ELECTROMAGNETIC INDUCTION CHAPTER - 38

Similar documents
SAFE HANDS & IIT-ian's PACE EDT-15 (JEE) SOLUTIONS

dt d Chapter 30: 1-Faraday s Law of induction (induced EMF) Chapter 30: 1-Faraday s Law of induction (induced Electromotive Force)

NARAYANA I I T / P M T A C A D E M Y. C o m m o n P r a c t i c e T e s t 1 6 XII STD BATCHES [CF] Date: PHYSIS HEMISTRY MTHEMTIS

2008 AP Calculus BC Multiple Choice Exam

Last time. Resistors. Circuits. Question. Quick Quiz. Quick Quiz. ( V c. Which bulb is brighter? A. A B. B. C. Both the same

1.2 Faraday s law A changing magnetic field induces an electric field. Their relation is given by:

Voltage, Current, Power, Series Resistance, Parallel Resistance, and Diodes

Exam 1. It is important that you clearly show your work and mark the final answer clearly, closed book, closed notes, no calculator.

PHYS ,Fall 05, Term Exam #1, Oct., 12, 2005

1997 AP Calculus AB: Section I, Part A

EAcos θ, where θ is the angle between the electric field and

Lecture Outline. Skin Depth Power Flow 8/7/2018. EE 4347 Applied Electromagnetics. Topic 3e

Part 7: Capacitance And Capacitors

Electromagnetism Physics 15b

Derivation of Electron-Electron Interaction Terms in the Multi-Electron Hamiltonian

A 1 A 2. a) Find the wavelength of the radio waves. Since c = f, then = c/f = (3x10 8 m/s) / (30x10 6 Hz) = 10m.

High Energy Physics. Lecture 5 The Passage of Particles through Matter

PH2200 Practice Final Exam Spring 2004

Unit 7 Charge-to-mass ratio of the electron

1973 AP Calculus AB: Section I

are given in the table below. t (hours)

7.4 Potential Difference and Electric Potential

as a derivative. 7. [3.3] On Earth, you can easily shoot a paper clip straight up into the air with a rubber band. In t sec

Seebeck and Peltier Effects

ECE 2210 / 00 Phasor Examples

(a) zero. B 2 l 2. (c) (b)

Preliminary Fundamentals

Sec 2.3 Modeling with First Order Equations

1997 AP Calculus AB: Section I, Part A

The pn junction: 2 Current vs Voltage (IV) characteristics

Math 34A. Final Review

Differentiation of Exponential Functions

MATHEMATICS (B) 2 log (D) ( 1) = where z =

Exam 2 Thursday (7:30-9pm) It will cover material through HW 7, but no material that was on the 1 st exam.

Mock Exam 2 Section A

Supplementary Materials

Solution: APPM 1360 Final (150 pts) Spring (60 pts total) The following parts are not related, justify your answers:

The van der Waals interaction 1 D. E. Soper 2 University of Oregon 20 April 2012

Chapter 8: Electron Configurations and Periodicity

On the Hamiltonian of a Multi-Electron Atom

v = = ˆ ˆ ˆ B x y x y x y y x = C m s 0.15 T m s T

Calculus II (MAC )

MATHEMATICS PAPER IB COORDINATE GEOMETRY(2D &3D) AND CALCULUS. Note: This question paper consists of three sections A,B and C.

5. B To determine all the holes and asymptotes of the equation: y = bdc dced f gbd

System variables. Basic Modeling Concepts. Basic elements single and. Power = effort x flow. Power = F x v. Power = V x i. Power = T x w.

Chapter 6 Current and Resistance

11: Echo formation and spatial encoding

Definition1: The ratio of the radiation intensity in a given direction from the antenna to the radiation intensity averaged over all directions.

Module 8 Non equilibrium Thermodynamics

Addition of angular momentum

Electrical Energy and Capacitance

MATHEMATICS PAPER IIB COORDINATE GEOMETRY AND CALCULUS. Note: This question paper consists of three sections A, B and C.

22/ Breakdown of the Born-Oppenheimer approximation. Selection rules for rotational-vibrational transitions. P, R branches.

