ECE-305: Fall 2017 Metal Oxide Semiconductor Devices

Similar documents
ECE-305: Fall 2017 MOS Capacitors and Transistors

ECE 305: Fall MOSFET Energy Bands

ECE 305 Exam 5 SOLUTIONS: Spring 2015 April 17, 2015 Mark Lundstrom Purdue University

Electrical Characteristics of MOS Devices

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

EE 560 MOS TRANSISTOR THEORY

ECE-305: Spring 2018 Exam 2 Review

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

an introduction to Semiconductor Devices

Lecture 15 OUTLINE. MOSFET structure & operation (qualitative) Review of electrostatics The (N)MOS capacitor

EECS130 Integrated Circuit Devices

MOS Capacitor MOSFET Devices. MOSFET s. INEL Solid State Electronics. Manuel Toledo Quiñones. ECE Dept. UPRM.

Lecture 22 Field-Effect Devices: The MOS Capacitor

Lecture 04 Review of MOSFET

Final Examination EE 130 December 16, 1997 Time allotted: 180 minutes

Lecture 15 OUTLINE. MOSFET structure & operation (qualitative) Review of electrostatics The (N)MOS capacitor

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences. EECS 130 Professor Ali Javey Fall 2006

Bipolar Junction Transistors: Solving Ebers-Moll Problems

! CMOS Process Enhancements. ! Semiconductor Physics. " Band gaps. " Field Effects. ! MOS Physics. " Cut-off. " Depletion.

Lecture 12: MOS Capacitors, transistors. Context

ECE-305: Spring 2018 Final Exam Review

! CMOS Process Enhancements. ! Semiconductor Physics. " Band gaps. " Field Effects. ! MOS Physics. " Cut-off. " Depletion.

Semiconductor Devices. C. Hu: Modern Semiconductor Devices for Integrated Circuits Chapter 5

SECTION: Circle one: Alam Lundstrom. ECE 305 Exam 5 SOLUTIONS: Spring 2016 April 18, 2016 M. A. Alam and M.S. Lundstrom Purdue University

MOS CAPACITOR AND MOSFET

MENA9510 characterization course: Capacitance-voltage (CV) measurements

Section 12: Intro to Devices

FIELD-EFFECT TRANSISTORS

Lecture 7 MOS Capacitor

1 Name: Student number: DEPARTMENT OF PHYSICS AND PHYSICAL OCEANOGRAPHY MEMORIAL UNIVERSITY OF NEWFOUNDLAND. Fall :00-11:00

MOS Capacitors ECE 2204

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ECE 340 Lecture 39 : MOS Capacitor II

Section 12: Intro to Devices

Semiconductor Integrated Process Design (MS 635)

MOSFET: Introduction

ECE-305: Fall 2016 Minority Carrier Diffusion Equation (MCDE)

Part 4: Heterojunctions - MOS Devices. MOSFET Current Voltage Characteristics

Fundamentals of the Metal Oxide Semiconductor Field-Effect Transistor

EE 130 Intro to MS Junctions Week 6 Notes. What is the work function? Energy to excite electron from Fermi level to the vacuum level

Lecture 6: 2D FET Electrostatics

ESE 570 MOS TRANSISTOR THEORY Part 1. Kenneth R. Laker, University of Pennsylvania, updated 5Feb15

1. The MOS Transistor. Electrical Conduction in Solids

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Review: MOSFET N-Type, P-Type. Semiconductor Physics.

The Devices: MOS Transistors

ECEN 3320 Semiconductor Devices Final exam - Sunday December 17, 2000

GaN based transistors

Semiconductor Physics fall 2012 problems

Scaling Issues in Planar FET: Dual Gate FET and FinFETs

Choice of V t and Gate Doping Type

Schottky diodes. JFETs - MESFETs - MODFETs

Lecture 12: MOSFET Devices

CMPEN 411 VLSI Digital Circuits. Lecture 03: MOS Transistor

CMOS Devices. PN junctions and diodes NMOS and PMOS transistors Resistors Capacitors Inductors Bipolar transistors

University of Pennsylvania Department of Electrical Engineering. ESE 570 Midterm Exam March 14, 2013 FORMULAS AND DATA

