Earthquake and Volcano Deformation

Similar documents
Overview of the PyLith Finite Element Code

Secondary Project Proposal

Surface changes caused by erosion and sedimentation were treated by solving: (2)

Rheology III. Ideal materials Laboratory tests Power-law creep The strength of the lithosphere The role of micromechanical defects in power-law creep

The Mechanics of Earthquakes and Faulting

Introduction: Advancing Simulations of Sequences of Earthquakes and Aseismic Slip (SEAS)

Analytic and Numeric Tests of Fourier Deformation Model (Copyright 2003, Bridget R. Smith and David T. Sandwell)

Materials and Methods The deformation within the process zone of a propagating fault can be modeled using an elastic approximation.

Using deformation rates in Northern Cascadia to constrain time-dependent stress- and slip-rate on the megathrust

FRICTIONAL HEATING DURING AN EARTHQUAKE. Kyle Withers Qian Yao

Mechanics of Earthquakes and Faulting

Two ways to think about the dynamics of earthquake ruptures

1 Introduction. 1.1 Aims. 1.2 Rock fractures

Mechanics of Earthquakes and Faulting

Earthquake and Volcano Clustering at Mono Basin (California)

Seismic and aseismic processes in elastodynamic simulations of spontaneous fault slip

Slow Slip and Tremor Along San Andreas fault system

Geophysics Departmental Exam: 2004 Part 1

Separating Tectonic, Magmatic, Hydrological, and Landslide Signals in GPS Measurements near Lake Tahoe, Nevada-California

Predicted reversal and recovery of surface creep on the Hayward fault following the 1906 San Francisco earthquake

Fault-Zone Properties arid Earthquake Rupture Dynamics

ELASTICITY AND FRACTURE MECHANICS. Vijay G. Ukadgaonker

Stress equilibrium in southern California from Maxwell stress function models fit to both earthquake data and a quasi-static dynamic simulation

Contents. I Introduction 1. Preface. xiii

Mechanics of Earthquakes and Faulting

Data Repository Hampel et al., page 1/5

Brittle Deformation. Earth Structure (2 nd Edition), 2004 W.W. Norton & Co, New York Slide show by Ben van der Pluijm

Estimating fault slip rates, locking distribution, elastic/viscous properites of lithosphere/asthenosphere. Kaj M. Johnson Indiana University

Seismotectonics of intraplate oceanic regions. Thermal model Strength envelopes Plate forces Seismicity distributions

Friction can increase with hold time. This happens through growth and increasing shear strength of contacts ( asperities ).

Volcano Seismicity and Tremor. Geodetic + Seismic

The Frictional Regime

RHEOLOGY Principles, Measurements, and Applications. Christopher W. Macosko

Mechanics of Earthquakes and Faulting

Ground displacement in a fault zone in the presence of asperities

Exercise: concepts from chapter 8

DETAILS ABOUT THE TECHNIQUE. We use a global mantle convection model (Bunge et al., 1997) in conjunction with a

Syllabus and Course Description Geophysical Geodesy Fall 2013 GPH 411/611

Source parameters II. Stress drop determination Energy balance Seismic energy and seismic efficiency The heat flow paradox Apparent stress drop

} based on composition

Mechanics PhD Preliminary Spring 2017

Elizabeth H. Hearn modified from W. Behr

INGV. Giuseppe Pezzo. Istituto Nazionale di Geofisica e Vulcanologia, CNT, Roma. Sessione 1.1: Terremoti e le loro faglie

U.S. South America Workshop. Mechanics and Advanced Materials Research and Education. Rio de Janeiro, Brazil. August 2 6, Steven L.

What we should know about mechanics of materials

Falk Amelung. Sang-Ho Yun. Thomas Walter. Asta Miklius. now at GFZ Potsdam. Hawaii Volcano Observatory. Stanford University

PEAT SEISMOLOGY Lecture 12: Earthquake source mechanisms and radiation patterns II

3D Finite Element Modeling of fault-slip triggering caused by porepressure

3D Elasticity Theory

Rotation of the Principal Stress Directions Due to Earthquake Faulting and Its Seismological Implications

COSSERAT THEORIES: SHELLS, RODS AND POINTS

Can geodetic strain rate be useful in seismic hazard studies?