Deepak Rajput

dy 1. If fx ( ) is continuous at x = 3, then 13. If y x ) for x 0, then f (g(x)) = g (f (x)) when x = a. ½ b. ½ c. 1 b. 4x a. 3 b. 3 c.

Elements of Statistical Thermodynamics

ECE602 Exam 1 April 5, You must show ALL of your work for full credit.

DIELECTRIC AND MAGNETIC PROPERTIES OF MATERIALS

AP PHYSICS C: ELECTRICITY AND MAGNETISM 2015 SCORING GUIDELINES

u 3 = u 3 (x 1, x 2, x 3 )

Section 11.6: Directional Derivatives and the Gradient Vector

LECTURE 17. Reminder Magnetic Flux

2. Background Material

Addition of angular momentum

EXST Regression Techniques Page 1

IVE(TY) Department of Engineering E&T2520 Electrical Machines 1 Miscellaneous Exercises

Where k is either given or determined from the data and c is an arbitrary constant.

Chapter 5: Electromagnetic Induction

Lecture 37 (Schrödinger Equation) Physics Spring 2018 Douglas Fields

SCALING OF SYNCHROTRON RADIATION WITH MULTIPOLE ORDER. J. C. Sprott

Classical Magnetic Dipole

Things I Should Know Before I Get to Calculus Class

Mathematics. Complex Number rectangular form. Quadratic equation. Quadratic equation. Complex number Functions: sinusoids. Differentiation Integration

MAXIMA-MINIMA EXERCISE - 01 CHECK YOUR GRASP

MCE503: Modeling and Simulation of Mechatronic Systems Discussion on Bond Graph Sign Conventions for Electrical Systems

Introduction to the quantum theory of matter and Schrödinger s equation

1 2 U CV. K dq I dt J nqv d J V IR P VI

COHORT MBA. Exponential function. MATH review (part2) by Lucian Mitroiu. The LOG and EXP functions. Properties: e e. lim.

ECE 344 Microwave Fundamentals

Strongly Connected Components

MA 262, Spring 2018, Final exam Version 01 (Green)

Physics 231 Exam III Dec. 1, 2003

Electrochemistry L E O

Hydrogen Atom and One Electron Ions

The graph of y = x (or y = ) consists of two branches, As x 0, y + ; as x 0, y +. x = 0 is the

Background: We have discussed the PIB, HO, and the energy of the RR model. In this chapter, the H-atom, and atomic orbitals.


Massachusetts Institute of Technology Department of Mechanical Engineering

University of Illinois at Chicago Department of Physics. Thermodynamics & Statistical Mechanics Qualifying Examination

Additional Math (4047) Paper 2 (100 marks) y x. 2 d. d d

DIFFERENTIAL EQUATION

Gradebook & Midterm & Office Hours

2. Laser physics - basics

10. Limits involving infinity

[ ] 1+ lim G( s) 1+ s + s G s s G s Kacc SYSTEM PERFORMANCE. Since. Lecture 10: Steady-state Errors. Steady-state Errors. Then

Physics 43 HW #9 Chapter 40 Key

INC 693, 481 Dynamics System and Modelling: The Language of Bound Graphs Dr.-Ing. Sudchai Boonto Assistant Professor

Introduction to Condensed Matter Physics

FEM FOR HEAT TRANSFER PROBLEMS دانشگاه صنعتي اصفهان- دانشكده مكانيك

Coupled Pendulums. Two normal modes.

Transcription:

. (a) CTOMAGNTIC INDUCTION CHAPT - 38 3 3.dl MT I M I T 3 (b) BI T MI T M I T (c) d / MI T M I T. at + bt + c s / t Volt (a) a t t Sc b t Volt c [] Wbr (b) d [a., b.4, c.6, t s] at + b. +.4. volt 3. (a) B.A.. 3 5. 5 d mv 3 3 B.A..3 3 6 5 d 4 5 d 4 mv 4 B.A.. 3 5 d 4 5 d 4 mv 5 B.A. d 5 d mv (b) mf is not constant in cas of ms and 3 ms as 4 mv and 4 mv. 4. BA.5 (5 ) 5 5 5 5 5 5 5 5 4 7.8 3. t 5 5. A mm ; i A, d cm ;. s d BA i A d 7 6 4 V. 6. (a) During rmoval, B.A. 5.5.5 5.5.5 Tsla-m.3.. 3 4 5 t A cm (ms) 38.

