Lecture 2: Double quantum dots

Similar documents
Electrical Control of Single Spins in Semiconductor Quantum Dots Jason Petta Physics Department, Princeton University

Lecture 8, April 12, 2017

Quantum Information Processing with Semiconductor Quantum Dots

Quantum Information Processing with Semiconductor Quantum Dots. slides courtesy of Lieven Vandersypen, TU Delft

We study spin correlation in a double quantum dot containing a few electrons in each dot ( 10). Clear

Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots

Introduction. Resonant Cooling of Nuclear Spins in Quantum Dots

SUPPLEMENTARY INFORMATION

Quantum Dot Spin QuBits

Controlling Spin Qubits in Quantum Dots. C. M. Marcus Harvard University

Single Spin Qubits, Qubit Gates and Qubit Transfer with Quantum Dots

Semiconductors: Applications in spintronics and quantum computation. Tatiana G. Rappoport Advanced Summer School Cinvestav 2005

Semiconductor few-electron quantum dots as spin qubits

Electron counting with quantum dots

Two-qubit Gate of Combined Single Spin Rotation and Inter-dot Spin Exchange in a Double Quantum Dot

Spin Coherent Phenomena in Quantum Dots Driven by Magnetic Fields

Intrinsic Charge Fluctuations and Nuclear Spin Order in GaAs Nanostructures

Quantum physics in quantum dots

Weak-measurement theory of quantum-dot spin qubits

Supplementary Material: Spectroscopy of spin-orbit quantum bits in indium antimonide nanowires

Determination of the tunnel rates through a few-electron quantum dot

Few-electron quantum dots for quantum computing

Quantum information processing in semiconductors

SUPPLEMENTARY INFORMATION

Title: Co-tunneling spin blockade observed in a three-terminal triple quantum dot

Spin electric coupling and coherent quantum control of molecular nanomagnets

Tunable Non-local Spin Control in a Coupled Quantum Dot System. N. J. Craig, J. M. Taylor, E. A. Lester, C. M. Marcus

Dipole-coupling a single-electron double quantum dot to a microwave resonator

Electron spins in nonmagnetic semiconductors

Developing Quantum Logic Gates: Spin-Resonance-Transistors

Spins in few-electron quantum dots

Magnetic field B B V

400 nm Solid State Qubits (1) Daniel Esteve GROUP. SPEC, CEA-Saclay

Influence of hyperfine interaction on optical orientation in self-assembled InAs/GaAs quantum dots

Coherent Control of a Single Electron Spin with Electric Fields

Kondo effect in multi-level and multi-valley quantum dots. Mikio Eto Faculty of Science and Technology, Keio University, Japan

A New Mechanism of Electric Dipole Spin Resonance: Hyperfine Coupling in Quantum Dots

Driven coherent oscillations of a single electron spin in a quantum dot

Quantum Computing with Semiconductor Quantum Dots

Deterministic Coherent Writing and Control of the Dark Exciton Spin using Short Single Optical Pulses

Quantum Computing Architectures! Budapest University of Technology and Economics 2018 Fall. Lecture 3 Qubits based on the electron spin

Coherent oscillations in a charge qubit

Driving Qubit Transitions in J-C Hamiltonian

Wave function engineering in quantum dot-ring structures

Commensurability-dependent transport of a Wigner crystal in a nanoconstriction

Spin-orbit qubit in a semiconductor nanowire

Quantum Computing with Electron Spins in Semiconductor Quantum Dots

Electron spin qubits in P donors in Silicon

Strongly Driven Semiconductor Double Quantum Dots. Jason Petta Physics Department, Princeton University

Qubits by electron spins in quantum dot system Basic theory

arxiv: v1 [cond-mat.mes-hall] 18 Sep 2012

Enhancement-mode quantum transistors for single electron spin

Shallow Donors in Silicon as Electron and Nuclear Spin Qubits Johan van Tol National High Magnetic Field Lab Florida State University

Electron Spin Qubits Steve Lyon Electrical Engineering Department Princeton University

Decoherence-free spin entanglement generation and purification in nanowire double quantum dots

Quantum Confinement in Graphene

Quantum Computation With Spins In Quantum Dots. Fikeraddis Damtie

Martes cuántico Zaragoza, 8 th October Atomic and molecular spin qubits. Fernando LUIS Instituto de Ciencia de Materiales de Aragón