EECS130 Integrated Circuit Devices

Supporting information

Lecture 2. Introduction to semiconductors Structures and characteristics in semiconductors

MOSFET Physics: The Long Channel Approximation

8. Schottky contacts / JFETs

Semiconductor Junctions

P. R. Nelson 1 ECE418 - VLSI. Midterm Exam. Solutions

Semiconductor Physics Problems 2015

Lecture 11: MOS Transistor

MSE 310/ECE 340: Electrical Properties of Materials Fall 2014 Department of Materials Science and Engineering Boise State University

Extensive reading materials on reserve, including

The Intrinsic Silicon

Figure 3.1 (p. 141) Figure 3.2 (p. 142)

JFET/MESFET. JFET: small gate current (reverse leakage of the gate-to-channel junction) More gate leakage than MOSFET, less than bipolar.

Transistors - a primer

Lecture 22 - The Si surface and the Metal-Oxide-Semiconductor Structure (cont.) April 2, 2007

Semiconductor Device Physics

Lecture 5: CMOS Transistor Theory

Lecture 2. Introduction to semiconductors Structures and characteristics in semiconductors

Avalanche breakdown. Impact ionization causes an avalanche of current. Occurs at low doping

Content. MIS Capacitor. Accumulation Depletion Inversion MOS CAPACITOR. A Cantoni Digital Switching

Charge Storage in the MOS Structure. The Inverted MOS Capacitor (V GB > V Tn )

Lecture 3: CMOS Transistor Theory

Lecture 6 PN Junction and MOS Electrostatics(III) Metal-Oxide-Semiconductor Structure

ECE-305: Spring 2016 MOSFET IV

6.152J / 3.155J Spring 05 Lecture 08-- IC Lab Testing. IC Lab Testing. Outline. Structures to be Characterized. Sheet Resistance, N-square Resistor

The Gradual Channel Approximation for the MOSFET:

Electrostatics of Nanowire Transistors

Energy Bands & Carrier Densities

Chapter 7. The pn Junction

Integrated Circuits & Systems

6.012 Electronic Devices and Circuits

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

( )! N D ( x) ) and equilibrium

ECE606: Solid State Devices Lecture 23 MOSFET I-V Characteristics MOSFET non-idealities

Lecture 7 PN Junction and MOS Electrostatics(IV) Metal Oxide Semiconductor Structure (contd.)

Department of Electrical and Computer Engineering, Cornell University. ECE 3150: Microelectronics. Spring Due on March 01, 2018 at 7:00 PM

Problem 9.20 Threshold bias for an n-channel MOSFET: In the text we used a criterion that the inversion of the MOSFET channel occurs when V s = ;2 F w

VLSI Design The MOS Transistor

Circuits. L5: Fabrication and Layout -2 ( ) B. Mazhari Dept. of EE, IIT Kanpur. B. Mazhari, IITK. G-Number

MOS Transistors. Prof. Krishna Saraswat. Department of Electrical Engineering Stanford University Stanford, CA

How a single defect can affect silicon nano-devices. Ted Thorbeck

Thermionic Emission Theory

Lecture 2. Introduction to semiconductors Structures and characteristics in semiconductors. Fabrication of semiconductor sensor

ELEN0037 Microelectronic IC Design. Prof. Dr. Michael Kraft

Transcription:

C-305: Fall 2017 Metal Oxide Semiconductor Devices Pierret, Semiconductor Device Fundamentals (SDF) Chapters 15+16 (pp. 525-530, 563-599) Professor Peter Bermel lectrical and Computer ngineering Purdue University, West Lafayette, IN USA pbermel@purdue.edu Bermel C 305 F17 1

MOS capacitor 1) MOSFT and MOS capacitors 2) -bands and work functions 3) Band-bending in ideal MOS-C s 4) Accumulation, depletion, inversion 5) Depletion approximation 6) Gate voltage V G metal / heavily doped polysilicon SiO 2 t ox» 1-2 nm p-si Bermel C 305 F17 2

MOSFTs S G D source silicon drain SiO 2 gate electrode (Texas Instruments, ~ 2000) gate oxide OT ~ 1.1 nm channel ~ 20 nm 3