d.5 5 5V.5 5 (b) During its rstoration ;.5 Tsla-m ; t.5 s.5.5 5 V. (c) During th motion, d 7. 5 (a) 5 V, T.5 s i / A, H i T 4 5.5 5 J (b) 5 V, T.5 s i / A, H i T 5 J (c) Sinc nrgy is a scalar quantity Nt thrmal nrgy dvlopd 5 J + 5 J 5 J. 8. A 5 cm 5 4 m B B sin t. sin(3 t) 6 a) Max mf inducd in th coil d d (BA cos ) d 4 (B sint 5 ) 5 4 d B (sin t) B5 4 cos t. 5 3 4 cost 5 3 cost max 5 3.5 V b) Inducd mf at t (/9) s 5 3 cos t 5 3 cos (3 /9) 5 3 ½.5/.75 7.5 3 V c) Inducd mf at t /6 s 5 3 cos (3 /6) 5 3 V. 9. B. T A cm 4 m T s B.A. 4 5 5 5 V d. mv 3 V A ( ) 4 4 Dt. s, 8 38.

BA, BA d BA d BA 3 B 3 4 B 3 B 3 3 5T 4 4. Ara A, sistanc, B Magntic fild BA Ba cos BA d BA BA ; i it BA/. r cm m n turns / cm turns/m i 5 A B ni 4 7 5 3 6.8 3 T n turns r cm m Flux linking pr turn of th scond coil Br B 4 Total flux linking Bn r 4 3 Whn currnt is rvrsd. d 4 3 4 d 4 I 4 4 q I 4 4 4 C. 3. Spd u Magntic fild B Sid a a) Th prpndicular componnt i.. a sin is to b takn which is r to vlocity. So, l a sin 3 a/. Nt a charg 4 a/ a So, inducd mf BI aub b) Currnt aub 4..35 wbr,.85 wbr D (.85.35) wbr.5 wbr.5 sc a sin a u 3 a a B B 38.3

d.5 v..5 Th inducd currnt is anticlockwis as sn from abov. 5. i v(b l) v B l cos is angl btwn normal to plan and B 9. v B l cos 9. 6. u cm/, B.6 T a) At t sc, distanc movd cm/s cm d.6 ( 5 ) 3 4 V b) At t sc distanc movd cm Th flux linkd dos not chang with tim c) At t sc distanc cm Th loop is moving out of th fild and cm outsid. d da B.6 ( 5 ) 3 4 V d) At t 3 sc Th loop is total outsid and flux linkd. 7. As hat producd is a scalar prop. So, nt hat producd H a + H b + H c + H d 4.5 m 4.5 3 a) 3 4 V i 4 3 4.5 3 4 4 6.7 Amp. H a (6.7 ) 4.5 3 5 H b H d [sinc mf is inducd for 5 sc] H c (6.7 ) 4.5 3 5 So Total hat H a + H c (6.7 ) 4.5 3 5 4 J. 8. r cm, 4 db d db. T/, A d db r A.. 3.4. 3.4 4 4.57 4.57 i.39 4 3.9 5 A 4 9. a) S closd S opn nt 4 4 6 38.4 5cm a r b cm B d c

d db A i through ad b) 6 4 6 db A 5 V 6 6 6 V.5 7 A along ad 38.5 i.5 7 A along d a 6 c) Sinc both S and S ar opn, no currnt is passd as circuit is opn i.. i d) Sinc both S and S ar closd, th circuit forms a balancd what ston bridg and no currnt will flow along ad i.. i.. Magntic fild du to th coil () at th cntr of () is B Flux linkd with th scond, B.A () (a.m.f. inducd b) (a x Nia Na a (a x 3 / ) a d Na a 3 / (a x ) 3 / x ) Na a (a 3 / x ) Na a a) For x (a 3 / ) x d 3 / ) ( / )x r. /.v ( / )x r V ( / Na a v r) ( r) di. N 5, B. T ; r. cm. m 6, t. s a) Nd NB.A NBA cos 6 T T (for x /, / x /) 5 (.) 5 4 3. V 6.8 V 6.8 b) i.57 A 4 Q it.57.57 3 C. n turns, B 4 4 T A 5 cm 5 4 m a) Whn th coil is prpndicular to th fild nba Whn coil gos through half a turn BA cos 8 nba d nba (a Nia x 3 / ) d c a b a () d a () B