Spin manipulation in a double quantum-dot quantum-wire coupled system

Hole Spin Relaxation in Ge- Si Core-Shell Nanowire Qubits

Laurens W. Molenkamp. Physikalisches Institut, EP3 Universität Würzburg

Synthesizing arbitrary photon states in a superconducting resonator

Supporting Online Material for

A Double Quantum Dot as an Artificial Two-Level System


CIRCUIT QUANTUM ELECTRODYNAMICS WITH ELECTRONS ON HELIUM

Manipulation of Majorana fermions via single charge control

Lecture2: Quantum Decoherence and Maxwell Angels L. J. Sham, University of California San Diego

arxiv: v1 [cond-mat.mes-hall] 8 May 2009

Bruit de grenaille mesuré par comptage d'électrons dans une boîte quantique

Nuclear spin control in diamond. Lily Childress Bates College

Time-dependent single-electron transport: irreversibility and out-of-equilibrium. Klaus Ensslin

Quantum Computation with Neutral Atoms Lectures 14-15

Supplementary Information

Lecture 9 Superconducting qubits Ref: Clarke and Wilhelm, Nature 453, 1031 (2008).

Rapid Single-Shot Measurement of a Singlet-Triplet Qubit

Electron spin coherence exceeding seconds in high-purity silicon

Superconducting Qubits Lecture 4

Stability Diagram of a Few-Electron Triple Dot

REPORT DOCUMENTATION PAGE

Manipulating and characterizing spin qubits based on donors in silicon with electromagnetic field

Singlet-Triplet Physics and Shell Filling in Carbon Nanotube Double Quantum Dots

Lecture 4. Feshbach resonances Ultracold molecules

Semiclassical limit and longtime asymptotics of the central spin problem. Gang Chen Doron Bergman Leon Balents

The effect of surface conductance on lateral gated quantum devices in Si/SiGe heterostructures

All optical quantum computation by engineering semiconductor. macroatoms. Irene D Amico. Dept. of Physics, University of York

Tuning the two-electron hybridization and spin states in parallel-coupled InAs quantum dots

Coulomb blockade and single electron tunnelling

Nuclear spin spectroscopy for semiconductor hetero and nano structures

Presented by: Göteborg University, Sweden

Higher-order spin and charge dynamics in a quantum dot-lead hybrid system

Superconducting Qubits

Saroj P. Dash. Chalmers University of Technology. Göteborg, Sweden. Microtechnology and Nanoscience-MC2

Contents. List of contributors Preface. Part I Nanostructure design and structural properties of epitaxially grown quantum dots and nanowires 1

Solid-State Spin Quantum Computers

Quantum Noise of a Carbon Nanotube Quantum Dot in the Kondo Regime

The Role of Spin in Ballistic-Mesoscopic Transport

Coherent control and charge echo in a GaAs charge qubit

arxiv: v1 [cond-mat.mes-hall] 17 Oct 2012

Controlling Spin Qubits in Quantum Dots

Transcription:

Lecture 2: Double quantum dots Basics Pauli blockade Spin initialization and readout in double dots Spin relaxation in double quantum dots

Quick Review Quantum dot Single spin qubit 1 Qubit states: 450 nm E Zeeman 0 Long spin relaxation time, T 1 ~ 1 sec.

Review: Coulomb blockade and charging in a single dot R 1,C 1 R 2,C 2 N-1 N N+1 N+2 I V G Energy V SD Charging energy E 2 c =e /2C V G E F e 2 /C Kastner, RMP 64, 849 (1992) V G V G

Double dot charge stability diagram R 1,C 1 R M,C M R 2,C 2 S D Two limits: V G1 V G2 C M 0 C M /C (1,2) 1 (2,0) (2,1) (2,2) V (1,0) (1,1) 1) (1,2) V G1 V G1 (0,0) (0,1) (0,2) V G2 V G2 Double dot review article: van der Wiel et al., RMP 75, 1 (2003)

Double dot charge stability diagram R 1,C 1 R M,C M R 2,C 2 S D V G1 V G2 In between these limits: (1,1) (2,0) (2,1) (2,2) V G1 (1,0) (1,1) (1,2) V G1 (0,0) (1,0) (0,0) (0,1) (0,2) (0,1) triple points V G2 V G2 Double dot review article: van der Wiel et al., RMP 75, 1 (2003)

