Design and Implementation of PI and PIFL Controllers for Continuous Stirred Tank Reactor System

Similar documents
Control Of Heat Exchanger Using Internal Model Controller

CHAPTER 5 FREQUENCY STABILIZATION USING SUPERVISORY EXPERT FUZZY CONTROLLER

Type-2 Fuzzy Logic Control of Continuous Stirred Tank Reactor

Enhanced Fuzzy Model Reference Learning Control for Conical tank process

Design and Implementation of Controllers for a CSTR Process

CHAPTER 7 MODELING AND CONTROL OF SPHERICAL TANK LEVEL PROCESS 7.1 INTRODUCTION

Dynamics and Control of Double-Pipe Heat Exchanger

RamchandraBhosale, Bindu R (Electrical Department, Fr.CRIT,Navi Mumbai,India)

FUZZY LOGIC CONTROL Vs. CONVENTIONAL PID CONTROL OF AN INVERTED PENDULUM ROBOT

Soft Computing Technique and Conventional Controller for Conical Tank Level Control

Analysis of Step Response, Impulse and Ramp Response in the Continuous Stirred Tank Reactor System

Research Article. World Journal of Engineering Research and Technology WJERT.

Design of Decentralised PI Controller using Model Reference Adaptive Control for Quadruple Tank Process

Secondary Frequency Control of Microgrids In Islanded Operation Mode and Its Optimum Regulation Based on the Particle Swarm Optimization Algorithm

Design of Decentralized Fuzzy Controllers for Quadruple tank Process

University of Science and Technology, Sudan Department of Chemical Engineering.

Cascade Control of a Continuous Stirred Tank Reactor (CSTR)

H-Infinity Controller Design for a Continuous Stirred Tank Reactor

K c < K u K c = K u K c > K u step 4 Calculate and implement PID parameters using the the Ziegler-Nichols tuning tables: 30

Steam-Hydraulic Turbines Load Frequency Controller Based on Fuzzy Logic Control

THE ANNALS OF "DUNAREA DE JOS" UNIVERSITY OF GALATI FASCICLE III, 2000 ISSN X ELECTROTECHNICS, ELECTRONICS, AUTOMATIC CONTROL, INFORMATICS

FUZZY CONTROL CONVENTIONAL CONTROL CONVENTIONAL CONTROL CONVENTIONAL CONTROL CONVENTIONAL CONTROL CONVENTIONAL CONTROL

Design of an Intelligent Control Scheme for Synchronizing Two Coupled Van Der Pol Oscillators

Simulation based Modeling and Implementation of Adaptive Control Technique for Non Linear Process Tank

Feedback Control of Linear SISO systems. Process Dynamics and Control

Lecture 5 Classical Control Overview III. Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore

Intelligent Systems and Control Prof. Laxmidhar Behera Indian Institute of Technology, Kanpur

Application of GA and PSO Tuned Fuzzy Controller for AGC of Three Area Thermal- Thermal-Hydro Power System

Design of Fuzzy PD-Controlled Overhead Crane System with Anti-Swing Compensation

Fuzzy Control of a Multivariable Nonlinear Process

A New Improvement of Conventional PI/PD Controllers for Load Frequency Control With Scaled Fuzzy Controller

Design and Tuning of Parallel Distributed Compensation-based Fuzzy Logic Controller for Temperature

IMPROVED TECHNIQUE OF MULTI-STAGE COMPENSATION. K. M. Yanev A. Obok Opok

CompensatorTuning for Didturbance Rejection Associated with Delayed Double Integrating Processes, Part II: Feedback Lag-lead First-order Compensator

MULTILOOP PI CONTROLLER FOR ACHIEVING SIMULTANEOUS TIME AND FREQUENCY DOMAIN SPECIFICATIONS

MODELLING AND REAL TIME CONTROL OF TWO CONICAL TANK SYSTEMS OF NON-INTERACTING AND INTERACTING TYPE

Sensors & Transducers 2015 by IFSA Publishing, S. L.

