Muted change in Atlantic overturning circulation over some glacial-aged Heinrich events

Similar documents
Muted change in Atlantic overturning circulation over some glacial-aged Heinrich events

Air sea temperature decoupling in western Europe during the last interglacial glacial transition

SUPPLEMENTARY INFORMATION

Supporting Online Material for

North Atlantic ocean circulation and abrupt climate change during the last glaciation

seesaw in the northeastern tropical Atlantic during Heinrich stadials,

A multi-proxy study of planktonic foraminifera to identify past millennialscale. climate variability in the East Asian Monsoon and the Western Pacific

PMIP Ocean Workshop 2013 Program Outline

Geoffrey (Jake) Gebbie Research Associate, Harvard University Visiting Scientist, MIT

Changes and impacts of the Atlantic meridional overturning circulation: lessons from the past for a changing future. Cristiano M. Chiessi et al.

Increased hurricane frequency near Florida during Younger Dryas AMOC slowdown by

Supplementary Figure 1. New downcore data from this study. Triangles represent the depth of radiocarbon dates. Error bars represent 2 standard error

M. Wary et al. Correspondence to: M. Wary

Tracers. 1. Conservative tracers. 2. Non-conservative tracers. Temperature, salinity, SiO 2, Nd, 18 O. dissolved oxygen, phosphate, nitrate

Supporting Online Material

Supplementary Figure 1. Foraminifer shell weights and coating composition. Correlation of mean foraminiferal shell weights of (a) G.

Gulf Stream Temperature, Salinity, and Transport during the Last Millennium

The deglacial evolution of North Atlantic deep convection

Father of Glacial theory. First investigations of glaciers and mountain geology,

GSA DATA REPOSITORY Hoffmann et al. Methods

Radiocarbon and stable isotope constraints on Last Glacial Maximum and Younger Dryas ventilation in the western North Atlantic

Ocean & climate: an introduction and paleoceanographic perspective

SUPPLEMENTARY INFORMATION

The apparent ubiquity of abrupt millennial-scale climate

Rapid climate change in ice cores

Deep Sea Coral Evidence for the state of the Southern Ocean Biological Pump (and Circulation) During the Last Glacial Period and Deglaciation

Supplemental Information for. Persistent intermediate water warming during cold stadials in the SE Nordic seas. during the last 65 kyr

Atlantic Meridional Overturning Circulation (AMOC) = thermohaline circulation in N Atlantic. Wikipedia

size fraction for elemental measurement. Samples for Mg/Ca were cleaned using the full

Introduction to Quaternary Geology (MA-Modul 3223) Prof. C. Breitkreuz, SS2012, TU Freiberg

SUPPLEMENTARY INFORMATION Peeters et al. (2004). Vigorous exchange between Atlantic and Indian Ocean at the end of the last five glacial periods

Volume 37 Number 1 March

/ Past and Present Climate

North Atlantic Deep Water and Climate Variability During the Younger Dryas Cold Period A.C. Elmore and J.D. Wright

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION

45 mm VARIABILITY OF THE BRAZIL-MALVINAS CONFLUENCE SINCE THE LAST GLACIAL MAXIMUM

Late Holocene changes in Atlantic Surface and Deep Water Circulation

5. DATA REPORT: STABLE ISOTOPES

Deep Atlantic carbon sequestration and atmospheric CO2 decline during the last glaciation

England 1,2. L. Menviel, University of New South Wales, Sydney, Australia. System Science, Australia

Abrupt changes in the southern extent of North Atlantic deep water during Dansgaard Oeschger events

AMOC Impacts on Climate

Stalagmite records of abrupt climate change in the tropical Pacific

Surface and Deep Ocean Circulation in the Subpolar North Atlantic During the Mid- Pleistocene Revolution

Glacial water mass geometry and the distribution of D 13 Cof2CO 2 in the western Atlantic Ocean

Middle Eocene western north Atlantic biostratigraphy and environmental conditions

Deglacial Variability of Antarctic Intermediate Water Penetration into the North Atlantic from Authigenic Neodymium Isotope Ratios

Speleothems and Climate Models

We re living in the Ice Age!

Tropical Ocean Temperatures Over the Past 3.5 Million Years

SUPPLEMENTARY INFORMATION

Stable Isotope Tracers

Selected Presentation from the INSTAAR Monday Noon Seminar Series.