Th coil undrgos 3 rv, in min 3 rad/min rad/sc rad is swpt in sc. / rad is swpt / / sc d nba b) nba, nba ( 36 ) d 3 4 4 4 5 / c) i 3 4.5 3 5 4 q i 5 4 / 5 5 C. 3. r cm. m 4, N 8, B H 3 5 T N(B.A) NBA Cos 8 or NBA 3 5 3 4 whr d NBA 6 4 wbr i Q d 6 6 4 4.7 4 V 4 5 4.7 5 4.7 5 C. 38.6 3 V d db.a cos 4. mf B A sin BA sin (dq/ th rat of chang of angl btwn arc vctor and B ) a) mf maximum BA. 5 4 8 6.66 3 6.66 4 volt. b) Sinc th inducd mf changs its dirction vry tim, so for th avrag mf t 5. H t B A i sin t B A t ( cost) B A sin t t minut B A sin 8 / 6 6 6 8 / 6 6 4 r 4 B 8 6 6 64 8 4 65 6 64 65.33 7 J. 9 9

6. BA, 4 d (.) 6 5.57 6 V 7. l cm. m v cm/s. m/s B. T a) F q v B.6 9.6 N b) q qvb V/m This is cratd du to th inducd mf. c) Motional mf Bvl... 3 V 8. l m, B. T, v m/s, Blv..4 V 9. l m, v 3 7 m/s, B 3 T Motional mf Bvl 3 3 7 9 3.9 V 3. v 8 km/h 5 m/s B. 4 T, m Bvl. I 4 5 3 V Th voltmtr will rcord mv. 3. a) Zro as th componnts of ab ar xactly opposit to that of bc. So thy cancl ach othr. Bcaus vlocity should b prpndicular to th lngth. b) Bv l Bv (bc) +v at C c) as th vlocity is not prpndicular to th lngth. d) Bv (bc) positiv at a. i.. th componnt of ab along th prpndicular dirction. 3. a) Componnt of lngth moving prpndicular to V is B v b) Componnt of lngth prpndicular to vlocity a b c V V 33. l cm. m ; 6 ; B T V cm/s. m/s Bvl sin6 [As w hav to tak that componnt of lngth vctor which is r to th vlocity vctor].. 3 /.73 7.3 3 V. 34. a) Th.m.f. is highst btwn diamtr r to th vlocity. Bcaus hr lngth r to vlocity is highst. max VB b) Th lngth prpndicular to vlocity is lowst as th diamtr is paralll to th vlocity min. 6 v 38.7

35. F magntic ilb This forc producs an acclration of th wir. But sinc th vlocity is givn to b constant. Hnc nt forc acting on th wir must b zro. 36. Bvl sistanc r total lngth r (l + vt) 4(l + vt) i 37. Bvl i Bv r( vt) Bv r( vt) a) F ilb b) Just aftr t Bv B v B r( vt) r( vt) Bv B v F i B B r r F B v B v 4r r( vt) l l + vt T l/v 38. a) Whn th spd is V mf Blv sistanc r + r Bv Currnt r b) Forc acting on th wir ilb BvB B v r r Acclration on th wir B v m( r) B v c) v v + at v t [forc is opposit to vlocity] m( r) d) a dx v B x m( r) dv B v v dx m( r) dvm( r) B m( r)v x B 39.., B. T, l 3 cm.3 m B 8 cm.8 m a) F ilb 3. 5 N B v 3. 5 38.8 l v +v v i l v l V b c a d F