Tishreen University Journal for Research and Scientific Studies - Engineering Sciences Series Vol. ( ) No. ( ) PID

Modeling and Control of Chemical Reactor Using Model Reference Adaptive Control

Uncertain System Control: An Engineering Approach

EEE 550 ADVANCED CONTROL SYSTEMS

EXCITATION CONTROL OF SYNCHRONOUS GENERATOR USING A FUZZY LOGIC BASED BACKSTEPPING APPROACH

EFFECT OF VARYING CONTROLLER PARAMETERS ON THE PERFORMANCE OF A FUZZY LOGIC CONTROL SYSTEM

Design and Comparative Analysis of Controller for Non Linear Tank System

CHBE320 LECTURE XI CONTROLLER DESIGN AND PID CONTOLLER TUNING. Professor Dae Ryook Yang

HYBRID FUZZY LOGIC AND PID CONTROLLER FOR PH NEUTRALIZATION PILOT PLANT

Process Control, 3P4 Assignment 6

Inter-Ing 2005 INTERDISCIPLINARITY IN ENGINEERING SCIENTIFIC CONFERENCE WITH INTERNATIONAL PARTICIPATION, TG. MUREŞ ROMÂNIA, NOVEMBER 2005.

Temperature Control of CSTR Using Fuzzy Logic Control and IMC Control

ANALYSIS OF ANTI-WINDUP TECHNIQUES

Slovak Society of Chemical Engineering Institute of Chemical and Environmental Engineering Slovak University of Technology in Bratislava PROCEEDINGS

World Journal of Engineering Research and Technology WJERT

ECE Introduction to Artificial Neural Network and Fuzzy Systems

An improved auto-tuning scheme for PI controllers

Design On-Line Tunable Gain Artificial Nonlinear Controller

Fuzzy Control. PI vs. Fuzzy PI-Control. Olaf Wolkenhauer. Control Systems Centre UMIST.

CONSIM - MS EXCEL BASED STUDENT FRIENDLY SIMULATOR FOR TEACHING PROCESS CONTROL THEORY

FUZZY LOGIC CONTROL OF A NONLINEAR PH-NEUTRALISATION IN WASTE WATER TREATMENT PLANT

Design and Tuning of Fractional-order PID Controllers for Time-delayed Processes

DESIGN OF AN ON-LINE TITRATOR FOR NONLINEAR ph CONTROL

A Boiler-Turbine System Control Using A Fuzzy Auto-Regressive Moving Average (FARMA) Model

Design and Implementation of Two-Degree-of-Freedom Nonlinear PID Controller for a Nonlinear Process

Robust PID and Fractional PI Controllers Tuning for General Plant Model

A Hybrid Approach For Air Conditioning Control System With Fuzzy Logic Controller

Class 27: Block Diagrams

Introduction to System Identification and Adaptive Control

Analysis and Design of Control Systems in the Time Domain

Variable Sampling Effect for BLDC Motors using Fuzzy PI Controller

Improving a Heart Rate Controller for a Cardiac Pacemaker. Connor Morrow

Reduced Size Rule Set Based Fuzzy Logic Dual Input Power System Stabilizer

Models for Inexact Reasoning. Fuzzy Logic Lesson 8 Fuzzy Controllers. Master in Computational Logic Department of Artificial Intelligence

LOW COST FUZZY CONTROLLERS FOR CLASSES OF SECOND-ORDER SYSTEMS. Stefan Preitl, Zsuzsa Preitl and Radu-Emil Precup

Trajectory Design using State Feedback for Satellite on a Halo Orbit

Design and Implementation of Sliding Mode Controller using Coefficient Diagram Method for a nonlinear process

AN INTELLIGENT HYBRID FUZZY PID CONTROLLER

Control of Neutralization Process in Continuous Stirred Tank Reactor (CSTR)

Abstract. Keywords: Pasteurization, Empirical modelling, FOPTD model, process reaction curve

Index Terms Magnetic Levitation System, Interval type-2 fuzzy logic controller, Self tuning type-2 fuzzy controller.