Modes of Global Climate Variability during Marine Isotope Stage 3 (60 26 ka)

Ruddiman CHAPTER 13. Earth during the LGM ca. 20 ka BP

Abrupt change in atmospheric CO 2 during the last ice age

Tightly linked zonal and meridional sea surface temperature gradients over the past five million years

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION

Supporting Information for Glacial Atlantic overturning increased by wind stress in climate models

SUPPLEMENTARY INFORMATION

ATOC OUR CHANGING ENVIRONMENT

SUPPLEMENTARY INFORMATION

Solar Forcing of Florida Straits Surface Salinity During the Early Holocene

An Investigation of the Oceanic Redistribution of Carbon During the Last Deglaciation

Covariant Glacial-Interglacial Dust Fluxes in the Equatorial Pacific and Antarctica

SUPPLEMENTARY INFORMATION

common time scale developed for Greenland and Antarctic ice core records. Central to this

SUPPLEMENTARY INFORMATION

Chinese stalagmite δ 18 O controlled by changes in the Indian monsoon during a simulated Heinrich event Supplementary Information

LETTERS. Moisture transport across Central America as a positive feedback on abrupt climatic changes

G 3. Meridional overturning circulation in the South Atlantic at the last glacial maximum

Chapter 15 Millennial Oscillations in Climate

Deglacial sea surface temperature and salinity increase in the western tropical Atlantic in synchrony with high latitude climate instabilities

Arctic Paleoclimates

Intermediate water ventilation in the Nordic seas during MIS 2

Rapid Climate Change: Heinrich/Bolling- Allerod Events and the Thermohaline Circulation. By: Andy Lesage April 13, 2010 Atmos.

TROPICAL NORTH ATLANTIC HYDROLOGIC CYCLE VARIABILITY IN THE FLORIDA STRAITS DURING THE LAST ICE AGE. A Thesis THEODORE ROLAND THEM, II

A comparison of Mg/Ca ratios in Globigerinoides ruber (white): sensu stricto versus a mixture of genotypes

Lorraine E. Lisiecki

Intermediate water links to Deep Western Boundary Current variability in the subtropical NW Atlantic during marine isotope stages 5 and 4

A model data comparison of d 13 C in the glacial Atlantic Ocean

Quaternary Science Reviews

Holocene Evolution of the Indonesian Throughflow and the Western Pacific Warm Pool

Loess and dust. Jonathan A. Holmes Environmental Change Research Centre

Continental Hydrology, Rapid Climate Change, and the Intensity of the Atlantic MOC: Insights from Paleoclimatology

1. Deglacial climate changes

ATMS 321: Natural Climate Variability Chapter 11

Sensitivity of the Younger Dryas climate to changes in freshwater, orbital, and greenhouse gas forcing in CESM1.

: ' N,

Atlantic Ocean thermohaline circulation changes on orbital to suborbital timescales during the mid-pleistocene

Recent Developments in the Theory of Glacial Cycles

JEAN-CLAUDE DUPLESSY, MAURICE ARNOLD, EDOUARD BARD, ANNE JUILLET-LECLERC, NEJIB KALLEL

An integrated speleothem proxy and climate modeling study of the last deglacial climate in the Pacific Northwest

Glacial-Interglacial Cycling: Ice, orbital theory, and climate. Dr. Tracy M. Quan IMCS

Accelerated drawdown of meridional overturning in the late-glacial Atlantic triggered by transient pre-h event freshwater perturbation

Lorraine E. Lisiecki

Paleoclimatology ATMS/ESS/OCEAN 589. Abrupt Climate Change During the Last Glacial Period

Radiocarbon constraints on the glacial ocean circulation and its impact on atmospheric CO 2

Transcription:

