Shell Eects in Atomic Nuclei

Similar documents
New Trends in the Nuclear Shell Structure O. Sorlin GANIL Caen

The Nuclear Many-Body Problem. Lecture 2

The Nuclear Many Body Problem Lecture 3

The Nuclear Many-Body problem. Lecture 3

Evolution Of Shell Structure, Shapes & Collective Modes. Dario Vretenar

RFSS: Lecture 8 Nuclear Force, Structure and Models Part 1 Readings: Nuclear Force Nuclear and Radiochemistry:

Lisheng Geng. Ground state properties of finite nuclei in the relativistic mean field model

c E If photon Mass particle 8-1

New Magic Number, N = 16, near the Neutron Drip-Line

arxiv: v1 [nucl-ex] 15 Sep 2012

Physics of neutron-rich nuclei

Nuclear Physics using RadioIsotope Beams. T. Kobayashi (Tohoku Univ.)

Nuclear Landscape not fully known

Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation August Introduction to Nuclear Physics - 1

Many-Body Resonances of Nuclear Cluster Systems and Unstable Nuclei

Lecture 4: Nuclear Energy Generation

Exotic Nuclei. Ingo Wiedenhöver, National Nuclear Physics Summer School 7/16/2007 Tallahassee, Florida

Title. Author(s)Itagaki, N.; Oertzen, W. von; Okabe, S. CitationPhysical Review C, 74: Issue Date Doc URL. Rights.

Nuclear structure theory

The Nuclear Shell Model Toward the Drip Lines

Nuclear Shell Model. Experimental evidences for the existence of magic numbers;

Cluster Models for Light Nuclei

Quantum Theory of Many-Particle Systems, Phys. 540

Study of the spin orbit force using a bubble nucleus O. Sorlin (GANIL)

Structures and Transitions in Light Unstable Nuclei

The Proper)es of Nuclei. Nucleons

Central density. Consider nuclear charge density. Frois & Papanicolas, Ann. Rev. Nucl. Part. Sci. 37, 133 (1987) QMPT 540

Nuclear Spectroscopy I

Coupled-cluster theory for nuclei

What did you learn in the last lecture?

13 Synthesis of heavier elements. introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1

The semi-empirical mass formula, based on the liquid drop model, compared to the data

arxiv: v2 [nucl-th] 8 May 2014

Alpha inelastic scattering and cluster structures in 24 Mg. Takahiro KAWABATA Department of Physics, Kyoto University

Probing the shell model using nucleon knockout reactions

8 Nuclei. introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1

First RIA Summer School on Exotic Beam Physics, August 12-17, Michael Thoennessen, NSCL/MSU. Lecture 1: Limits of Stability 1 A = 21

From few-body to many-body systems

The IC electrons are mono-energetic. Their kinetic energy is equal to the energy of the transition minus the binding energy of the electron.

WEAKLY BOUND NEUTRON RICH C ISOTOPES WITHIN RMF+BCS APPROACH

Lesson 5 The Shell Model

Chapter 44. Nuclear Structure

* On leave from FLNR / JINR, Dubna

Shape Coexistence and Band Termination in Doubly Magic Nucleus 40 Ca

Testing the validity of the Spin-orbit interaction Nuclear forces at the drip-line O. Sorlin (GANIL, Caen, France)

arxiv:nucl-th/ v1 14 Nov 2005

Alpha Clustering in Nuclear Reactions Induced by Light Ions

The Shell Model: An Unified Description of the Structure of th

The Charged Liquid Drop Model Binding Energy and Fission

Nucleon Pair Approximation to the nuclear Shell Model

Introductory Nuclear Physics. Glatzmaier and Krumholz 7 Prialnik 4 Pols 6 Clayton 4.1, 4.4

Lecture 4. Magic Numbers

14. Structure of Nuclei

Cluster and shape in stable and unstable nuclei

Fermi gas model. Introduction to Nuclear Science. Simon Fraser University Spring NUCS 342 February 2, 2011

Coupled-cluster theory for medium-mass nuclei

Probing the evolution of shell structure with in-beam spectroscopy

Properties of Nuclei deduced from the Nuclear Mass

Experiments with exotic nuclei I. Thursday. Preliminaries Nuclear existence Decay modes beyond the driplines Ground-state half-lives.