(.) (.8) 5 v 3. 5 3. v 5 m/s 3 4 6.4 4 b) mf vbl 5..8 4 V c) sistanc pr unit lngth sistanc of part ad/cb Bv V ab i. 8 d) sistanc of cd.8.7.8.8..8 5.8.36 V 3.6 V.8..8..8 5. V i 4 3 V 4. l cm m v cm/s m/s B H 3 5 T i A 6 A. i B v v B v tan i v B B v H 3 5 6 5 3 Bv B cos v cos 4. I Bv cos 5 Tsla (dip) tan (/3) Bv cos B F ilb Now, F mg sin [Forc du to gravity which pulls downwards] B v cos Now, mg sin B mg sin v cos 4. a) Th wirs constitut paralll mf. Nt mf B v 4 5 4 Nt rsistanc 9 Nt currnt 4. ma. b) Whn both th wirs mov towards opposit dirctions thn not mf Nt currnt B 4cm a l l Cos, vcos v b B 9 BT 38.9

43. P P 4cm 9 Q Q BT P P a) No currnt will pass as circuit is incomplt. b) As circuit is complt VP Q B v.4.5 3 V 3 i 3 A ma. 44. B T, V 5 I m/, a) Whn th switch is thrown to th middl rail Bvl 5 3 Currnt in th rsistor / 3 4. ma b) Th switch is thrown to th lowr rail Bvl 5 4 Currnt 45. Initial currnt passing i Hnc initial mf ir mf du to motion of ab Blv Nt mf ir Blv Nt rsistanc r 4 Hnc currnt passing 46. Forc on th wir ilb ib Acclration m 4. ma ir Bv r ibt Vlocity m 47. Givn Blv mg () Whn wir is rplacd w hav mg Blv ma [whr a acclration] mg Bv a m Now, s ut at mg Bv t [ s l] m t 4ml mg Bv 4ml mg mg / g. [from ()] 38. cm cm Q Q P P Q Q 5cm/s S d a g c i g b B g B b a

48. a) mf dvlopd Bdv (whn it attains a spd v) Currnt Bdv Bd v Forc This forc opposs th givn forc Bd v Nt F F Bd v F F B d v Nt acclration m b) Vlocity bcoms constant whn acclration is. F B d v m m F m B d v m F V B d c) Vlocity at lin t a dv v dv t F l B v m ln [F l B v] l B v tl B l n(f l B v) m v t m t B t ln(f l B v) ln(f) m l B t l B v m F l B v F l B t m l B vt F v m Fvm v v( ) l B 49. Nt mf Bvl Bv I from b to a r F I B Bv B lb ( Bv ) towards right. r r Aftr som tim whn Bvl, Thn th wir movs constant vlocity v Hnc v / Bl. t F d a b 38.

5. a) Whn th spd of wir is V mf dvlopd B V Bv b) Inducd currnt is th wir (from b to a) c) Down ward acclration of th wir mg F m du to th currnt B V mg - i B/m g m d) t th wir start moving with constant vlocity. Thn acclration B v m m V m g gm B a b dv ) a dv mg B m v / dv mg B v / m v mdv B v mg m B t B v log(mg v t m B v log log mg log(mg) t B B v mg tb log mg m B v tb log mg m B v mg ( v tb m B /m B v ) mg mg B / m B gt / Vm v v ( ) m v m mg B 38.

ds f) v ds v s vm ( t gt / vm ) Vm Vm t g gt / vm V / vm m V t gt m g Vm Vmt g gt / vm V g m g) d mgs mg ds mgv ( m gt / vm) dh BV i B v B gt / vm Vm( ) Aftr stady stat i.. T d mgs mgv m dh B B mg Vm Vm mgv m B Hnc aftr stady stat d H d mgs 5. l.3 m, B. 5 T, rpm v v rad/s 6 3.3 3 mf Blv. 5.3.33 3 3 6 V 3 3.4 6 V 9.4 6 V. 5. V at a distanc r/ r From th cntr B.3 B r Blv B r Br 53. B.4 T, rad/, r r 5 cm.5 m Considring a rod of lngth.5 m affixd at th cntr and rotating with th sam..5 v.5 Blv.4.5 5 I 5 3.5 ma It lavs from th cntr. 3 V B v 38.3