A new hybrid numerical scheme for modelling elastodynamics in unbounded media with near-source heterogeneities

Geology for Engineers Rock Mechanics and Deformation of Earth Materials

Geophysical Journal International

Module 3 : Equilibrium of rods and plates Lecture 15 : Torsion of rods. The Lecture Contains: Torsion of Rods. Torsional Energy

Afterslip, slow earthquakes and aftershocks: Modeling using the rate & state friction law

Homogeneous vs. realistic heterogeneous material-properties in subduction zone models: Coseismic and postseismic deformation

1. classic definition = study of deformed rocks in the upper crust

Gravitational deformation after the April 6, 2009 L Aquila Earthquake detected by Cosmo-SkyMed

Kinematics of the Southern California Fault System Constrained by GPS Measurements

Earthquakes and Seismotectonics Chapter 5

Gravity Tectonics Volcanism Atmosphere Water Winds Chemistry. Planetary Surfaces

Deformation of a layered half-space due to a very long tensile fault

Modeling the Thermal-Mechanical Behavior of Mid-Ocean Ridge Transform Faults

For an imposed stress history consisting of a rapidly applied step-function jump in

Mechanics of Earthquakes and Faulting

COPYRIGHTED MATERIAL. Index

The Non-Linear Field Theories of Mechanics

Topics. Magma Ascent and Emplacement. Magma Generation. Magma Rise. Energy Sources. Instabilities. How does magma ascend? How do dikes form?

friction friction a-b slow fast increases during sliding

Physical Science and Engineering. Course Information. Course Number: ME 100

ERTH 456 / GEOL 556 Volcanology. Lecture 06: Conduits

RHEOLOGY & LINEAR ELASTICITY. B Importance of fluids and fractures in deformation C Linear elasticity for homogeneous isotropic materials

Qualitative modeling of earthquakes and aseismic slip in the Tohoku-Oki area. Nadia Lapusta, Caltech Hiroyuki Noda, JAMSTEC

Transition from stick-slip to stable sliding: the crucial effect of asperities

Enabling Technologies

FINITE ELEMENT ANALYSIS OF COMPOSITE MATERIALS

Elements of Rock Mechanics

Theory of Elasticity

Physics and Chemistry of the Earth and Terrestrial Planets

Bifurcation Analysis in Geomechanics

Mohr's Circle and Earth Stress (The Elastic Earth)

Supporting Information for Inferring field-scale properties of a fractured aquifer from ground surface deformation during a well test

Lecture 20: Slow Slip Events and Stress Transfer. GEOS 655 Tectonic Geodesy Jeff Freymueller

INFLUENCE OF LOCAL PERTURBATION ON REGIONAL STRESS AND ITS IMPACT ON THE DESIGN OF MAJOR UNDERGROUND STRUCTURE IN HYDROELECTRIC PROJECT

Earthquake nucleation. Pablo Ampuero Caltech Seismolab

What is the Relationship between Pressure & Volume Change in a Magma Chamber and Surface Deformation at Active Volcanoes?

Rheology of the Mantle and Plates (part 1): Deformation mechanisms and flow rules of mantle minerals

Lecture 8 Viscoelasticity and Deformation

Regional Geodesy. Shimon Wdowinski. MARGINS-RCL Workshop Lithospheric Rupture in the Gulf of California Salton Trough Region. University of Miami

The Finite Element Method for Mechonics of Solids with ANSYS Applicotions

Defmod, an earthquake simulator that adaptively switches between quasi-static and dynamic states

3D MODELING OF EARTHQUAKE CYCLES OF THE XIANSHUIHE FAULT, SOUTHWESTERN CHINA

Variations in Tremor Activity and Implications for Lower Crustal Deformation Along the Central San Andreas Fault

Frictional Properties on the San Andreas Fault near Parkfield, California, Inferred from Models of Afterslip following the 2004 Earthquake

Seismic and flexure constraints on lithospheric rheology and their dynamic implications

Heterogeneous Coulomb stress perturbation during earthquake cycles in a 3D rate-and-state fault model

Follow links Class Use and other Permissions. For more information, send to:

Time Dependence of Postseismic Creep Following Two Strike-Slip Earthquakes. Gerasimos Michalitsianos

Transcription:

Earthquake and Volcano Deformation Paul Segall Stanford University Draft Copy September, 2005 Last Updated Sept, 2008 COPYRIGHT NOTICE: To be published by Princeton University Press and copyrighted, c 2007 by Paul Segall. All rights reserved. No part of this book may be reproduced in any form by any electronic or mechanical means (including photocopying, recording, or information storage and retrieval) without permission in writing from the publisher. Users are not permitted to mount this file on any network servers. For more information, send e-mail to permissions@press.princeton.edu.