Silvia M. Lenzi University of Padova and INFN. Silvia Lenzi, 10th Int. Spring Seminar on Nuclear Physics, Vietri sul Mare, May 21-25, 2010

Study of the spin orbit force using a bubble nucleus O. Sorlin (GANIL)

PHL424: Nuclear Shell Model. Indian Institute of Technology Ropar

Towards 78 Ni: In-beam γ-ray spectroscopy of the exotic nuclei close to N=50

Theoretical Nuclear Physics

The nucleus and its structure

Direct reactions methodologies for use at fragmentation beam energies

Instead, the probability to find an electron is given by a 3D standing wave.

Going beyond the traditional nuclear shell model with the study of neutron-rich (radioactive) light nuclei

Hybridization of tensor-optimized and high-momentum antisymmetrized molecular dynamics for light nuclei with bare interaction

LECTURE 25 NUCLEAR STRUCTURE AND STABILITY. Instructor: Kazumi Tolich

Nuclear and Radiation Physics

Chemistry 1000 Lecture 3: Nuclear stability. Marc R. Roussel

Three-Nucleon Forces and Masses of Neutron-Rich Nuclei Jason D. Holt

Formation of Two-Neutron Halo in Light Drip-Line Nuclei from the Low-Energy Neutron-Neutron Interaction

arxiv:nucl-th/ v4 30 Jun 2005

Shell evolution in neutron rich nuclei

The interacting boson model

P. Marevic 1,2, R.D. Lasseri 2, J.-P. Ebran 1, E. Khan 2, T. Niksic 3, D.Vretenar 3

Coulomb Breakup as a novel spectroscopic tool to probe directly the quantum numbers of valence nucleon of the exotic nuclei

Physics with Exotic Nuclei

Alpha decay. Introduction to Nuclear Science. Simon Fraser University Spring NUCS 342 February 21, 2011

The Ring Branch. Nuclear Reactions at. Mass- and Lifetime Measurements. off Exotic Nuclei. Internal Targets. Electron and p. Experiments: Scattering

Quantum Theory of Many-Particle Systems, Phys. 540

RNB at GANIL from SPIRAL to SPIRAL 2

Basic Nuclear Theory. Lecture 1 The Atom and Nuclear Stability

Nuclear Structure Study of Two-Proton Halo-Nucleus 17 Ne

AFDMC Method for Nuclear Physics and Nuclear Astrophysics

Physics 102: Lecture 26. X-rays. Make sure your grade book entries are correct. Physics 102: Lecture 26, Slide 1

Physics 228 Today: April 22, 2012 Ch. 43 Nuclear Physics. Website: Sakai 01:750:228 or

Coexistence phenomena in neutron-rich A~100 nuclei within beyond-mean-field approach

RFSS: Lecture 2 Nuclear Properties

Some (more) High(ish)-Spin Nuclear Structure. Lecture 2 Low-energy Collective Modes and Electromagnetic Decays in Nuclei

Nuclear Science Seminar (NSS)

Direct Reactions with Exotic Nuclei Recent results and developments. Alexandre Obertelli. CEA Saclay, IRFU/SPhN

Reaction Cross Sections and Nucleon Density Distributions of Light Nuclei. Maya Takechi

Probing properties of the nuclear force in extreme conditions

Deformed (Nilsson) shell model

Large scale shell model calculations for neutron rich fp-shell nuclei

Lecture 2. The Semi Empirical Mass Formula SEMF. 2.0 Overview

Study of oblate nuclear shapes and shape coexistence in neutron-deficient rare earth isotopes