B 54. B ykˆ ngth of rod on y-axis V V î Considring a small lngth by of th rod d B V dy d B y V dy B d V ydy BV ydy B V y BV BV 55. In this cas B varis Hnc considring a small lmnt at cntr of rod of lngth dx at a dist x from th wir. B i x So, d i x vxdx d iv xt / xt / iv x / iv x ln ln x / x x dx iv [ln (x + l/) ln(x - l/)] x 56. a) mf producd du to th currnt carrying wir iv x ln x t currnt producd in th rod i iv x ln x Forc on th wir considring a small portion dx at a distanc x df i B l df i df i F iv x i ln x x v x dx ln x x v x ln x x t / xt / dx dx x i v x x ln ln x x v i x ln x ln x b) Currnt ln x 38.4 i x i x V l dx l

c) at of hat dvlopd i iv x iv x ln x x d) Powr dvlopd in rat of hat dvlopd i iv x ln x 57. Considring an lmnt dx at a dist x from th wir. W hav a) B.A. d i adx x a ia ab dx ia d ln{ a / b} b x d d ia b) ln[ a / b] a d ln[ a / n] i sin t ai cos t ln[ a / b] aicos t c) i ln[ a / b] r r H i rt aicos t ln( a / b) r t r a i ln [ a / b] r 4 r 5a i ln [ a / b] r [ t ] 58. a) Using Faraday law Considr a unit lngth dx at a distanc x B i x Ara of strip b dx d i dx x al a i bdx x al i dx ib a l b log x a mf a d d ib a l log a ib a va (a l)v (whr da/ V) a l a i b x a dx i l b x a dx v 38.5

ib a vl a l a ibvl (a l)a Th vlocity of AB and CD crats th mf. sinc th mf du to AD and BC ar qual and opposit to ach othr. B AB i a ngth b, vlocity v. B CD i (a l).m.f. CD ngth b, vlocity v. Nt mf 59. Bvl i Ba.m.f. AB i bv a ibv (a l) i bv a B a a ibv (a l) ibvl a(a l) Ba B a F ilb a B towards right of OA. 6. Th rsistancs r/4 and 3r/4 ar in paralll. r / 4 BVl i 3r r / 4 3r 6 a Ba B a Ba Ba 3r /6 6. W know Ba 6 8 Ba 3r 3 r B a F i B Componnt of mg along F mg sin. Nt forc 3 a mg sin. B 3 i C O B O B A a mg A 3r/4 l O B O F C D b A r/4 A F mg sin 6. mf [from prvious problm] B a / Ba Ba Currnt mg cos ilb [Nt forc acting on th rod is O] mg cos Ba a B (Ba )ab. mg cos C O A ilb C O mg mg cos 38.6

63. t th rod has a vlocity v at any instant, Thn, at th point, Blv Now, q c potntial c CBlv Currnt I dq d CBlv dv CBl CBla (whr a acclration) From figur, forc du to magntic fild and gravity ar opposit to ach othr. So, mg IlB ma mg CBla lb ma ma + CB l a mg a(m + CB l mg ) mg a m CB 64. a) Work don pr unit tst charg. dl ( lctric fild). dl d dl r r db r db r r db db A b) Whn th squar is considrd, dl r 4 db (r) db 4r 8r r db Th lctric fild at th point p has th sam valu as (a). l mg P r B v 65. di. A/s di For s. A/s n turn/m, 6. cm.6 m r cm. m a) BA d na di 4 7 3 4 [A 4 ] 6 57.9.6 8 d or, for s.785. d b).dl 38.7

c) d.785 dl d d dl 8. 7 V/m di n A 4 7. (.6) d / 4 r 7 66. V V di I I.5 (.5) 5A. s V di. (.6) 8 (5/.) 5 / 5 4/.4 Hnry. d 67. 8 4 wbr di n, I 4A, n 5.64 7 V/m or, or, 68. d di d n 8 4 H. N A 7 di 4 (4) ( ). 8 4 (4) 4 8 8 6577.384 8 6 4 V. 69. W know i i ( - t/r ) a) 9 t / i i ( r ).9 t/r t/r. Taking ln from both sids ln t/r ln. t.3 t/r.3 b) 99 t / i i ( r ) t/r. ln t/r ln. or, t/r 4.6 or t/r 4.6 99.9 t / r c) i i( ) t/r. ln t/r ln. t/r 6.9 t/r 6.9. 38.8

