Scanning Gate Microscopy (SGM) of semiconductor nanostructures

Similar documents
Final Research Report: Electronic and spin properties of one-dimensional semiconductor systems

Electron Interferometer Formed with a Scanning Probe Tip and Quantum Point Contact Supplementary Information

Scanning-gate microscopy of semiconductor nanostructures: an overview

Scanning gate microscopy and individual control of edge-state transmission through a quantum point contact

Electronic Quantum Transport in Mesoscopic Semiconductor Structures

Imaging a Single-Electron Quantum Dot

Bruit de grenaille mesuré par comptage d'électrons dans une boîte quantique


From nanophysics research labs to cell phones. Dr. András Halbritter Department of Physics associate professor

Construction of a dilution refrigerator cooled scanning force microscope

Quantum physics in quantum dots

Imaging of double slit interference by scanning gate microscopy

Nanomaterials Characterization by lowtemperature Scanning Probe Microscopy

Quantum Hall circuits with variable geometry: study of the inter-channel equilibration by Scanning Gate Microscopy

Quantum Transport in Ballistic Cavities Subject to a Strictly Parallel Magnetic Field

Lectures: Condensed Matter II 1 Electronic Transport in Quantum dots 2 Kondo effect: Intro/theory. 3 Kondo effect in nanostructures

Scanning Tunneling Microscopy

Lecture 3: Heterostructures, Quasielectric Fields, and Quantum Structures

Chapter 5 Nanomanipulation. Chapter 5 Nanomanipulation. 5.1: With a nanotube. Cutting a nanotube. Moving a nanotube

Scanning gate imaging of quantum point contacts and the origin of the 0.7 anomaly

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 14 Jan 1999

Scanning Tunneling Microscopy

Introduction to Nanomechanics: Magnetic resonance imaging with nanomechanics

tunneling theory of few interacting atoms in a trap

Electron counting with quantum dots

2D Materials Research Activities at the NEST lab in Pisa, Italy. Stefan Heun NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, Italy

Analysis of Scanned Probe Images for Magnetic Focusing in Graphene

Impact of disorder and topology in two dimensional systems at low carrier densities

Physics of Low-Dimensional Semiconductor Structures

Force-distance studies with piezoelectric tuning forks below 4.2K

Time-dependent single-electron transport: irreversibility and out-of-equilibrium. Klaus Ensslin

What is Quantum Transport?

Charging and Kondo Effects in an Antidot in the Quantum Hall Regime

Spatially resolved study of backscattering in the quantum spin Hall state SUPPLEMENTAL MATERIAL

Lecture 8, April 12, 2017

Imaging electron flow and quantum dot formation in

File name: Supplementary Information Description: Supplementary Figures and Supplementary References. File name: Peer Review File Description:

Introduction to Scanning Probe Microscopy Zhe Fei

Electronic transport in low dimensional systems

Intrinsic Charge Fluctuations and Nuclear Spin Order in GaAs Nanostructures

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 18 Jul 2000

Scanning Probe Microscopy (SPM)

Intraband emission of GaN quantum dots at λ =1.5 μm via resonant Raman scattering

Quantum coherence in quantum dot - Aharonov-Bohm ring hybrid systems

Ultra-low noise HEMTs for deep cryogenic lowfrequency and high-impedance readout electronics

Graphene Field effect transistors

QUANTUM ELECTRONICS ON THE TRAY* *Sur le plateau (de Saclay)

HYSWITCH Informal meeting Chersonissos - Crete September 15th 19th 2007,

Effet Kondo dans les nanostructures: Morceaux choisis

Imaging of Quantum Confinement and Electron Wave Interference

SUPPLEMENTARY INFORMATION

Low-dimensional electron transport properties in InAs/AlGaSb mesoscopic structures

(a) (b) Supplementary Figure 1. (a) (b) (a) Supplementary Figure 2. (a) (b) (c) (d) (e)

Program Operacyjny Kapitał Ludzki SCANNING PROBE TECHNIQUES - INTRODUCTION

Scanning gate microscopy of quantum contacts under parallel magnetic field: Beating patterns between spin-split transmission peaks or channel openings