Transcription:

L. Gaudefroy, A. Obertelli Shell Eects in Atomic Nuclei 1/37 Shell Eects in Atomic Nuclei Laurent Gaudefroy 1 Alexandre Obertelli 2 1 CEA, DAM, DIF - France 2 CEA, Irfu - France Shell Eects in Finite Quantum Systems Erice-Sicily July 25-31, 2010

L. Gaudefroy, A. Obertelli Shell Eects in Atomic Nuclei 2/37 The atomic nucleus General properties Z Protons: J π = 1/2 + ; N Neutrons: J π = 1/2 + ; A = N + Z fermions. Strong interaction range: 2 fm Nuclear radius: R r 0 A 1/3 fm, r 0 1.2 fm. Nucleon mean free path: > R.

L. Gaudefroy, A. Obertelli Shell Eects in Atomic Nuclei 3/37 From nucleon-nucleon to nuclear interaction Nuclei description Strong short-range repulsion; A (N+Z) interacting fermions; Ab initio approach Nuclear mean eld Created by the (A-1) nucleons; Replaces NN-interaction. Shell Model or Mean Field approaches.

L. Gaudefroy, A. Obertelli Shell Eects in Atomic Nuclei 4/37 Magic numbers: 2, 8, 20, 28, 50, 82, 126 Goeppert Mayer & Jensen From M. Goeppert Mayer Nobel Lecture (1963) "What makes a number magic is that a conguration of a magic number of neutrons, or of protons, is unusually stable whatever the associated number of the other nucleons.[... ] We found that there were a few nuclei which had greater isotopic as well as cosmic abundance than our theory or any other reasonable theory could explain. Then I found those nuclei had something in common: they either had 82 neutrons, [... ] or 50 neutrons."

L. Gaudefroy, A. Obertelli Shell Eects in Atomic Nuclei 5/37 Spin-Orbit interaction Harmonic oscillator potential U(r) = 1 2 Mω2 r 2 Magic numbers: 2, 8, 20, 40, 70 Angular momentum and spin-orbit U (r) = U(r) + l 2 + ls Magic numbers: 2, 8, 20, 28, 50, 82

L. Gaudefroy, A. Obertelli Shell Eects in Atomic Nuclei 6/37 Success and failure of the nuclear shell model Good features 1 Accounts for known magic numbers. 2 Reproduces J π, E, Q, µ... Bad features 1 Built from knowledge on stable nuclei. 2 (Dis)appearance of magic numbers in unstable nuclei.

L. Gaudefroy, A. Obertelli Shell Eects in Atomic Nuclei 7/37 Outline Today 1 Few body systems. Haloes. Clusters. 2 Heavier systems. Shell evolution: general view. Studies at N = 28. Tomorrow 1 Shapes and coexistence. 2 Super heavy elements.

L. Gaudefroy, A. Obertelli Shell Eects in Atomic Nuclei 8/37 Few-body systems Why? 1 Nuclear interaction A 1/3 2 Strong shell eects expected 3 Exotic phenomena Haloes Clusters

L. Gaudefroy, A. Obertelli Shell Eects in Atomic Nuclei 9/37 Density distributions in He isotopes S.C. Pieper & R.B. Wiringa Annu. Rev. Nucl. Part. Sci.51, 53(2001). Add 2 neutrons to 4 He ρ(r > 2) factor of 10. 6 He 8 He

L. Gaudefroy, A. Obertelli Shell Eects in Atomic Nuclei 9/37 Density distributions in He isotopes S.C. Pieper & R.B. Wiringa Annu. Rev. Nucl. Part. Sci.51, 53(2001). Add 2 neutrons to 4 He ρ(r > 2) factor of 10. 6 He 8 He From 40 Ca to 42 Ca No signicant change.

