Prediction of Vegetable Price Based on Neural Network and Genetic Algorithm

Similar documents
A Wavelet Neural Network Forecasting Model Based On ARIMA

A FUZZY NEURAL NETWORK MODEL FOR FORECASTING STOCK PRICE

A New Recognition Method of Vehicle License Plate Based on Genetic Neural Network

ARTIFICIAL NEURAL NETWORK WITH HYBRID TAGUCHI-GENETIC ALGORITHM FOR NONLINEAR MIMO MODEL OF MACHINING PROCESSES

Evolutionary Functional Link Interval Type-2 Fuzzy Neural System for Exchange Rate Prediction

Application of Artificial Neural Network for Short Term Load Forecasting

A Hybrid Model of Wavelet and Neural Network for Short Term Load Forecasting

Artificial Intelligence (AI) Common AI Methods. Training. Signals to Perceptrons. Artificial Neural Networks (ANN) Artificial Intelligence

ECLT 5810 Classification Neural Networks. Reference: Data Mining: Concepts and Techniques By J. Hand, M. Kamber, and J. Pei, Morgan Kaufmann

MODELING AND EXPERIMENTAL STUDY ON DRILLING RIG ANTI-JAMMING VALVE WITH BP NEURAL NETWORK

1. Introduction. 2. Artificial Neural Networks and Fuzzy Time Series

Application of Fully Recurrent (FRNN) and Radial Basis Function (RBFNN) Neural Networks for Simulating Solar Radiation

SIMULATION OF FREEZING AND FROZEN SOIL BEHAVIOURS USING A RADIAL BASIS FUNCTION NEURAL NETWORK

Artificial Neural Networks. Edward Gatt

A SEASONAL FUZZY TIME SERIES FORECASTING METHOD BASED ON GUSTAFSON-KESSEL FUZZY CLUSTERING *

Data Mining Part 5. Prediction

Forecasting River Flow in the USA: A Comparison between Auto-Regression and Neural Network Non-Parametric Models

HIGH PERFORMANCE ADAPTIVE INTELLIGENT DIRECT TORQUE CONTROL SCHEMES FOR INDUCTION MOTOR DRIVES

Study on Thermal Conductivities Prediction for Apple Fruit Juice by Using Neural Network

ARTIFICIAL NEURAL NETWORKS گروه مطالعاتي 17 بهار 92

Prediction of Monthly Rainfall of Nainital Region using Artificial Neural Network (ANN) and Support Vector Machine (SVM)

Modeling of Piezoelectric Actuators Based on Bayesian Regularization Back Propagation Neural Network

SARIMA-ELM Hybrid Model for Forecasting Tourist in Nepal

ARTIFICIAL NEURAL NETWORK PART I HANIEH BORHANAZAD

Research Article Data-Driven Fault Diagnosis Method for Power Transformers Using Modified Kriging Model

SOIL MOISTURE MODELING USING ARTIFICIAL NEURAL NETWORKS

Application of Artificial Neural Networks in Evaluation and Identification of Electrical Loss in Transformers According to the Energy Consumption

The Research of Railway Coal Dispatched Volume Prediction Based on Chaos Theory

Selection of the Appropriate Lag Structure of Foreign Exchange Rates Forecasting Based on Autocorrelation Coefficient

Estimation of the Pre-Consolidation Pressure in Soils Using ANN method

Synchronization of a General Delayed Complex Dynamical Network via Adaptive Feedback

APPLICATION OF RADIAL BASIS FUNCTION NEURAL NETWORK, TO ESTIMATE THE STATE OF HEALTH FOR LFP BATTERY

Journal of Engineering Science and Technology Review 7 (1) (2014)

FORECASTING OF INFLATION IN BANGLADESH USING ANN MODEL

Short Term Load Forecasting Using Multi Layer Perceptron

Electric Load Forecasting Using Wavelet Transform and Extreme Learning Machine

Discussion Papers in Economics. Ali Choudhary (University of Surrey and State Bank of Pakistan) & Adnan Haider (State Bank of Pakistan) DP 08/08

This is the published version.