SUPPLEMENTARY INFORMATION DOI: 10.1038/NGEO2045 Muted change in Atlantic overturning circulation over some glacial-aged Heinrich events Jean Lynch-Stieglitz 1, Matthew W. Schmidt 2, L. Gene Henry 1,7, William B. Curry 3, Luke C. Skinner 4, Stefan Mulitza 5, Rong Zhang 6, Ping Chang 2 1 School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, 30307, USA jean@eas.gatech.edu. 2 Department of Oceanography, Texas A&M University, College Station, TX, 77843, USA. 3 Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA. 4 Godwin Laboratory for Palaeoclimate Research, Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK. 5 MARUM Center for Marine Environmental Sciences, University of Bremen, Leobener Strasse, D-28359 Bremen, Germany. 6 NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, NJ 08540, USA 7 Now at Department of Earth and Environmental Sciences and Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY 10964 Contents: Supplemental Methods: Deep North Atlantic Carbon Isotope Stacks Supplemental Figure 1. Deep North Atlantic Oxygen Isotope Records Supplemental Figure 2. Deep North Atlantic Carbon Isotope Records Supplemental Figure 3. North Atlantic Carbon Isotope Stack Supplemental Figure 4. Measurements on Individual Foraminifers Supplemental Table 1. Age Control Points Supplemental Table 2. Sediment Core Locations and Sources for Carbon Isotope Stack Supplementary References NATURE GEOSCIENCE www.nature.com/naturegeoscience 1

Supplemental Methods: Deep North Atlantic Carbon Isotope Stacks Seven benthic P. wuellerstorfi δ 13 C records from the deep North Atlantic were averaged to compute a stacked δ 13 C time series for the last 80 kyr 1-8. An additional, shorter, record 9 was used to create an eight record 40 kyr stack (Supplemental Table 2, Supplemental Figures 1-3). All records in this compilation meet or exceed an average time resolution of 500 years and are from greater than 2.2 km depth. All records were placed on a common timescale. For the upper portion of the cores, the age models were constructed using radiocarbon dates converted to calendar age using Calib 6.0 and the MARINE09 calibration data set 10. Below the level for which radiocarbon dates were available, the age models were constrained by correlation of the P. wuellerstorfi δ 18 O to the benthic δ 18 O record from MD95-2402 using the modified Greenland ice-core agescale (SFCP04) 11 that has been shown to be broadly consistent with the North Atlantic event stratigraphy implied by the Hulu speleothem record 12. All records except the following two were previously published with time scales constructed in this way. For GeoB7920 6, subsequently published radiocarbon data 13 were converted to calendar age and used to constrain the age model above 300 cm depth in the core, and below 300 cm published tie points to the MD95-2042 benthic δ 18 O record were converted to the SFCP04 timescale. For V29-202 3 radiocarbon data were converted to calendar age and used to constrain the age model above 300cm and below 300 cm the benthic δ 18 O data was tied to the MD95-2042 benthic δ 18 O record on the SFCP04 timescale.

δ18o$( $PDB)$$ 2 2.5 3 3.5 4 Calendar$Age$(yr$BP)$ YD H1 H2 H3 H4 H5 H5a H6 VM299202$ 60.4 N$ 2658$m$ 4.5 δ18o$( $PDB)$$ δ18o$( $PDB)$$ 5 2 2.5 3 3.5 4 4.5 5 5.5 2 2.5 3 3.5 4 KN166149JPC913$ 53.1 N$ 3082$m$ IODP$U1308$ 49.9 N$ 3427$m$ 4.5 5 δ18o$( $PDB)$$ 2 2.5 3 3.5 4 MD9592042$ 37.8 N$ 3146$m$ 4.5 5 δ18o$( $PDB)$$ 2 2.5 3 3.5 4 MD9992334K/MD0192444$ 37.8 N/37.5 N$ 3146m/2460m$ 4.5 5 δ18o$( $PDB)$$ 2 2.5 3 3.5 4 GeoB792092$ 15.5 N$ 2384$m$ 4.5 5 δ18o$( $PDB)$$ 2 2.5 3 3.5 4 GeoB950892$ 15.5 N$ 2384$m$ 4.5 5 δ18o$( $PDB)$$ 2 2.5 3 3.5 4 GeoB952695$ 12.4 N$ 3233$m$ 4.5 5

Supplemental Figure 1. Deep North Atlantic Oxygen Isotope Records. High resolution P. wuellerstorfi oxygen isotope records from the deep North Atlantic. The locations and sources for each record can be found in Supplemental Table 2. The time scales are constructed as described in the methods section. Grey vertical bars extending through all of the plots indicate the timing of the Younger Dryas and Heinrich stadials 14 For reference, the benthic oxygen isotope record from MD95-2042 on the SFCP04 Age scale 11 is also shown in grey in each plot.