L. Gaudefroy, A. Obertelli Shell Eects in Atomic Nuclei 9/37 Density distributions in He isotopes S.C. Pieper & R.B. Wiringa Annu. Rev. Nucl. Part. Sci.51, 53(2001). Add 2 neutrons to 4 He ρ(r > 2) factor of 10. 6 He 8 He From 40 Ca to 42 Ca No signicant change. idem for 44 Ca...

Density distributions in He isotopes S.C. Pieper & R.B. Wiringa Annu. Rev. Nucl. Part. Sci.51, 53(2001). Add 2 neutrons to 4 He ρ(r > 2) factor of 10. 6 He 8 He From 40 Ca to 42 Ca No signicant change. idem for 44 Ca... 20 neutrons latter ρ(r > 2). L. Gaudefroy, A. Obertelli Shell Eects in Atomic Nuclei 9/37

L. Gaudefroy, A. Obertelli Shell Eects in Atomic Nuclei 10/37 Halo nuclei An exotic phenomenon Weakly bound nuclei. Extension of neutron wave function out of the interaction range! Linked to shell structure (s or p waves).

L. Gaudefroy, A. Obertelli Shell Eects in Atomic Nuclei 11/37 Halo nuclei: Experimental evidence R from reaction cross section: σ = π(r Target + R Proj ) 2. I. Tanihata, J. Phys. G: Nucl. Part. Phys.22, 157 (1996).

L. Gaudefroy, A. Obertelli Shell Eects in Atomic Nuclei 11/37 Halo nuclei: Experimental evidence R from reaction cross section: σ = π(r Target + R Proj ) 2. Does not follow A 1/3 law for: ( 6,8 He), 11 Li, 11,14 Be and 17 B. (Near) Drip line nuclei. I. Tanihata, J. Phys. G: Nucl. Part. Phys.22, 157 (1996).

L. Gaudefroy, A. Obertelli Shell Eects in Atomic Nuclei 12/37 Halo nuclei: Shell eect

L. Gaudefroy, A. Obertelli Shell Eects in Atomic Nuclei 12/37 Halo nuclei: Shell eect Drip-line Loosely bound systems Ψ(r) e Snr r. Low l Centrifugal force.

L. Gaudefroy, A. Obertelli Shell Eects in Atomic Nuclei 13/37 Halo nuclei: Shell eect Drip-line Loosely bound systems Ψ(r) e Snr r. Low l Centrifugal force.

L. Gaudefroy, A. Obertelli Shell Eects in Atomic Nuclei 14/37 Halo nuclei: Shell eect Structural eect From N = 9 to N = 14: νd 5/2 lling. Strong shell eect Shell rearrangement.

L. Gaudefroy, A. Obertelli Shell Eects in Atomic Nuclei 14/37 Halo nuclei: Shell eect Structural eect From 15 C 9 to 22 C 16 νs 1/2 orbit as GS. Not yet quantitatively understood.

L. Gaudefroy, A. Obertelli Shell Eects in Atomic Nuclei 15/37 Halo nuclei Summary 1 Extension of nucleon wave function out of interaction range. 2 Appear in light loosely bound nuclei. 3 Shell eects orbital reordering.

L. Gaudefroy, A. Obertelli Shell Eects in Atomic Nuclei 16/37 Density distribution in 8 Be. Unbound GS: T 1/2 10 16 s 8 Be 4 He + 4 He. 0 + : two structures 4 He cluster. α: N = Z = 2. Clusters might appear in light N = Z nuclei. R. B. Wiringa et al., Phys. Rev. C 62, 014001 (2000).

L. Gaudefroy, A. Obertelli Shell Eects in Atomic Nuclei 17/37 Clusters in nuclei Energy threshold for clustering Must be energetically allowed. 8 Be 2α 4n X nα Cluster phase expected around E = decay threshold. K. Ikeda et.al, Prog. Theor. Phys. (Suppl.), 464. (1968)

L. Gaudefroy, A. Obertelli Shell Eects in Atomic Nuclei 18/37 Clusters & Shell eects Adapted from: M. Freer, Rep. Prog. Phys. 70, 2149 (2007).

