds, KER