Nanostructure. Materials Growth Characterization Fabrication. More see Waser, chapter 2

Nano devices for single photon source and qubit

Topological Quantum Computation with Majorana Zero Modes. Roman Lutchyn. Microsoft Station

Spatially resolved study of backscattering in the quantum spin Hall state

Nanoelectronics. Topics

R. Akram a Faculty of Engineering Sciences, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi, Pakistan

Magnetic Force Microscopy (MFM) F = µ o (m )H

Supplementary information for Tunneling Spectroscopy of Graphene-Boron Nitride Heterostructures

Quantum Dot Spin QuBits

There s plenty of room at the bottom! - R.P. Feynman, Nanostructure: a piece of material with at least one dimension less than 100 nm in extent.

Lecture 20: Semiconductor Structures Kittel Ch 17, p , extra material in the class notes

Imaging Methods: Scanning Force Microscopy (SFM / AFM)

How a single defect can affect silicon nano-devices. Ted Thorbeck

Understanding the properties and behavior of groups of interacting atoms more than simple molecules

Lecture 4 Scanning Probe Microscopy (SPM)

And Manipulation by Scanning Probe Microscope

QUANTUM INTERFERENCE IN SEMICONDUCTOR RINGS

Classical Hall effect in scanning gate experiments

Transport through Andreev Bound States in a Superconductor-Quantum Dot-Graphene System

Influence of hyperfine interaction on optical orientation in self-assembled InAs/GaAs quantum dots

Building blocks for nanodevices

Kavli Workshop for Journalists. June 13th, CNF Cleanroom Activities

Supporting Information. by Hexagonal Boron Nitride

Coherence and Correlations in Transport through Quantum Dots

Coulomb blockade in metallic islands and quantum dots

Tunable All Electric Spin Polarizer. School of Electronics and Computing Systems University of Cincinnati, Cincinnati, Ohio 45221, USA

Self-assembled SiGe single hole transistors

BDS2016 Tutorials: Local Dielectric Spectroscopy by Scanning Probes

Quantum Effects in Thermal and Thermo-Electric Transport in Semiconductor Nanost ructu res

Nanoelectronics 09. Atsufumi Hirohata Department of Electronics. Quick Review over the Last Lecture

Nanoscience, MCC026 2nd quarter, fall Quantum Transport, Lecture 1/2. Tomas Löfwander Applied Quantum Physics Lab

Tunable Non-local Spin Control in a Coupled Quantum Dot System. N. J. Craig, J. M. Taylor, E. A. Lester, C. M. Marcus

Nanomaterials and their Optical Applications

The Critical Role of Quantum Capacitance in Compact Modeling of Nano-Scaled and Nanoelectronic Devices

MS482 Materials Characterization ( 재료분석 ) Lecture Note 11: Scanning Probe Microscopy. Byungha Shin Dept. of MSE, KAIST

University of Regensburg & Tohoku University

2) Atom manipulation. Xe / Ni(110) Model: Experiment:

Quantum Condensed Matter Physics Lecture 12

Lecture 6: 2D FET Electrostatics

Scanning Probe Microscopy. Amanda MacMillan, Emmy Gebremichael, & John Shamblin Chem 243: Instrumental Analysis Dr. Robert Corn March 10, 2010

STM spectroscopy (STS)

Chapter 12. Nanometrology. Oxford University Press All rights reserved.

Strong back-action of a linear circuit on a single electronic quantum channel F. PIERRE

The Sensitivity Limits of Nanowire Biosensors

Search for time reversal symmetry effects in disordered conductors and insulators beyond weak localization. Marc Sanquer CEA/DRF/INAC & UGA

Transcription:

Scanning Gate Microscopy (SGM) of semiconductor nanostructures H. Sellier, P. Liu, B. Sacépé, S. Huant Dépt NANO, Institut NEEL, Grenoble, France B. Hackens, F. Martins, V. Bayot UCL, Louvain-la-Neuve, Belgique M. Pala IMEP, Minatec, Grenoble, France L. Desplanque, X. Wallart IEMN, Lille, France GDR 2426 Physique Quantique Mésoscopique Session thématique «Champ proche» 2-4 novembre 2010 1