L. Gaudefroy, A. Obertelli Shell Eects in Atomic Nuclei 18/37 Clusters & Shell eects Adapted from: M. Freer, Rep. Prog. Phys. 70, 2149 (2007).

L. Gaudefroy, A. Obertelli Shell Eects in Atomic Nuclei 18/37 Clusters & Shell eects Adapted from: M. Freer, Rep. Prog. Phys. 70, 2149 (2007).

L. Gaudefroy, A. Obertelli Shell Eects in Atomic Nuclei 18/37 Clusters & Shell eects Adapted from: M. Freer, Rep. Prog. Phys. 70, 2149 (2007).

L. Gaudefroy, A. Obertelli Shell Eects in Atomic Nuclei 19/37 Clusters in nuclei. Summary α clusters appear in N=Z light nuclei. Close to decay threshold. Strong deformation leading to shell rearrangement. Experimental evidence: Eg. look for deformed structure.

L. Gaudefroy, A. Obertelli Shell Eects in Atomic Nuclei 20/37 Digression: 12 C, life and clusters. Synthesis of 12 C Insucient production for 12 C; F. Hoyle (1954) predicted a 7.27 MeV state

L. Gaudefroy, A. Obertelli Shell Eects in Atomic Nuclei 20/37 Digression: 12 C, life and clusters. Synthesis of 12 C Insucient production for 12 C; F. Hoyle (1954) predicted a 7.27 MeV state Triple α process: Fowler (Nobel Prize 1983).

L. Gaudefroy, A. Obertelli Shell Eects in Atomic Nuclei 21/37 Few Body Systems Summary 1 Benchmarks for models. 2 Strong shell eects. 3 exotic phenomena: 4 haloes, clusters, molecules,...

L. Gaudefroy, A. Obertelli Shell Eects in Atomic Nuclei 22/37 Outline Today 1 Few body systems. 2 Heavier systems. Shell evolution: quick tour. Studies at N = 28.

L. Gaudefroy, A. Obertelli Shell Eects in Atomic Nuclei 23/37 Shell evolution: overview N = 8 16 8 O 8 : E(2 + ) 7 MeV 12 4 Be 8 : E(2 + ) 2 MeV 2s 1/2 intruding and breaking the gap.

L. Gaudefroy, A. Obertelli Shell Eects in Atomic Nuclei 24/37 Shell evolution: overview N = 20 40 20 Ca 20: E(2 + ) 7 MeV 32 12 Mg 20: E(2 + ) 0.9 MeV Island of deformation near 32 12 Mg 20.

L. Gaudefroy, A. Obertelli Shell Eects in Atomic Nuclei 25/37 Shell evolution: overview N = 28 48 20 Ca 28: E(2 + ) 4 MeV 42 14 Si 28: E(2 + ) 0.8 MeV Island of deformation near 42 14 Si 28.

L. Gaudefroy, A. Obertelli Shell Eects in Atomic Nuclei 25/37 Shell evolution: overview N = 28 48 20 Ca 28: E(2 + ) 4 MeV 42 14 Si 28: E(2 + ) 0.8 MeV Island of deformation near 42 14 Si 28.

L. Gaudefroy, A. Obertelli Shell Eects in Atomic Nuclei 26/37 Shell evolution: overview 50, 82 Predicted to disappear in exotic (enough) nuclei. 14, 16, 32, 40 Observed magic properties in neutron-rich nuclei. 70 Predicted as magic number in exotic nuclei.