1.5 YD H1 H2 H3 H4 H5 H5a H 6 1.0 δ13c$( $PDB)$$ 0.5 0.0-0.5-1.0 VM29/202$ 60.4 N$ 2658$m$ 1.5 1 δ13c$( $PDB)$$ 0.5 0-0.5-1 KN16614/JPC/13$ 53.1 N$ 3082$m$ 1.5 1 δ13c$( $PDB)$$ 0.5 0-0.5-1 IODP$U1308$ 49.9 N$ 3427$m$ 1.5 1 δ13c$( $PDB)$$ 0.5 0-0.5 MD95/2042$ 37.8 N$ 3146$m$ -1 1.50 1.00 δ13c$( $PDB)$$ 0.50 0.00-0.50-1.00 MD99/2334K/MD01/2444$ 37.8 N/37.5 N$ 3146$m/2460$m$ 1.5 1.0 δ13c$( $PDB)$$ 0.5 0.0-0.5-1.0 GeoB7920/2$ 20.8 N$ 2278$m$ 1.5 1 δ13c$( $PDB)$$ 0.5 0-0.5-1 GeoB9508/2$ 15.5 N$ 2384$m$ 1.5 1 δ13c$( $PDB)$$ 0.5 0-0.5-1 GeoB9526/5$ 12.4 N$ 3233$m$

Supplemental Figure 2. Deep North Atlantic Carbon Isotope Records. The P. wuellerstorfi carbon isotope records from the deep North Atlantic. The locations and sources for each record can be found in Supplemental Table 2. The time scales are constructed as described in the methods section. Grey vertical bars extending through all of the plots indicate the timing of the Younger Dryas and Heinrich stadials 14.

Calandar##Years#BP# 0% 5000% 10000% 15000% 20000% 25000% 30000% 35000% 40000% 1.5% 1.0% P.#wuellerstorfi#d13C#( #PDB)# 0.5% 0.0%!0.5% a)#!1.0% 0% 5000% 10000% 15000% 20000% 25000% 30000% 35000% 40000% 40.0% Number#of#Analyses#in#800#yr#avg# 35.0% 30.0% 25.0% 20.0% 15.0% 10.0% 5.0% 0.0% b)# Calandar##Years#BP# 0% 10000% 20000% 30000% 40000% 50000% 60000% 70000% 80000% 2.0% 1.5% P.#wuellerstorfi#d13C#( #PDB)# 1.0% 0.5% 0.0%!0.5% c)#!1.0% 0% 10000% 20000% 30000% 40000% 50000% 60000% 70000% 80000% 35.0% Number#of#Analyses#in#800#yr#avg# 30.0% 25.0% 20.0% 15.0% 10.0% 5.0% 0.0% d)# Supplemental Figure 3. North Atlantic Carbon Isotope Stack. For panels (a) and (c) the light crosses show the individual data points contributing to the 40 kyr and 80 kyr averages, respectively. The solid heavy lines are the average (800 year window) and lighter lines are +/- 2 standard error of the 800 year averages. Panels (b) and (d) show the total number of analyses contributing to each 800 year average for the 40 kyr and 80 kyr averages, respectively.

0.00$ 5000.00$ 10000.00$ 15000.00$ 20000.00$ 25000.00$ 30000.00$ 35000.00$ 40000.00$ 0.50$ 1.00$ δ18o ( PDB) 1.50$ 2.00$ 2.50$ 3.00$ 3.50$ C.$mollis$excluded$ C.$mollis$ P.$ariminensis$excluded$ P.$ariminensis$ C.$pachyderma$excluded$ C.$pachyderma$ Series7$ 3.50$ 3.00$ 2.50$ 2.00$ 1.50$ 1.00$ δ13c ( PDB) 0.50$ 0.00$ 0.00$ 5000.00$ 10000.00$ 15000.00$ 20000.00$ 25000.00$ 30000.00$ 35000.00$ 40000.00$ Age (Cal kyr BP) Supplemental Figure 4. Measurements on Individual Foraminifers a) δ 18 O for individual measurements contributing to the average values at each depth shown in Figure 2. The 4% of the measurements not contributing to the averages because they have been flagged as having a distance from the robust loess smooth of the data (black line) greater than 2 standard deviations from the mean are indicated in a lighter shade. b) δ 13 C for individual measurements. Only the data from P. ariminensis contribute to the depth average values shown in Figures 2 and 4.

a)

b)

c)

d) Supplemental Figure 5. Florida Straits Sections along 83 W in CCSM3. For each panel the values for the LGM control run, the last 30 years of the water hosing experiment (0.25 Sv) and the anomaly (hosing control) are shown 15. a) velocity (cm s -1 ) b) Temperature ( C) c) Salinity (psu) d) Sigma-theta.