Outline 1. Description of SGM technique - context - potential - operation 2. Review of SGM experiments - contributors - microscopes - quantum point contact - quantum dot - quantum Hall effect - quantum ring 3. ANR project on electron interactions - objectives - strategy 2

Introduction to SGM Local probe of electron properties in semiconductor heterostructures where electrons are several tens of nanometers below the surface thus not accessible by Scanning Tunneling Microscopy 2DEG Quantum Point Contact Quantum Wire Quantum Dot Quantum Ring Quantum Hall Effect V I V 3

SGM versus STM STM SGM Scanning Tunneling Microscopy Scanning Gate Microscopy I e- V + + + Φ I conducting surface surfaces, nano-objects, defects tunneling current local density of state Vtip V insulating surface high mobility 2DEG heterostructure conductance of device local gate effect 4

Tip induced scattering potential Low density electron gas imperfect screening of the tip potential local potential change modified electron scattering Vtip < 0 equipotential lines - - Vcontact = 0 V2DEG, local < 0 Other ingredients : Contact potential Dielectric constants Etched trenches Surface gates Charged defects 5

Tip induced scattering potential Examples in the SGM literature : Crook et al, Phys. Rev. B (2000) Aidala et al, Nat. Phys. (2007) Another model : based on Krcmar et al, Phys. Rev. B (2002) z0 + εr1 εr2 6

Tip induced scattering potential SGM = scattering method (STM = intrinsic LDOS) E = EC - e V E = EC - e V EF EF x xtip Medium electron density (N ~ 1012 cm-2) - small perturbation x xtip Low electron density (N ~ 1011 cm-2) - strong back-scattering Leroy, 2003 PhD thesis 7

SGM operation Device: High mobility 2DEG Device patterning (surface gate and/or etching) Instrument: Low temperature AFM (4He, 3He, dilution) with magnetic field Positioning: AFM topographic image to locate the device 2DEG doped barrier undoped channel buffer layer substrate I V Scanning: Tip scan at constant distance with applied voltage Vtip while measuring conductance G Result: Image of the local gate effect on the global device conductance 8

Outline 1. Description of SGM technique - context - potential - operation 2. Review of SGM experiments - contributors - microscopes - quantum point contact - quantum dot - quantum Hall effect - quantum ring 3. ANR project on electron interactions - objectives - strategy 9

SGM around the world Start Place Group 2DEG 1996 US - Harvard Westervelt, Eriksson, Topinka, Leroy, Bleszinski, Aidala,... US - Santa-Barbara 1999 US - Berkeley McEuen, Bachtold, Woodside,... US - Stanford US - Santa-Barbara 2000 UK - Cambridge Ritchie, Smith, Crook,... UK - Cambridge 2004 CH - Zürich Ensslin, Ihn, Pioda, Gildemeister, Baumgartner,... D - Regensburg US - Santa-Barbara 2005 US - Arizona Ferry, Aoki, DaCunha,... JAP? (InGaAs) 2006 F - Grenoble Huant, Bayot, Hackens, Martins, Sellier,... F - IEMN (InGaAs) 2007 US - Stanford Goldhaber-Gordon, Jura, Topinka,... US - Bell Labs 2010 I - Pisa Heun, Paradiso,... US - Bell Labs 2010 B - Louvain Bayot, Hackens, Martins,... F - IEMN (InGaAs) 10

SGM tips Piezoresistive AFM cantilevers Tortonese, APL (1993) ThermoMicroscopes, CA not produced any more... Example : Harvard Piezoelectric quartz tuning fork Karrai (1995) Giessibl (1996) SNOM, AFM, STM, SGM Example : Grenoble 11

SGM microscopes Grenoble 4 He 4K 9T Heun 3 He 400mK 9T 12

SGM microscopes Westervelt 3 He 400mK 7T Ensslin 3 He4He 100mK 8T 13

Quantum Point Contact Harvard (Westervelt) Imaging electron flow Creates interferences Topinka et al, Nature (2001) 1.7 K n = 4.5 x 1011 cm-2 µ = 1 000 000 cm2/vs 2DEG 57 nm below surface tip at 13 nm Vtip = -3 V 14