Experimental setup Parameters: T= 0.030030 K, Feature size < 100 nm, Frequency = 35 GHz

Double dot measurements Charge transport T M, N~20 e 2 G D (10-3 /h) G SL 0.5 m G D G SR -650 V L (m mv) -670 (M+1,N) (M,N) (M+1,N+1) (M,N+1) L R -660 V -640 R (mv) Charge sensing M, N=0, 1, 2 150 100 50 0-1.05-1.00 V R (V) 0.24-1.0 0.20 016 0.16 QPC sensing: Field et al., PRL 70, 1311 (1993) GSR R (e 2 /h) L (V) V L -1.1 (1,0) (0,0) 0) (1,1) (0,1) 20 0 5 0 --5-10- -1.1 V R (V) -1.0 Petta et al., PRL 93, 186802 (2004) Elzerman et al., PRB 67, 161308 (2003) GD (10-3 e 2 /h) dg SR /dv VL (a.u.)

Charge -vs- spin qubits Charge physics: The one-electron regime (1,0) (0,1) -500 vs. V L (m mv) -5 0 5 dg rs /dv L (a.u.) (1,0) (1,1) (1,2) (0,0) 0) (0,1) (0,2) -550-450 V R (mv) -400 Spin physics: The two-electron regime -515 (0,2) (1,1) (1,1) (1,2) vs. V L (m mv) -530 (0,1) (0,2) -415 V R (mv) -400

Gate tunable interdot tunnel coupling 1.0 V T (V) -1.11 111-1.08 V t -1.04-1.12-1.01 V L (V) V t =-1.04 V V t M 0.5 0.0-1.13 L (V) V -1.14-10 0 dg S /dv L (au) (a.u.) d) d) V t =-1.01 V -1.10-1.09 V R (V) -1.09 109-1.08 108 V R (V) V t (V) -1.08-1.04-1.01-1 0 1 (mv) M 1 N = 2 1- tanh = 2 +4t 2 DiCarlo et al., kt 2t (GHz) <kt 7.2 16.9 Phys. Rev. Lett. 92, 226801 (2004)

Photon assisted tunneling in a one-electron double dot E A E A Energy E ħ ħ E B PAT in transport PAT in charge sensing -1.1313 f=24 GHz 2 5-1.08 f=24 GHz 2 1 1 0 L (V) V L -1.14 1 2-5 I D (pa) L (V) V L -1.09 1 2 0-10 G (10-3 e 2 S /h) -1.085 V R (V) -1.075-1.080 V R (V) -1.072

Charge qubit spectroscopy On resonance: = (hf) 2-4t 2 V t f<35 GHz V ac Energy 2t hf 1.0 f (GHz) off 10 20 30 ev) 100 V t (V) -1.08-1.04-1.02-1.01 2t (GHz) 24 2.4 6.2 9.2 13.2 M 0.5 Splitting ( 50 0.0 0 0 (mv) -1.0 0 1.0 See also: Oosterkamp et al., Nature 395, 873 (1998) 10 20 f (GHz) 30

Charge relaxation and dephasing measurement 1.00 f=24 GHz 04 0.4 5ns T 2 * 400 ps 1.0 2 1 max()/m ma ax(=5 ns) M m 0.75 ) M( 0.2 0 =1 s N 0.5 0.4 0.8 (mv) 12 db 6 db T 1 ~16 ns 0dB 2h/T* 2 0.50 001 0.01 01 0.1 (s) 1 10 0.0-2.0 20-1.5-1.0-0.5 (mv) Petta et al., PRL 93, 186802 (2004)

Charge qubit: Coherent oscillations Enhancement in T 2 at =0 Vion et al., Science (2002) Hayashi et al., PRL (2003), K. D. Petersson et al., PRL (2010)

Single spin qubits -vs- Singlet-triplet qubits Single spin qubit (Loss and DiVincenzo) 1 0 E Zeeman Encoded spin qubit- singlet-triplet qubit (J. Levy) Qubit encoded in two-electron spin states S T 0 1 2 1 2 m S =0 Basis: S and T 0, m S =0 m S =0 Insensitive to field fluctuations decoherence free subspace T T m S =1 m S =-1 Work in magnetic field, T + and T - not relevant due to Zeeman energy