7. i A, 4V, H 4 i i. 5 7.. H,, mf 4. V, t. S i 4,. a) i i ( t/ ) 4.. /.7 A b) i (.7).89.3 J. 7. 4, 4V, t., i 63 ma i i ( t/ ) 63 3 4/4 (. 4/ ) 63 3 ( 4/ ) 63 ( 4/ ).63 4/ 4/.37 4/ ln (.37).994 4 4.4 H 4 H..994 73. 5. H,, mf. V t ms 3 s s i now i i ( t/ ) 5 i 5 / 5 i ( ).659.66. V i.66.66 V. 74. 4 ms i A a) t ms i i ( t/ ) ( /4 ) ( /4 ) (.7788) (.) A.44 A.44 A b) t ms i i ( t/ ) ( /4 ) ( / ) (.66).7869 A.79 A c) t ms i i ( t/ ) ( /4 ) ( /4 ) (.8).835 A.8 A d) t s i i ( t/ ) ( ( 5 ) A 3 / 4 ) ( /4 ) 38.9

75.. H,, mf. V.5 i. A i i ( t ) i i t di di t / (ix / ) i / t/. So, di. a) t ms./. 5.7 A.5 di. b) t ms./. 5.366 A.5 di. c) t s /. 5 4 9 A.5 76. a) For first cas at t ms di.7 di Inducd mf.7.7 V b) For th scond cas at t ms di.36 di Inducd mf c) For th third cas at t s di 4. 9 V di Inducd mf.36.36 V 4. 9 V 77. mh; 5. V, 3 5, i i i ( t/ ) i i i t / i i i t / di d 5 a) / i 3 b) 5 3 di i 5 t / t ms 3 s 5.5 3 V/s. d 5. / 3 6.844 7 V/ 38.

c) For t s d di 5 3 / 78. 5 mh, 5, 5 V a) t ms i i ( t/ t / ) ( ). V/s. 5 3 3 5 / ( ) 5 5 (.3678).64 5 Potntial diffrnc i.64 5 3.66 V 3.6 V. b) t ms i i ( t/ t / ) ( ) 5 3 3 5 / ( 5 ) 5 5 (.67).9864 5 Potntial diffrnc i.9864 5 4.9665 4.97 V. c) t sc i i ( t/ t / ) ( ) 5 3 5 / ( 5 ) 5 5 /5 A 5 Potntial diffrnc i (/5 5) V 5 V. 79. mh. H, mf 6, r i i ( t/ ) Now, dq i i ( t/ ) t / Q dq i( ) t t t / t / i i t ( ) t / t / i [t ( )] i [t ] Now, i 6 6.5 A.. a) t. s So, Q.5[. +../..].83.8 3 C.8 mc 38.

b) t ms. s So, Q.5[. +../..].5676 5.6 3 C 5.6 mc c) t ms. s So, Q.5[. +../..].45 C 45 mc 8. 7 mh, l m, A mm 6 m, f cu.7 8 -m 8 fcu.7.7 6 A 8.7 i sc m sc..7 8. / 5 ms.5 i t /. 6 a) i( ) t /.5 t /.5 ln t/.5 ln / t.5.693.3465 34.6 ms 35 ms. b) P i ( t. / Maximum powr ) So, ( t / ) t/ t/.93.77 t ln. 93.75 t 5.75 ms 6. ms. 8. Maximum currnt In stady stat magntic fild nrgy stord Th fourth of stady stat nrgy On half of stady nrgy t / ( ) 8 Again t / 4 8 t / t ln t ln 4 t / ( ) 38.