L. Gaudefroy, A. Obertelli Shell Eects in Atomic Nuclei 27/37 The N = 28 magic number 1 st Spin-Orbit magic number

L. Gaudefroy, A. Obertelli Shell Eects in Atomic Nuclei 27/37 The N = 28 magic number 1 st Spin-Orbit magic number

L. Gaudefroy, A. Obertelli Shell Eects in Atomic Nuclei 27/37 The N = 28 magic number 1 st Spin-Orbit magic number

L. Gaudefroy, A. Obertelli Shell Eects in Atomic Nuclei 27/37 The N = 28 magic number 1 st Spin-Orbit magic number

L. Gaudefroy, A. Obertelli Shell Eects in Atomic Nuclei 27/37 The N = 28 magic number 1 st Spin-Orbit magic number Study of exotic nuclei A way to access part of NN interaction not at play in stable nuclei.

L. Gaudefroy, A. Obertelli Shell Eects in Atomic Nuclei 28/37 2 + excitation energy Onset of correlations - Indirect evidence 1 N = 20, 28: magic at Z = 20.

L. Gaudefroy, A. Obertelli Shell Eects in Atomic Nuclei 28/37 2 + excitation energy Onset of correlations - Indirect evidence 1 N = 20, 28: magic at Z = 20. 2 Deacrease at Z = 16... 3... and at Z = 14 as well. N = 20 remains rigid up to Z = 14, while N = 28 vanishes.

L. Gaudefroy, A. Obertelli Shell Eects in Atomic Nuclei 29/37 Basic interpretation 2 + congurations Neutron excitations across N = 28. (νf 7/2 νp 3/2 ) Jπ =2 +.

L. Gaudefroy, A. Obertelli Shell Eects in Atomic Nuclei 29/37 Basic interpretation 2 + congurations Neutron excitations across N = 28. (νf 7/2 νp 3/2 ) Jπ =2 +. Shell gap reduced E(2 + ) reduced. Neglects correlations.

L. Gaudefroy, A. Obertelli Shell Eects in Atomic Nuclei 30/37 Transfer reaction Interest Direct way to probe shell structure Possible for relatively high intensity beam (> 10 4 pps) Performed on the radioactive 46 18 Ar 28 nucleus.

L. Gaudefroy, A. Obertelli Shell Eects in Atomic Nuclei 31/37 Transfer reaction: 46 Ar(d, p) 47 Ar Experimental Setup: SPEG at GANIL

L. Gaudefroy, A. Obertelli Shell Eects in Atomic Nuclei 31/37 Transfer reaction: 46 Ar(d, p) 47 Ar Experimental Setup: SPEG at GANIL

L. Gaudefroy, A. Obertelli Shell Eects in Atomic Nuclei 31/37 Transfer reaction: 46 Ar(d, p) 47 Ar Experimental Setup: SPEG at GANIL

L. Gaudefroy, A. Obertelli Shell Eects in Atomic Nuclei 31/37 Transfer reaction: 46 Ar(d, p) 47 Ar Experimental Setup: SPEG at GANIL

L. Gaudefroy, A. Obertelli Shell Eects in Atomic Nuclei 32/37 46 Ar(d, p) 47 Ar: Results Level scheme State congurations

L. Gaudefroy, A. Obertelli Shell Eects in Atomic Nuclei 32/37 46 Ar(d, p) 47 Ar: Results Level scheme State congurations

L. Gaudefroy, A. Obertelli Shell Eects in Atomic Nuclei 32/37 46 Ar(d, p) 47 Ar: Results Level scheme State congurations Conclusions 1 Still single particle states in 47 Ar. 2 7/2 intruder state. 3 Slight erosion of N = 28 (by 300keV).

L. Gaudefroy, A. Obertelli Shell Eects in Atomic Nuclei 33/37 Shell evolution from 20 Ca to 14 Si

L. Gaudefroy, A. Obertelli Shell Eects in Atomic Nuclei 33/37 Shell evolution from 20 Ca to 14 Si 1 πs 1/2 and d 3/2 orbits degenerate. 2 Attractive πd 3/2 -νf 7/2 interaction.