Control 2. Proportional and Integral control

Index. INDEX_p /15/02 3:08 PM Page 765

3- DOF Scara type Robot Manipulator using Mamdani Based Fuzzy Controller

ABSTRACT I. INTRODUCTION II. FUZZY MODEL SRUCTURE

Auto-tuning of PID controller based on fuzzy logic

reality is complex process

EE 3CL4: Introduction to Control Systems Lab 4: Lead Compensation

TEMPERATUTE PREDICTION USING HEURISTIC DATA MINING ON TWO-FACTOR FUZZY TIME-SERIES

Improving the Control System for Pumped Storage Hydro Plant

Solutions for Tutorial 10 Stability Analysis

Dr Ian R. Manchester

Multiple Model Based Adaptive Control for Shell and Tube Heat Exchanger Process

DECENTRALIZED PI CONTROLLER DESIGN FOR NON LINEAR MULTIVARIABLE SYSTEMS BASED ON IDEAL DECOUPLER

Simulation Study on Pressure Control using Nonlinear Input/Output Linearization Method and Classical PID Approach

CHAPTER 6 CLOSED LOOP STUDIES

NonlinearControlofpHSystemforChangeOverTitrationCurve

ABSTRACT INTRODUCTION

Fuzzy Logic and Computing with Words. Ning Xiong. School of Innovation, Design, and Engineering Mälardalen University. Motivations

Performance Analysis of ph Neutralization Process for Conventional PI Controller and IMC Based PI Controller

FUZZY CONTROL OF CHAOS

Control of MIMO processes. 1. Introduction. Control of MIMO processes. Control of Multiple-Input, Multiple Output (MIMO) Processes

Pitch Control of Flight System using Dynamic Inversion and PID Controller

Transcription:

International Journal of omputer Science and Electronics Engineering (IJSEE olume, Issue (4 ISSN 3 48 (Online Design and Implementation of PI and PIFL ontrollers for ontinuous Stirred Tank Reactor System A. Albagul, M. Saad, and Y. Abujeela Abstract ontinuous stirred tank reactor system (STR is a typical chemical reactor system with complex nonlinear characteristics where an efficient control of the product concentration in STR can be achieved only through accurate model. The mathematical model of the system was derived. Then, the linear model was derived from the nonlinear model. A conventional PI controller and PI fuzzy logic controller for continuous stirred tank reactor are proposed to control the concentration of the linear STR. The simulation study has been curried out in MATLAB SIMULIN workspace. The best controller has been chosen by comparing the criteria of the response such as settling time, rise time, percentage of overshoot and steady state error. From the simulation result the PIFL controller has a better performance than conventional PI controller. eywords Dynamic modeling, PI and PIFL controllers, Stirred tank system, Matlab and Simulink I. INTRODUTION HE best way to learn about control systems is to design a Tcontroller, apply it to the system and then observe the system in operation. One example of systems that use control theory is ontinuous stirred tank reactor system (STR. It can usually be found in most university process control labs used to explain and teach control system engineering. It is generally linked to real control problems such as chemical factories, preparing of the antidotes in medicine and food processing too. It is widely used because it is very simple to understand; yet the control techniques that can be studied cover many important classical and modern design methods. ontinuous stirred tank reactor system (STR is a typical chemical reactor system with complex nonlinear characteristics. The system consists of two tanks as illustrated in Figure. The concentration of the outlet flow of two chemical reactors will be forced to have a specified response. It is assumed that the overflow tanks are well-mixed isothermal reactors, and the density is the same in both tanks. Due to the assumptions for the overflow tanks, the volumes in the two tanks can be taken to be constant, and all flows are A. Albagul is with the ontrol Engineering Department, Faculty of Electronic Technology, Baniwalid, Libya (phone: +8-53-5433; fax: +8-53-54334; e-mail: albagoul@ yahoo.com. M. Saad is with the ontrol Engineering Department, Faculty of Electronic Technology, Baniwalid, Libya (e-mail: mustafasaad9@yahoo.com Y. Abujeela is with is with the ontrol Engineering Department, Faculty of Electronic Technology, Baniwalid, Libya e-mail: yousef.yaqa@gmail.com constant and equal. It is assume that the inlet flow is constant. It is desired to control of the second tank concentration based on the concentration in the first tank. One of the popular controllers both in the realm of the academic and industrial application is the PI and PIFL controllers. They have been applied in feedback loop mechanism and extensively used in industrial process control. Easy implementation of both controllers, made it in system control applications. It tries to correct the error between the measured outputs and desired outputs of the process in order to improve the transient and steady state responses as much as possible. In one hand, PI controller appear to have an acceptable performance in some systems, but sometimes there are functional changes in system parameters that need an adaptive based method to achieve more accurate response. Several researches are available that combined the adaptive approaches on PI controller to increase its performance with respect to the system variations. Limitations of traditional approaches in dealing with constraints are the main reasons for emerging the powerful and flexible methods. In this paper a PI and PIFL controllers for unstable continuous stirred tank reactor are proposed to control the concentration of the linear STR. The performance of the PIFL controller will be compared with a conventional PI controller using Matlab Simulink. Finally, the task of this paper is to design and select the best controller for the system that can control the concentration of the STR. II. MODELING OF THE ONTINUOUS STIRRED TAN REATOR SYSTEM The concentration of the outlet flow of two chemical reactors will be forced to have a specified response in this section. Figure shows the simple concentration process control. It is assumed that the overflow tanks are well-mixed isothermal reactors, and the density is the same in both tanks. Due to the assumptions for the overflow tanks, the volumes in the two tanks can be taken to be constant, and all flows are constant and equal. It is assumed that the inlet flow is constant. Figure shows the block diagram of two tanks of chemical reactor. 3