Basic Configuration of a MOSFT Gate Source n+ n+ n+ Drain y Substrate (p) Bermel C 305 F17 4

Background S G D n + n + Strained MOSFT High-k/metal gate MOSFT Sources: IBM J. Res. Dev. Google Images Intel website Bermel C 305 F17 5

MOSFT (off) V D 0 n + -Si L I V G < V D = 0 T n + -Si p-si Bermel C 305 F17 6

MOSFT (on) V D 0 n + -Si L I V G > V D > 0 T n + -Si p-si Bermel C 305 F17 7

MOSFT and MOS C n + -Si n + -Si p-si MOS capacitor 8

MOS capacitor SiO 2 t ox» 1-2 nm V G metal or heavily doped polysilicon p-si or n-si Bermel C 305 F17 9

oxide scaling: reaching its limits Bermel C 305 F17 10

how can we understand MOSFT performance? What characterizes its performance? How can we calculate it? What is the closest analogue that we ve already seen? Bermel C 305 F17 11

MOS capacitor 1) MOSFT and MOS capacitors 2) -bands and work functions 3) Band-bending in ideal MOS-C s 4) Accumulation, depletion, inversion 5) Depletion approximation 6) Gate voltage V G metal / heavily doped polysilicon SiO 2 t ox» 1-2 nm p-si Bermel C 305 F17 12

What we need to do: draw e-band diagram 0 c i F M C c S FM C metal i G» 8.9 ev G = 1.12 ev Si i F V SiO 2 Bermel C 305 F17 V 13

Recall the MS junction 0 F M = 4.08 ev c S = 4.05 ev F S FM C i aluminum FP V Bermel C 305 F17 14

built-in potential 0 F M = 4.08 ev c S = 4.05 ev F S FM C aluminum potential = V bi V bi = -F MS q = -f ms i FS V qv bi = ( FM - FS ) = ( F S - F M ) = -( F M - F S ) = -F MS 15

example: Aluminum metal and p-type Si N A = 10 16 cm -3 ( p 0 = N V e V - FS )/k T B cm -3 F M = 4.08 ev F S = c S + G - ( FS - V ) q æ FS - V = k B T ln è ç N V N A ö ø F S = 4.97 ev ( f ms = F - F M S ) q = - 0.9 V FS - V q = 0.2 V bi = -f ms = + 0.9 V Bermel C 305 F17 16

the band diagram C qv bi F i F V f M metal Bermel C 305 F17 17

MOS e-band diagram 0 c i F M C c S FM C G = 1.12 ev i i metal G» 8.9 ev Si F V SiO 2 Bermel C 305 F17 V 18

MOS e-band diagram 1) Built-in potential is exactly the same. 2) But part of the voltage drop occurs across the semiconductor and part across the oxide. Bermel C 305 F17 19

MOS capacitor 1) MOSFT and MOS capacitors 2) -bands and work functions 3) Band-bending in ideal MOS-C s 4) Accumulation, depletion, inversion 5) Depletion approximation 6) Gate voltage V G metal / heavily doped polysilicon SiO 2 t ox» 1-2 nm p-si Bermel C 305 F17 20

lectrostatics of MOS Capacitor in quilibrium qc i Vacuum level Gate qc s qf m C x Substrate (p) F V Schottky barrier with an interposed dielectric Metal Insulator P-Semiconductor Bermel C 305 F17 21

potential vs. position f( x) V ( metal) = V bi = -f ms = DV ox + DV S f S > 0 f = 0 -x ox 0 x Bermel C 305 F17 22

equilibrium e-band diagram DV ox f S V ( metal) = DV ox + f S C DV S i F V bi = -f ms metal V ( metal) = V bi f ( x) = 0 in the bulk V f ( x = 0) = f S surface potential Bermel C 305 F17 23

equilibrium e-band diagram constant electric field d ( ) dx = r x e C i F V metal V ( metal) = V bi monotonically decreasing electric field 26

equilibrium e-band diagram D ox = D S K ox e 0 ox = K S e 0 S DV OX S = ( 0 + ) K OX ox = K S ox» 3 S S ox DV S C i F V V bi metal Bermel C 305 F17 27