L. Gaudefroy, A. Obertelli Shell Eects in Atomic Nuclei 33/37 Shell evolution from 20 Ca to 14 Si 1 πs 1/2 and d 3/2 orbits degenerate. 2 Attractive πd 3/2 -νf 7/2 interaction.

L. Gaudefroy, A. Obertelli Shell Eects in Atomic Nuclei 33/37 Shell evolution from 20 Ca to 14 Si 1 πs 1/2 and d 3/2 orbits degenerate. 2 Attractive πd 3/2 -νf 7/2 interaction. 3 Not strong enough eect.

L. Gaudefroy, A. Obertelli Shell Eects in Atomic Nuclei 34/37 Shell evolution: what else? Correlations H Mono main component: H = H Mono + H Multi V Mono = J J (2J + 1)Vij (2J + 1) J H Multi : correlations (pairing, quadrupole,... ).

L. Gaudefroy, A. Obertelli Shell Eects in Atomic Nuclei 35/37 Onset of correlation at N = 28 48 Ca: Less than gap size

L. Gaudefroy, A. Obertelli Shell Eects in Atomic Nuclei 35/37 Onset of correlation at N = 28 48 Ca: Less than gap size 46 Ar: Promote 2 neutrons L. Gaudefroy et al., Phys. Rev. Lett.97, 092501(2006).

L. Gaudefroy, A. Obertelli Shell Eects in Atomic Nuclei 35/37 Onset of correlation at N = 28 48 Ca: Less than gap size 46 Ar: Promote 2 neutrons L. Gaudefroy et al., Phys. Rev. Lett.97, 092501(2006). 44 S: Spher./Def. shape coex. S. Grévy et al., Submit. to Phys. Rev. Lett. 42 Si: Deformed nucleus. B. Bastin et al., Phys. Rev. Lett.99, 022503(2007).

L. Gaudefroy, A. Obertelli Shell Eects in Atomic Nuclei 36/37 Shell evolution at N = 28: Summary

L. Gaudefroy, A. Obertelli Shell Eects in Atomic Nuclei 36/37 Shell evolution at N = 28: Summary

L. Gaudefroy, A. Obertelli Shell Eects in Atomic Nuclei 36/37 Shell evolution at N = 28: Summary

L. Gaudefroy, A. Obertelli Shell Eects in Atomic Nuclei 36/37 Shell evolution at N = 28: Summary

L. Gaudefroy, A. Obertelli Shell Eects in Atomic Nuclei 36/37 Shell evolution at N = 28: Summary

L. Gaudefroy, A. Obertelli Shell Eects in Atomic Nuclei 37/37 Concluding remarks 1 Atomic nuclei: A interacting fermions. 2 Shell structure and magic numbers.

L. Gaudefroy, A. Obertelli Shell Eects in Atomic Nuclei 37/37 Concluding remarks 1 Atomic nuclei: A interacting fermions. 2 Shell structure and magic numbers. 3 Shell eects: orbital reordering. 4 Few-body systems: exotic phenomena (Haloes, Clusters).

L. Gaudefroy, A. Obertelli Shell Eects in Atomic Nuclei 37/37 Concluding remarks 1 Atomic nuclei: A interacting fermions. 2 Shell structure and magic numbers. 3 Shell eects: orbital reordering. 4 Few-body systems: exotic phenomena (Haloes, Clusters). 5 Original models from stable nuclei. 6 Exotic nuclei: a probe for NN-interaction. 7 Larger systems: from magic to strongly correlated.

L. Gaudefroy, A. Obertelli Shell Eects in Atomic Nuclei 37/37 Concluding remarks 1 Atomic nuclei: A interacting fermions. 2 Shell structure and magic numbers. 3 Shell eects: orbital reordering. 4 Few-body systems: exotic phenomena (Haloes, Clusters). 5 Original models from stable nuclei. 6 Exotic nuclei: a probe for NN-interaction. 7 Larger systems: from magic to strongly correlated. 8 Correlations deformation - Alexandre's lecture.