International Journal of omputer Science and Electronics Engineering (IJSEE olume, Issue (4 ISSN 3 48 (Online Fig. The simple concentration process control AO (s A (s A (s TAN TAN Fig. The block diagram of the two tank system The value of the concentration in the second tank is desired but it depends on the concentration in the first tank. Therefore the component balances in both tanks are formulated. The transfer function of the first tank can be obtained as; d A F F ( A A A Where is the volume of the first tank, F is the flow, A the inlet concentration of the first tank, is the outlet A is concentration of the first tank and inlet concentration of the second tank and is the reaction rate. Equation can be rearranged to be d A F + A ( A τ Where τ is the time constant of the first tank. F + By taking Laplace transform and rearranging equation, the transfer function of the first tank can be expressed as A P (3 A s + Where F P F + is the gain of the transfer function of the first tank. The transfer function of the second tank can be derived d A F F (4 A A A Where and are the volume and the inlet concentration A of the second tank respectively. Equation 4 can be rearranged to be d A F + A (5 A τ Where τ is the time constant for the second tank. F + By taking Laplace transform and rearranging equation 5, the transfer function of the second tank can be obtained. A P (6 A s + Where F P F + is the gain of the transfer function of the second tank. The transfer function of the whole system can be obtained according to the following assumptions of parameters. - The flow rate is constant for the whole system 3 F.85m / min. - The volume of the two thanks is the same 3. 5m. 3- Reaction rate.4 min. Since the time constants and the gains are equal for both tanks, they can be computed as follows: τ 8.5 min F + F.669 F + The transfer function of the combined two tanks with the assumed parameters can be obtained A P G( s (7 A s +.66 G (8 s +.44s +.47 Figure 3 shows the block diagram of the open loop combined two tank system. AO (s G s.66 +.44s +.47 A (s Fig. 3 The block diagram of the open loop system III. ONTROL STRATEGY FOR THE TWO TAN SYSTEM In the section a control strategy for the two-tank system will be discussed and presented. The control strategy will be based on the proportional plus integral (PI and the proportional plus integral fuzzy logic controller (PIFL techniques. The proportional control mode produces a change in the controller output proportional to the error signal. Meanwhile, the integral control mode changes the output of the controller by an amount proportional to the integral of the error signal. Therefore, the integral mode is frequently combined with the proportional mode to provide an automatic reset action that eliminates the proportional offset. The combination is referred to as the proportional plus integral (PI control mode. The proportional mode provides change in the controller output 3