Quantum Point Contact Harvard (Westervelt) Imaging electron flow and cyclotron orbit under magnetic field Aidala et al, Nat. Phys. (2007) 4.2 K n = 3.8 x 1011 cm-2 µ = 500 000 cm2/vs 2DEG 47 nm below surface 15

Quantum Point Contact Arizona (Ferry) Universal Conductance Fluctuations DaCunha, Aoki, et al, Appl. Phys. Lett. (2006) 280 mk 16

Quantum Point Contact Cambridge (Ritchie) Tuning QPC conductance «0.7 anomaly» Erasable Electrostatic Lithography Crook et al, Science (2006) 150 mk n = 3.1 x 1011 cm-2 µ = 5 000 000 cm2/vs 2DEG 97 nm below surface 17

Quantum Dot ETH Zürich (Ensslin) Coulomb blockade resonances Analysis of tip potential (AFM nanolithography) Pioda et al, Phys. Rev. Lett. (2004) 300 mk n = 5 x 1011 cm-2 µ = 450 000 cm2/vs 2DEG 34 nm below surface 18

Quantum Dot Harvard (Westervelt) Spectroscopy of single electron dot Tip potential width >> dot size... Fallahi et al, NanoLetters (2005) 1.7 K n = 3.8 x 1011 cm-2 µ = 470 000 cm2/vs 2DEG 52 nm below surface 19

Quantum Dot Harvard (Westervelt) Image Coulomb blockade centers InAs nanowire with Ti/Al contacts Bleszinski et al, NanoLetters (2007) 4.2 K 20

Quantum Dot Berkeley (McEuen) Carbon nanotube with kinks Image Coulomb blockade centers + Single Electron Force Microscopy Woodside et al, Science (2002) SGM @ 6 K EFM @ 0.6 K 21

Quantum Hall Effect SGM at high magnetic field : - Berkeley (McEuen) - ETH Zürich (Ensslin) Transmission by edge states : no back scattering SGM images only at the transition between plateaus See talk by B. Hackens, Louvain-la-Neuve (Belgium) 22

Quantum Rings SGM experiments (NEEL) Grenoble2 + Louvain + Lille MBE growth (IEMN) E-beam lithography (UCL) 600 nm Theory and simulation (IMEP) Ns ~ 2 x 1012 cm-2 µ ~ 100 000 cm2/vs [4K] Le ~ 2 µm [4K] ballistic Lφ µm [4K] coherent 23

Quantum Rings Aharonov-Bohm interferences by SGM B. Hackens et al., Nature Physics (2006) Dephasing by tip potential electrostatic A-B effect Δϕ = 2π e ( V1 V2 ) dt h Dephasing by magnetic field magnetic A-B effect iso-phase lines = information on electron wave function interferences 24

Quantum Rings Local Density of State by SGM Experiment Simulation (Marco Pala, IMEP, Grenoble) F. Martins et al, Phys. Rev. Lett. (2007) Influence of defects and magnetic field : Analytical model for single channel : M. Pala et al., Phys. Rev. B. (2008), Nanotechnology (2009) 25

Outline 1. Description of SGM technique - context - potential - operation 2. Review of SGM experiments - contributors - microscopes - quantum point contact - quantum dot - quantum Hall effect - quantum ring 3. ANR project on electron interactions - objectives - strategy 26

0.7 anomaly in QPC 27

ANR ITEM ITEM = Interaction et Transport à l'echelle Mésoscopique ITEM-Th (2008) J.L. Pichard, CEA, Saclay R. Jalabert, D. Weinmann, IPCMS, Strasbourg 1D chain U=0 U = 1.7 Freyn et al, Phys. Rev. Lett. (2008) 28

ANR ITEM ITEM = Interaction et Transport à l'echelle Mésoscopique ITEM-Exp (2010) H. Sellier et al, Néel, Grenoble M. Sanquer et al, CEA, Grenoble A. Ouerghi et al, LPN, Marcoussis 29