MOS capacitor 1) MOSFT and MOS capacitors 2) -bands and work functions 3) Band-bending in ideal MOS-C s 4) Accumulation, depletion, inversion 5) Depletion approximation V 6) Gate voltage G metal / heavily doped polysilicon SiO 2 t ox» 1-2 nm p-si Bermel C 305 F17 28

MOS capacitor (flat band) V G = 0 r = 0 p-si p 0 = N Ā V G = 0 No metal-semiconductor work function difference Bermel C 305 F17 29

MOS capacitor (accumulation) V G < 0 p-si V G < 0 r > 0 p 0 > N Ā Bermel C 305 F17 30

MOS capacitor (depletion) V G > 0 W p-si 0 < V G < V T r» -qn A p 0 << N Ā Bermel C 305 F17 31

MOS capacitor (inversion) V G > V T W T p-si V G > V T electrons r» -qn A p 0 << N Ā Bermel C 305 F17 32

band bending in an MOS device Flat band Accumulation Depletion Inversion Fig. 16.6, Semiconductor Device Fundamentals, R.F. Pierret 33

what if we had an N-type MOS-C? 1) Can we still achieve the same operating regimes? 2) What similarities should occur across devices in common regimes? 3) What might be different about them? V G metal / heavily doped polysilicon n-si SiO 2 t ox» 1-2 nm Bermel C 305 F17 34

hole density in the bulk depletion: ( p bulk = N A = n i e i( bulk)- F ) k B T qf ( x) f = 0 C p bulk = N A = n i e qf F k B T f S i qf F f F = k BT q ln æ è ç N A n i ö ø W Si F V x Bermel C 305 F17 35

electron density at the surface depletion: ( n surface = n i e F - i ( x=0) ) k B T qf ( x) f = 0 C ( n surface = n i e F - i ( bulk)+qf S ) k B T = n bulk e qf S k B T f S qf F i F n bulk = N A f S = 2f F W Si V x Bermel C 305 F17 36

onset of inversion depletion: qf ( x) f = 0 C f S = 2f F i f F = k BT q ln æ è ç N A n i ö ø W Si qf F F V x Bermel C 305 F17 37

accumulation, depletion, inversion depletion: 0 < f S < 2f F qf ( x) f = 0 f F = k BT q ln æ è ç C N A n i ö ø inversion: f S qf F i f S > 2f F F accumulation: f S < 0 W Si V x Bermel C 305 F17 38

MOS electrostatics: depletion 0 < f S < 2f F Given the surface potential: f S f ( x) f ( 0) C S ( f S ) W ( f S ) Q S ( f S ) = -qn A W ( f S ) What gate voltage produced this surface potential? f F i F V Si W x Depletion approximation for the charge in the semiconductor. Bermel C 305 F17 39

MOS capacitor 1) MOSFT and MOS capacitors 2) -bands and work functions 3) Band-bending in ideal MOS-C s 4) Accumulation, depletion, inversion 5) Depletion approximation 6) Gate voltage V G metal / heavily doped polysilicon SiO 2 t ox» 1-2 nm p-si Bermel C 305 F17 40

space charge density vs. position r ( x) d dx = r K S e 0 = - qn A K S e 0 -x ox 0 W = 0 x -qn A depletion charge Bermel C 305 F17 41

electric field (semiconductor) ( x) S P S =? W x 1) 1 2 SW = f S Bermel C 305 F17 42

surface electric field (semiconductor) d dx = - qn A K S e 0 ( x) S d = - qn A K S e 0 dx P ( 0) ò ( W ) d 1) 2) = - qn A K S e 0 1 2 0 ò W dx SW = f S = qn W A S K S e 0 Bermel C 305 F17 1) 2) 1 2 W SW = f S = qn W A S K S e 0 x 43

final answers (semiconductor) W = S = 2k Se 0 f S qn A 2qN Af S k s e 0 cm V/cm ( x) S 1 2 = qn A S W k S e 0 SW = f S P Q B = -qn A W ( f S ) C/cm 2 Q B ( f S ) = - 2qk s e 0 N A f S C/cm 2 0 < f S < 2f F W What gate voltage produced this surface potential? x 44

gate voltage and surface potential DV OX 0 < f S < 2f F V G = DV OX + f S DV ox = x o ox DV S C i F FM Si V metal V G =? Given the surface potential, what is the gate voltage? 45 Bermel C 305 F17 45