Contents 1 Deformation, Stress, and Conservation Laws 11 1.1 Strain............................................ 13 1.1.1 Strains in Curvilinear Coordinates........................ 20 1.2 Rotation........................................... 21 1.3 Stress............................................ 26 1.4 Coordinate Transformations................................ 29 1.5 Principal Strains and Stresses............................... 32 1.6 Compatibility equations.................................. 34 1.7 Conservation Laws..................................... 35 1.7.1 Equilibrium equations in curvilinear coordinates................ 37 1.8 Constitutive Laws..................................... 38 1.9 Reciprocal Theorem.................................... 41 2 Dislocation Models of Strike Slip Faults 47 2.1 Full Space Solution..................................... 48 2.2 Half Space Solution..................................... 53 2.2.1 Coseismic Faulting................................. 55 2.2.2 Interseismic Deformation............................. 56 2.2.3 Postseismic Slip.................................. 59 2.3 Distributed Slip....................................... 60 2.4 Application to the San Andreas and Other Strike Slip Faults............. 61 2.5 Displacement at Depth................................... 67 2.6 Summary.......................................... 68 3 Dip Slip Faults and Dislocations in Three Dimensions 71 3.1 Volterra s Formula..................................... 73 3.1.1 Body Force Equivalents and Moment Tensors.................. 74 3.2 Screw Dislocations..................................... 79 3.3 Two Dimensional Edge Dislocations........................... 81 3

4 CONTENTS 3.3.1 Dipping Fault.................................... 85 3.4 Coseismic Deformation Associated with Dipping Faults................ 91 3.5 Displacements and Stresses due to Edge Dislocation at Depth............. 97 3.6 Dislocations in three dimensions............................. 103 3.6.1 Full Space Green s Functions........................... 103 3.6.2 Half-Space Green s Functions........................... 104 3.6.3 Point Source Solutions............................... 106 3.6.4 Finite rectangular sources............................. 108 3.6.5 Examples...................................... 110 3.6.6 Distributed Slip................................... 116 3.7 Strain Energy Change due to Faulting.......................... 117 3.8 Problems.......................................... 118 3.9 References.......................................... 120 4 Crack Models of Faults 123 4.0.1 Inversion of the Integral Equation........................ 128 4.1 Displacement on Earth s Surface............................. 130 4.2 A Brief Introduction to Fracture Mechanics....................... 130 4.3 Non Singular Stress Distributions............................. 138 4.4 Comparison of Slip Distributions and Surface Displacements.............. 140 4.5 Boundary Element Methods................................ 144 4.6 Fourier Transform Methods................................ 145 4.7 Some Three Dimensional Crack Results......................... 148 4.8 Problems.......................................... 149 4.9 References.......................................... 150 5 Elastic Heterogeneity 155 5.1 Long Strike-Slip Fault Bounding Two Media....................... 155 5.2 Strike-Slip Fault Within a Compliant Fault Zone.................... 158 5.3 Strike-Slip Fault Beneath a Layer............................. 165 5.4 Strike-Slip Within a Layer over Half-space........................ 170 5.5 Propagator Matrix Methods................................ 172 5.5.1 The Propagator Matrix for Antiplane Deformation............... 176 5.5.2 Vertical Fault in a Homogeneous Half-Space................... 177 5.5.3 Vertical Fault Within Half-Space Beneath a Layer............... 178 5.5.4 Vertical Fault in Layer over Half-Space...................... 181 5.5.5 General solution for an arbitrary number of layers............... 183 5.5.6 Displacements and Stresses at Depth....................... 184 5.5.7 Propagator Methods for Plane Strain...................... 185 5.6 Propagator Solutions in Three Dimensions........................ 191