t / t n n So, t t n 83. 4. H,, 4 V a) Tim constant 4.4 s. b) i.63 i Now,.63 i i ( t/ ) t/.63.37 n t/ In.37 t/.994 t.994.4.3977.4 s. c) i i ( t/ ) 4.4 /.4 ( ).4.63.58 A. Powr dlivrd VI 4.58.. d) Powr dissipatd in Joul hating I (.58).639.64. 84. i i ( t/ ) ni n i ( t/ ) B B ( I/ ) 5 3.8 B B / ( ).8 ( / ) /. n( / ) n(.) /.69 6.9 6. 85. mf circuit a) dq i i ( t/ ) i ( I. ) [ /] Q t / dq i t t t i [t ( /) ( I/ ) t ] i [t / ( I/ )] Q / [t / ( I/ )] b) Similarly as w know work don VI I i [t / ( I/ )] c) H [t / ( I/ )] t t t / i ( ) t ( B) / t / ( ) 38.3

t / t t / t / t / t 3 t x x t (x 4x 3) t d) i t / ( ) [x t/ ] ( x) ) Total nrgy usd as hat as stord in magntic fild T x 4x 3 x x r t x t ( x) nrgy drawn from battry. (Hnc consrvation of nrgy holds good). 86. H,, V, t ms a) l l ( t/ ) 3 /. ( ). (.3678)..63 6.3 A. b) Powr dlivrd by th battry VI I ( t/ ) ( t / ) 3 ( / ). ( ).64 mw. c) Powr disspitd in hating th rsistor I t / [i ( )] (6.3 ma) 6.3 6.3 6 79.38 4 7.938 3 8 ma. d) at at which nrgy is stord in th magntic fild d/ (/ I ] 4 t / t / I ( ) ( ) (.35).465 4.6 3 4.6 mw. 38.4

87. A. H ; B. H ; a) t. s, A., B /. i A i ( t/ ). i B i ( t/ ) B. b) t ms. s i A i ( t/ ). ( ).644. ( / ).78693 ia.644.6 i.78693. /.( )..86466476.793943. / i B.( )..63.644 ia.793943.36.4 i.644 c) t s B / i A.( )..9999546.99999 / i B.( )..9936.98654 ia.99999. i.98654 88. a) For discharging circuit i i t/ 89. B./ (/)./ ln (/) ln (./ ).693././.693.44.4. b) 4 H, i /.4 4/ 4 /.4 8.57 8. Cas - I Cas - II In this cas thr is no rsistor in th circuit. So, th nrgy stord du to th inductor bfor and aftr rmoval of battry rmains sam. i.. V V i So, th currnt will also rmain sam. Thus charg flowing through th conductor is th sam. 38.5

9. a) Th inductor dos not work in DC. Whn th switch is closd th currnt chargs so at first inductor works. But aftr a long tim th currnt flowing is constant. Thus ffct of inductanc vanishs. ( ) i nt b) Whn th switch is opnd th rsistors ar in sris. nt 9. i. A, r cm, n turn/m Magntic nrgy stord. B V Whr B Magntic fild, V Volum of Solnoid. n i r h 7 6 4 4 4 8 5 78.956 5 7.9 4 J. 9. nrgy dnsity B Total nrgy stord 7 9 4 4 4 ( ) 93. I 4. A, V mm 3, d cm. m B i r Now magntic nrgy stord [h m] B V ( i/ r) i V V 4r 8 4 J. B 7 9 i 4 6 V 4 r 4 8 4 J.55 4 J 94. M.5 H di A s di.5.5 V V 38.6

95. W know d di M From th qustion, i a di d (i sin t) i cos t d aicost n[ a /b] di Now, M aicost or, n[ a / b] M icost M a n[ a /b] 96. mf inducd di V x r N di / (a x ) Na a V 3 / (a x ) ( /x r) (from qustion ) a a 3 / 97. Solnoid I : a 4 cm ; n 4/. m ; cm. m Solnoid II : a 8 cm ; n /. m ; cm. m B n i. lt th currnt through outr solnoid b i. i b n B.A n n i a 4 i 4. d Now M 4 64 di 7 4 di / 64 4 H H. 98. a) B Flux producd du to first coil n i Flux linkd with th scond n i NA n i N mf dvlopd [As Mdi/] di ( nin ) di nn nn icos t. 38.7