Table 2: Age control points Core Depth in core species 14 C age error Calendar Age Source KNR166-2 26JPC 0.75 G. sacculifer 1070 70 634 Lynch-Stieglitz et al., 2011 48.25 G. sacculifer 2990 30 2760 Lynch-Stieglitz et al., 2011 112.25 G. sacculifer 6720 40 7251 Lynch-Stieglitz et al., 2011 144.25 G. sacculifer 8100 80 8576 Lynch-Stieglitz et al., 2011 216.25 G. sacculifer 9550 40 10418 Lynch-Stieglitz et al., 2011 280.25 G. sacculifer, G. ruber 10100 45 11130 Lynch-Stieglitz et al., 2011 344.25 G. sacculifer 10000 110 10944* Lynch-Stieglitz et al., 2011 356.25 G. sacculifer 11750 95 13225* Lynch-Stieglitz et al., 2011 364.25 G. sacculifer, G. ruber 10600 70 11872* Lynch-Stieglitz et al., 2011 374.25 G. sacculifer 10500 50 11656* Lynch-Stieglitz et al., 2011 392.25 G. ruber 10850 65 12342* Lynch-Stieglitz et al., 2011 408.25 G. sacculifer, G. ruber 10300 60 11285* Lynch-Stieglitz et al., 2011 442.25 G. sacculifer, G. ruber 10700 65 12077 Lynch-Stieglitz et al., 2011 464.25 G. sacculifer, G. ruber 10800 55 12251 Lynch-Stieglitz et al., 2011 544.25 G. sacculifer, G. ruber 11000 65 12515 Lynch-Stieglitz et al., 2011 592.25 G. ruber 11400 65 12866 Lynch-Stieglitz et al., 2011 606.25 G. sacculifer 11600 35 13106 Lynch-Stieglitz et al., 2011 648.25 G. sacculifer 12350 200 13807 Lynch-Stieglitz et al., 2011 704.25 G. ruber 13500 55 15857 Lynch-Stieglitz et al., 2011 752.25 G. ruber 15550 70 18271 Lynch-Stieglitz et al., 2011 848.25 G. ruber 20300 120 23760 Lynch-Stieglitz et al., 2011 878.25 G. sacculifer, G. ruber 21300 95 24896 this study 952.25 G. ruber 26300 130 30693 Lynch-Stieglitz et al., 2011 1014.25 G. ruber 28200 180 31890 Lynch-Stieglitz et al., 2011 1032.25 G. ruber 28200 590 32160* Lynch-Stieglitz et al., 2011 1074.25 G. ruber 29300 380 33482 Lynch-Stieglitz et al., 2011 1088.25 G. sacculifer, G. ruber 31300 200 35398* this study 1104.25 G. sacculifer, G. ruber 30600 170 34800 this study 1118.25 G. sacculifer 30900 220 34958 Lynch-Stieglitz et al., 2011 KNR166-2 73GGC 0.25 mixed planktonics 650 35 297 Lynch-Stieglitz et al., 2011 28.25 mixed planktonics 2670 30 2357 Lynch-Stieglitz et al., 2011 48.25 G. sacculifer 3510 30 3394 Lynch-Stieglitz et al., 2011 96.25 G. sacculifer 5040 40 5388 Lynch-Stieglitz et al., 2011 152.25 G. sacculifer 6580 40 7102 Lynch-Stieglitz et al., 2011 168.25 G. sacculifer 6890 45 7404 Lynch-Stieglitz et al., 2011 196.25 G. sacculifer 9080 50 9805 Lynch-Stieglitz et al., 2011 212.25 G. sacculifer 10550 55 11782 Lynch-Stieglitz et al., 2011 224.25 G. sacculifer 12150 70 13592 Lynch-Stieglitz et al., 2011 232.25 G. sacculifer 18300 90 21372 Lynch-Stieglitz et al., 2011 240.25 G. ruber 21100 95 24691 this study 248.25 G. sacculifer 22900 130 27255 Lynch-Stieglitz et al., 2011 266.25 G. sacculifer 29300 140 33435 this study 280.25 G. sacculifer 31000 190 35019 Lynch-Stieglitz et al., 2011 296.25 G. sacculifer 36800 350 41474 Lynch-Stieglitz et al., 2011 356.25 63000 MIS 3/4 boundary 372.25 73000 MIS 4/5 boundary Radiocarbon dates calibrated using Calib 6.0 and Marine09 curve *Not used in age model Supplemental Table 1. Age Control Points

Supplemental Table 2. Sediment Core Locations and Sources for Carbon Isotope Stack.