International Journal of omputer Science and Electronics Engineering (IJSEE olume, Issue (4 ISSN 3 48 (Online that is proportional to the error signal. The integral mode provides the reset action by constantly changing the controller output until the error is reduced to zero. The integral modes provide an additional change in the output that is proportional to the integral of the error signal. The reciprocal of integral action rate is the time required for the integral mode to match the change in output produce by the proportional mode. One problem with the integral mode is that it increases the tendency for oscillation of the controller variable. The gain of the proportional controller must be reduced when it is combined with the integral mode. This reduces the ability of the controller to respond to rapid load changes. The proportional plus integral control mode is used on processes with large load changes when the proportional mode along is not capable of reducing the offset to an acceptable level. The integral mode provides a reset action that eliminates the proportional offset. The primary reason for the derivative action is to improve the closed loop stability. ontrollers with proportional and derivative action can be interpreted in a way that the control is made proportional to the predicted output of the system. The time domain equation of the proportional plus integral mode is t u( t e( t + e( t (9 p I has high error compared with the desired value.so the controller is needed to eliminate this error. TABLE I PERFORMANE SPEIFIATION OF STEP RESPONSE FOR THE SYSTEM WITHOUT ONTROLLER S-S Error Over shoot Rise time Settling time.69 % sec 8 A. Design of the controller using Ziegler-Nichols step response method The design of a controller for the system will be presented and investigated. There are many techniques to design and tune a PI controllers. Ziegler-Nichols [4] gave two methods to tune the controller parameters. These methods are based on experimental procedure on the system response to the step changes in the input. These methods are still widely used in many applications. This method is based on the step response of the open-loop of the dynamic system. In this method it has been noticed that many dynamic systems exhibit a process reaction curve from which the controller parameters can be estimated. This curve can be obtained from either experimental data or dynamic simulation of the model. This method is firstly used for continuous systems but it can also be used for discrete systems if the sampling rate is very fast. The output response of the open loop of the dynamic model of the system was obtained, as shown in figure 6, to determine the parameters. Y( t Fig. 4 Simulink block diagram of the system without controller.35 step response without controller R Steepest slope tangent.3 concentration ( A final value output signal.5..5..5 3 4 5 6 7 8 9 time (sec Fig. 5 Step response of system without controller Table illustrates the Performance specification that defines the system response for the step response input for the system. The final value is.3943, but the desired value is in order to make the error steady state zero. From this case, the response L Fig. 6 Process step response The response will then reduced just to two main parameters, the time delay, L, and the steepest slope for the response, R, which defined in figure 5. The final values of the parameters for the PI controller can be calculated according to table II. B. Basic structure or FL system Fuzzy logic is the application of logic to imprecision and TABLE II ONTROLLER PARAMETERS TUNING USING TRANSIENT RESPONSE Type P T I T D P /RL PI.9/RL 3L 3

International Journal of omputer Science and Electronics Engineering (IJSEE olume, Issue (4 ISSN 3 48 (Online has found application in control system design in the form of Fuzzy Logic ontrollers (FLs. Fuzzy logic controllers facilitate the application of human expert knowledge, gained through experience, intuition or experimentation, to a control problem. Such expert knowledge of a system s behaviour and the necessary intervention required to adequately control that behaviour which is described using imprecise terms known as linguistic variables. The vagueness of linguistic variables reflects the nature of human observation and judgment of objects and events within our environment, system-related information to actions observed to provide sufficient system control. In this way, FLs obviate the need for complex mathematical descriptions of the system behaviour to the n th degree and thus offer an alternative method of system control. Figure 7 shows the components of a feedback control system that has an FL in place of a classical controller. An FL consists of three components; the fuzzification process, inference, and the defuzzifcation process. The fuzzification process interprets the inputs as linguistic values. Inference uses a knowledge base of rules to determine the output sets for the input linguistic values. Finally, the defuzzifcation process uses the output of the inference to derive a single crisp output value. In designing the controller, it is important to plan the characteristic of the controller. In designing FL, the input and output of the system, number of Fuzzy partitions must be identified, type of membership functions should be chosen correctly, Fuzzy control rules-based must be derived. Moreover, the inference engine and the defuzzification method should be chosen correctly. Fig. 7 FL in feedback control loop. Design of the PIFL system In designing any fuzzy logic controller the some steps should be followed. Firstly, number of inputs and size of universes of discourses. Secondly number and shape of fuzzy sets. Finally, delimitate all accepted cases in the inlet and expect the outlet at all cases as shown in figure 3.9. Regarding to the fuzzy structure, there are two inputs to fuzzy inference, which are error E (t, and changes rate of error E (t and two outputs for PI controller parameters respectively p, and i. Mamdani model is applied as structure of fuzzy inference with some modification to obtain the best value for p and i. The implementation of self-tuning PIFL controller for STR system in Simulink is shown in figure 9. It consists of fuzzy controller and PI block with some modification refers to the formula which is applied to calibrate the value of p and i from fuzzy block to obtain the value of p and i. Each parameter has its own calibration. Fig. 8 Fuzzy inference block Fig. 9 Block diagram of the system with PIFL D. Simulation and results The PI controller parameters are first determined using the Ziegler-Nichols transient response method which produced coefficients ( p 7 and I.75. These values were then fined tuned to produce a heuristic optimal response with coefficient values ( p 6.5 and I.65. Figure shows the output responses for the systems under PI controller. Meanwhile the output response for the PIFL controllers is shown in figure. Figure shows the output comparison ion between the PI and PID controllers. It can be seen that the PIFL controller has improved the performance of the system over the PI controller. The percentage overshoot has been eliminated. The settling time is improved by approximately 7%. However the rise time was much less in the case of PI controller. The steady-state error is zero in both cares. Table III shows the comparison between the two controllers. TABLE III PERFORMANE OMPARISONS BETWEEN PI AND PI FUZZY ONTROLLER Type of controller haracteristics PI Fuzzy PI Rise Time (T r sec 8.59 sec 3.5 sec Overshoot (OS % 9 % % Settling Time (T s sec 45.35 sec 4.3 sec SS. error ( e ss 33