CONTENTS 5 5.7 Approximate Solutions for Arbitrary Variations in Properties............. 195 5.7.1 Variations in Shear Modulus........................... 199 5.7.2 Screw dislocation.................................. 200 5.7.3 Edge dislocation.................................. 201 5.8 Effects of Elastic Heterogeneity on Inversions...................... 205 5.9 Problems.......................................... 207 5.10 References.......................................... 208 6 Postseismic Relaxation 211 6.1 Elastic Layer over Viscous Channel............................ 214 6.2 Visco-Elasticity....................................... 220 6.2.1 Correspondence Principle............................. 223 6.3 Strike-slip Fault in an Elastic Plate overlying a Viscoelastic Half-space........ 224 6.3.1 Stress in Plate and Half-Space.......................... 231 6.4 Strike Slip Fault in Elastic Layer Overlying a Viscoelastic Channel.......... 231 6.5 Dip Slip Faulting...................................... 236 6.5.1 Examples...................................... 240 6.6 Three Dimensional Calculations.............................. 241 6.7 Concluding Remarks.................................... 242 6.8 References.......................................... 246 6.9 Problems.......................................... 247 7 Volcano Deformation 249 7.1 Spherical Magma Chamber................................ 252 7.1.1 Center of Dilatation................................ 258 7.1.2 Volume of the uplift, magma chamber, and magma............... 262 7.2 Ellipsoidal Magma Chambers............................... 265 7.3 Magmatic Pipes and Conduits............................... 277 7.4 Dikes and Sills....................................... 281 7.4.1 Crack models of dikes and sills.......................... 284 7.4.2 Surface Fracturing and Dike Intrusion...................... 289 7.5 Other Magma Chamber Geometries........................... 291 7.6 Viscoelastic Relaxation Around Magma Chambers................... 295 7.7 Problems.......................................... 303 7.8 References.......................................... 307 8 Topography and Earth Curvature 309 8.1 Scaling Considerations................................... 313 8.2 Implementation Considerations.............................. 315 8.3 Center of Dilatation beneath a volcano.......................... 316

6 CONTENTS 8.4 Earth s Sphericity..................................... 318 8.5 Summary.......................................... 321 8.6 Problems.......................................... 323 8.7 References.......................................... 324 9 Gravitational Effects 323 9.1 Non-dimensional Form of Equilibrium Equations.................... 326 9.2 Inclusion in propagator formulation............................ 330 9.3 Surface Gravity Approximation.............................. 331 9.4 Gravitational effects in viscoelastic solutions....................... 333 9.4.1 Incompressible Half-Space............................. 335 9.4.2 No Buoyancy Approximation........................... 337 9.4.3 Wang approach................................... 337 9.4.4 Comparison of Different Viscoelastic Models................... 338 9.4.5 Relaxed Viscoelastic Response.......................... 342 9.5 Changes in Gravity Induced by Deformation....................... 344 9.5.1 Gravity Changes and Volcano Deformation................... 349 9.5.2 An Example.................................... 353 9.6 Problems.......................................... 355 10 Poroelastic Effects 359 10.1 Constitutive Laws..................................... 362 10.1.1 Macroscopic Descriptions............................. 363 10.1.2 Micromechanical Description........................... 366 10.2 Field Equations....................................... 368 10.3 Analogy to Thermoelasticity............................... 371 10.4 One Dimensional Deformation............................... 372 10.4.1 Step Load on the Free Surface.......................... 373 10.4.2 Time varying fluid load at the free surface.................... 375 10.5 Dislocations in Two Dimensions.............................. 376 10.6 Inflating Magma Chamber in a Poroelastic Half-Plane................. 379 10.7 Cummulative Poroelastic Deformation in Three Dimensions.............. 386 10.8 Solution when pore pressure distribution is known................... 391 10.9 References.......................................... 396 10.10Exercises.......................................... 397 11 Fault Friction 401 11.1 Slip Weakening Friction.................................. 403 11.2 Velocity Weakening Friction................................ 405 11.3 Rate and State Friction.................................. 406

CONTENTS 7 11.4 Linearized Stability Analysis............................... 416 11.5 Implications for earthquake Nucleation.......................... 419 11.5.1 Spring-Slider Stick Slip Cycles.......................... 422 11.6 Non-linear stability analysis................................ 430 11.7 Afterslip........................................... 433 11.8 Transient Slip Events.................................... 439 11.9 Concluding Remarks.................................... 440 11.10Problems.......................................... 441 11.11References.......................................... 442 12 Interseismic Deformation and Plate Boundary Cycle Models 445 12.1 Elastic Dislocation Models................................. 445 12.1.1 Dip-slip faults.................................... 446 12.2 Plate Motions........................................ 450 12.3 Elastic Block Models.................................... 452 12.4 Viscoelastic Cycle Models................................. 454 12.4.1 Viscoelastic Strike-Slip Earthquake Cycle Models................ 454 12.4.2 Comparison to data from San Andreas Fault.................. 461 12.4.3 Viscoelastic Models with Stress Driven Deep Fault Creep........... 465 12.4.4 Viscoelastic Cycle models For Dipping Faults.................. 474 12.5 Rate-State Friction Earthquake Cycle Models...................... 487 12.6 References.......................................... 491 12.7 Problems.......................................... 493 A Integral Transforms 495 A.1 Fourier Transforms..................................... 495 A.2 Laplace Transforms..................................... 497 B A Solution to the Diffusion Equation 501 C Solution of an Integral by Contour Methods 505