Supplementary References 1 Hodell, D. A., Channell, J. E. T., Curtis, J. H., Romero, O. E. & Rohl, U. Onset of "Hudson Strait'' Heinrich events in the eastern North Atlantic at the end of the middle Pleistocene transition (similar to 640 ka)? Paleoceanography 23, doi:10.1029/2008pa001591 (2008). 2 Hodell, D. A., Evans, H. F., Channell, J. E. T. & Curtis, J. H. Phase relationships of North Atlantic ice-rafted debris and surface-deep climate proxies during the last glacial period. Quaternary Science Reviews 29, 3875-3886, doi:10.1016/j.quascirev.2010.09.006 (2010). 3 Oppo, D. W. & Lehman, S. J. Suborbital Timescale Variability of North-Atlantic Deep-Water During the Past 200,000 Years. Paleoceanography 10, 901-910 (1995). 4 Shackleton, N. J., Hall, M. A. & Vincent, E. Phase relationships between millennial-scale events 64,000-24,000 years ago. Paleoceanography 15, 565-569 (2000). 5 Skinner, L. C., Elderfield, H. & Hall, M. in Ocean Circulation: Mechanisms and Impacts Geophysical Monograph Series (eds A. Schmittner, J. Chiang, & S. Hemming) 197-208 (American Geophysical Union, 2007). 6 Tjallingii, R. et al. Coherent high- and low-latitude control of the northwest African hydrological balance. Nature Geoscience 1, 670-675, doi:doi 10.1038/Ngeo289 (2008). 7 Zarriess, M. & Mackensen, A. Testing the impact of seasonal phytodetritus deposition on delta(13)c of epibenthic foraminifer Cibicidoides wuellerstorfi: A 31,000 year high-resolution record from the northwest African continental slope. Paleoceanography 26, doi:artn Pa2202 Doi 10.1029/2010pa001944 (2011). 8 Zarriess, M. Primary Productivity and Ocean Circulation Changes on orbital and millennial Timescales off Northwest Africa during the Last Glacial/Interglacial Cycle: Evidence from benthic foraminiferal Assemblages, stable carbon and oxygen isotopes and Mg/Ca Paleothermometry Ph.D. thesis, Universitat Bremen, (2010). 9 Mulitza, S. et al. Sahel megadroughts triggered by glacial slowdowns of Atlantic meridional overturning. Paleoceanography 23, PA4206, doi:doi 10.1029/2008pa001637 (2008). 10 Reimer, P. J. et al. Intcal09 and Marine09 Radiocarbon Age Calibration Curves, 0-50,000 Years Cal Bp. Radiocarbon 51, 1111-1150 (2009). 11 Shackleton, N. J., Fairbanks, R. G., Chiu, T. C. & Parrenin, F. Absolute calibration of the Greenland time scale: implications for Antarctic time scales and for Delta C-14. Quaternary Science Reviews 23, 1513-1522, doi:doi 10.1016/J.Quascirev.2004.03.006 (2004). 12 Skinner, L. C. Revisiting the absolute calibration of the Greenland ice-core agescales. Clim Past 4, 295-302 (2008). 13 Collins, J. A. et al. Interhemispheric symmetry of the tropical African rainbelt over the past 23,000 years. Nature Geoscience 4, 42-45, doi:doi 10.1038/Ngeo1039 (2011).

14 Wang, Y. J. et al. A high-resolution absolute-dated Late Pleistocene monsoon record from Hulu Cave, China. Science 294, 2345-2348 (2001). 15 Schmidt, M. W. et al. Impact of abrupt deglacial climate change on tropical Atlantic subsurface temperatures. Proceedings of the National Academy of Sciences of the United States of America 109, 14348-14352, doi:doi 10.1073/Pnas.1207806109 (2012).