International Journal of omputer Science and Electronics Engineering (IJSEE olume, Issue (4 ISSN 3 48 (Online oncentration ( A.4.4..8.6.4. Step response with PI coontroler 3 4 5 6 7 8 9 Fig. The output response for PI controller Step response with Fuzzy PI coontroler I. ONLUSION In this paper, the dynamic modeling of the STR was successfully derived. Two control strategies have been designed to control the output response of the STR system. It is important to select the most significant criterions such as small settling and rise times, no steady-state error and no overshoot in order to choose the best control strategy. However, these criterions cannot be achieved at same time. Therefore, it is necessary to decide which criterion that is most important to be achieved. For the STR system, the most required criterion is that the system should have no overshoot and zero steady-state error. Simulation results show that the PIFL controller has the best performance compared to the conventional PI controller. It can be seen that the output response of the system with PIFL controller has no overshoot and no steady-state error at lowest time. It takes shorter time to reach the steady state. Hence, it can be concluded that the PIFL controller is the best controller for the continuous stirred tank reactor (STR system. oncentration ( A oncentration ( A..8.6.4. 3 4 5 6 7 8 9.4..8.6.4. Fig. The output response for PIFL controller Step response with PI and Fuzzy PI coontroler PI Fuzzy PI 3 4 5 6 7 8 9 Fig. The comparison between PI and PIFL controller REFERENES [] M. Saad, A. Albagul, D. Obiad, Modeling and ontrol Design of ontinuous Stirred Tank Reactor System, 5th WSEAS International onference on Automatic ontrol, Modelling and Simulation (AMOS 3, Brasov, Romania, 3. [] J Prakash and Srinivasan, Design of nonlinear PID controller and nonlinear model predictive controller for a continuous stirred tank reactor, ISA Transactions, 48, 9. [3] Ahmad Ali and Somanath Majhi, PI/PID controller design based on IM and percentage overshoot specification to controller set point change, ISA Transactions, vol. 48, 9. [4] Rajinikanth and Latha, Identification and control of unstable biochemical reactor, International Journal of hemical Engineering and Applications, vol., no., June. [5] Nina F Thornhill, Sachin Patwardhan, Sirish L Shah, A continuous stirred tank heater simulation model with applications, Journal of Process ontrol, 8, 8. [6] B Wayne Bequette, Process ontrol: Modeling, Design and Simulation, Prentice Hall India, 8. [7] iam Heong Ang, Gregory hong and Yun Li, PID control system analysis, design and technology, IEEE Transactions on ontrol System Technology, vol. 3, no. 4, July 5. [8] Yun Li, iam Heong Ang and Gregory Y hong, PID control system analysis and design, IEEE ontrol Systems Magazine, Feb 6. [9] Jose Alvarez-Ramirez, America Morales, PI control of continuously stirred tank reactors: stability and performance, hemical Engineering Sciences, 55,. [] Nise, N.S., ontrol Systems and Engineering. Addison Wesley,. [] Dorf, R. and Bishop, R. H Modern control systems Prentice-Hall, 9. [] John,. Feedback control systems Prentice-Hall International Inc, USA, 994.Astrom,.J. and Wittenmark, B. Adaptive control Addison-Wesley, USA, 989. [3] Rahmat, M. F, Yazdani, A. M, Movahed, M. A and Zadeh, S. M Temprerature control of a continuous stirred tank reactor by means of two different intelligent stratigies May. [4] Malin, T. E Proccess control: Design process and control system for dynamic performance McGraw Hill, USA,. 34