voltage drop across a capacitor V +V C º Q V = K Oe 0 A x o metal = F + + + + + + x o - - - - - - Q A C/cm 2 metal C ox = - Q A V V = - Q A C ox C A º Q A V = K Oe 0 = C ox F/cm 2 x o Bermel C 305 F17 46

relation to gate voltage ox V G = DV ox +f S DV ox = -Q B C OX ( f S ) metal V G -x o S ( x) W V G = - Q B Q B x ( f S ) C ox + f S ( f S ) = -qn A W ( f S ) C ox = K O e 0 Bermel C 305 F17 x o 47

summary W = S = 2k Se 0 f S qn A 2qN Af S k s e 0 Q B = -qn A W f S cm V/cm ( ) C/cm 2 ( x) S S = qn A W k S e 0 1 SW = f S 2 P Q B = - 2qk s e 0 N A f S C/cm 2 V G = - Q B ( f S ) C ox + f S W x 0 < f S < 2f F Bermel C 305 F17 48

MOS electrostatics: inversion f ( x) f ( 0) C f F i f S» 2f F ff Si F V W T é W T = 2K Se 0 ù ê 2f F ë qn ú A û 1/2 Maximum depletion region depth x 49

delta-depletion approximation r metal W T = 2k Se 0 2f F qn A -x o W T Q B = -qn A W T x r = -qn A Q n Bermel C 305 F17 50

delta-depletion approximation ( x) S ( 0) = - Q S K S e 0 ( 0 + ) = - Q B K S e 0 P Bermel C 305 F17 W x 51

MOS electrostatics: inversion f S» 2f F f ( x) f ( 0) V G = - Q S + 2f F C ox C V G = - Q B V T = - Q B ( 2f F ) + Q n C ox ( 2f F ) C ox + 2f F + 2f F f F Si f F i F V Q n = -C ox V G - ( ) V T W T é W T = 2K Se 0 ù ê 2f F ë qn ú A û Bermel C 305 F17 1/2 52 x

MOS capacitor 1) MOSFT and MOS capacitors 2) -bands and work functions 3) Band-bending in ideal MOS-C s 4) Accumulation, depletion, inversion 5) Depletion approximation 6) Gate voltage V G metal / heavily doped polysilicon SiO 2 t ox» 1-2 nm p-si Bermel C 305 F17 53

example Assume n+ poly Si gate 10 18 channel doping t ox = 1.5 nm S G D What is V T? e-field in oxide at V G = 1V? source silicon drain SiO 2 Bermel C 305 F17 54

example (cont.) V G = - Q S ( f S ) C ox + f S f F = k BT q ln æ è ç N A n i ö ø f F = 0.48 V V T = - Q B ( 2f F ) C ox V T = f ms - Q B + 2f F ( 2f F ) C ox + 2f F C ox = K O e 0 x o Q B = -qn A W ( 2f F ) Q B = - 2qk s e 0 N A 2f F C ox = 2.36 10-6 F/cm 2 Q B = -5.71 10-7 C/cm 2 V T = 0.14 V f ms = - k T B q ln æ è ç N A N D n i 2 ö ø f ms = -1.06 V Bermel C 305 F17 55

example (cont) Q n = -C ox ( V G - V T ) Q n = -2.06 10-6 C/cm 2 Q n q = -1.3 1013 C/cm 2 OX = - Q S = - Q + Q n B k ox e 0 k ox e 0 ( 2f B ) OX = 7.3 10 6 V/cm Bermel C 305 F17 56

Notation in SDF Chapter 16 V G means ; i.e. an ideal MOS structure with NO metal-semiconductor work function difference is assumed. Bermel C 305 F17 57

conclusions Introducing an oxide layer between a metal and semiconductor creates a new type of band structure This also allows for a new type of device, known as a metal-oxidesemiconductor field effect transistor (MOSFT) Discussed the primary MOS operational regimes: flat band, accumulation, depletion, and inversion The depletion approximation allows us to calculate the charge distribution and surface potentials of each regime This can then be translated into expressions for the gate voltage thresholds Bermel C 305 F17 58