The two electron regime (1,1) (1,1) singlet-triplet splitting: j=4t 2 /U=0.4 ev<<kt T - T O T + S j<<kt with U~4 mev, t~20 ev (0,2) (0,2) singlet-triplet splitting: Theory: J~0.3 mev T - T O T + Expt:J~01to1meV Expt.: J~0.1 to 1 J~400 ev Kyriakidis et al., PRB 66, 035320 (2002) Ashoori et al., PRL 71, 613 (1993) S

Double dot finite bias spectroscopy R L,C L R M,C M R R,C R S D I I d V sd V L V R Finite bias triangles (1,0) (1,1) 1) I d (pa) 0 4 8 V L (V) -1.105-1.1 100 (0,0) (0,1) -1.035-1.030 V R (V)

Singlet-triplet spin blockade in dc transport Ono et al., Science 297, 1313 (2002).

Singlet-triplet spin blockade in dc transport (0,2) (1,1) transport is allowed L R (1,1) 1) (0,2) transport tis spin blocked V L V L V L V L Johnson, Petta, Marcus (2005). See also Ono et al., Science 297, 1313 (2002). V R V R

Singlet-triplet spin blockade in charge sensing R Int (0,0) (0,1) (1,0) L V L V L V L V L V R V R

Loss & DiVincenzo Proposal Phys. Rev. A 57, 120 (1998) Prepare spin in ground state Spin to charge conversion T * 1, T 2, T 2 ESR for single spin rotations Exchange interaction Standard semiconductor fabrication

Spin singlet state initialization (1,1) (1,2) V L (mv) (0,1) V R (mv) (0,2) T P T P S e J kt 105 S

Loss & DiVincenzo Proposal Phys. Rev. A 57, 120 (1998) Prepare spin in ground state Spin to charge conversion T * 1, T 2, T 2 ESR for single spin rotations Exchange interaction Standard semiconductor fabrication

Spin state measurement (spin-to-charge conversion) (1,1) (1,2) V L (mv) (0,1) V R (mv) (0,2) (1,1) (0,2) G QPC T Singlet measurement Energy T - T O T + S S

Spin state measurement (spin-to-charge conversion) (1,1) (1,2) V L (mv) (0,1) V R (mv) (0,2) G QPC (1,1) (0,2) T Triplet measurement Energy T - T O T + S S

Loss & DiVincenzo Proposal Phys. Rev. A 57, 120 (1998) Prepare spin in ground state Spin to charge conversion T * 1, T 2, T 2 ESR for single spin rotations Exchange interaction Standard semiconductor fabrication

Spin Relaxation and Dephasing: The Two-Electron System Johnson, Petta, Taylor, Yacoby, Lukin, Hanson, Gossard, Marcus, Nature 435, 925 (2005).

Pulsed-Gate Measurement of Spin Relaxation (1,1) 1) (1,2) (0,1) (0,2) Johnson, Petta, Taylor, Yacoby, Lukin, Hanson, Gossard, Marcus, Nature 435, 925 (2005).

Pulsed-Gate Measurement of Spin Relaxation (1,1) 1) (1,2) (0,1) (0,2) Johnson, Petta, Taylor, Yacoby, Lukin, Hanson, Gossard, Marcus, Nature 435, 925 (2005).

Pulsed-Gate Measurement of Spin Relaxation (1,1) 1) (1,2) (0,1)

Pulsed-Gate Measurement of Spin Relaxation (1,1) 1) (1,2) (0,1) (0,2) Johnson, Petta, Taylor, Yacoby, Lukin, Hanson, Gossard, Marcus, Nature 435, 925 (2005).

Spin relaxation: Getting stuck in (1,1) In measurement triangle dark: transition to (0,2) occurs light: transition to (0,2) blockaded

Enhanced, energy-dependent relaxation at zero field

Effective nuclear field from hyperfine interaction Large ensemble with random spin orientations, slow internal dynamics... Quasistatic effective field k B nuc b 0 r k 2 Ik I k rms B nuc b 0 I 0 (I 0 1) / N GaAs: b 0 =3.47 T, I 0 =3/2 Our device: N~10 6-10 7 B nuc ~2-6 mt, t nuc ~3-10 ns

B Nuclear B Nuclear B Zeeman B Total B Total B Zeeman T 1, T 2 short T 1 long; T 2 short

Measuring the nuclear field: Energy dependence of tunnel rates Deviation above 1 ms Additional decay mechanism? t(b) t(0) B B nuc 2 1 B nuc =2.8 0.2 mt t nuc ~10 ns = T 2?