A Feature Based Neural Network Model for Weather Forecasting

NIR Spectroscopy Identification of Persimmon Varieties Based on PCA-SVM

Journal of Chemical and Pharmaceutical Research, 2014, 6(5): Research Article

ANN and Statistical Theory Based Forecasting and Analysis of Power System Variables

Evolution of Neural Networks in a Multi-Agent World

Structure Design of Neural Networks Using Genetic Algorithms

Multi-wind Field Output Power Prediction Method based on Energy Internet and DBPSO-LSSVM

Neural Networks Lecture 4: Radial Bases Function Networks

Postprocessing of Numerical Weather Forecasts Using Online Seq. Using Online Sequential Extreme Learning Machines

Cluster based pruning and survival selection using soft computing

LONG - TERM INDUSTRIAL LOAD FORECASTING AND PLANNING USING NEURAL NETWORKS TECHNIQUE AND FUZZY INFERENCE METHOD ABSTRACT

Research on Spatial Estimation of Soil Property Based on Improved RBF Neural Network

KEYWORDS: cellular automata, neural network, masonry, cracking pattern

Short-term wind forecasting using artificial neural networks (ANNs)

An Improved Quantum Evolutionary Algorithm with 2-Crossovers

Journal of Engineering Science and Technology Review 6 (2) (2013) Research Article. Received 25 June 2012; Accepted 15 January 2013

The Research of Urban Rail Transit Sectional Passenger Flow Prediction Method

Research Article Application of Chaos and Neural Network in Power Load Forecasting

RAINFALL RUNOFF MODELING USING SUPPORT VECTOR REGRESSION AND ARTIFICIAL NEURAL NETWORKS

Weighted Fuzzy Time Series Model for Load Forecasting

C4 Phenomenological Modeling - Regression & Neural Networks : Computational Modeling and Simulation Instructor: Linwei Wang

Improved the Forecasting of ANN-ARIMA Model Performance: A Case Study of Water Quality at the Offshore Kuala Terengganu, Terengganu, Malaysia

A Modified Radial Basis Function Method for Predicting Debris Flow Mean Velocity

Data and prognosis for renewable energy

Characterisation of the plasma density with two artificial neural network models

Modeling and Compensation for Capacitive Pressure Sensor by RBF Neural Networks

A Novel Electricity Sales Forecasting Method Based on Clustering, Regression and Time-series Analysis

POWER SYSTEM DYNAMIC SECURITY ASSESSMENT CLASSICAL TO MODERN APPROACH

ANN based techniques for prediction of wind speed of 67 sites of India

An Evolution Strategy for the Induction of Fuzzy Finite-state Automata

Artificial Neural Networks Examination, March 2002

WEATHER DEPENENT ELECTRICITY MARKET FORECASTING WITH NEURAL NETWORKS, WAVELET AND DATA MINING TECHNIQUES. Z.Y. Dong X. Li Z. Xu K. L.

SHORT-TERM traffic forecasting is a vital component of

Gas Detection System Based on Multi-Sensor Fusion with BP Neural Network

A new method for short-term load forecasting based on chaotic time series and neural network

22/04/2014. Economic Research

Short Term Load Forecasting Based Artificial Neural Network

Engineering Letters, 25:2, EL_25_2_13. A Grey Neural Network Model Optimized by Fruit Fly Optimization Algorithm for Short-term Traffic Forecasting

Research on Short-term Load Forecasting of the Thermoelectric Boiler. Based on a Dynamic RBF Neural Network

Artificial Neural Network Approach for Land Cover Classification of Fused Hyperspectral and Lidar Data

Open Access Research on Data Processing Method of High Altitude Meteorological Parameters Based on Neural Network

Implementation of Artificial Neural Network for Short Term Load Forecasting

A Support Vector Regression Model for Forecasting Rainfall

Load Forecasting Using Artificial Neural Networks and Support Vector Regression

Weather Forecasting using Soft Computing and Statistical Techniques

Temperature Prediction based on Artificial Neural Network and its Impact on Rice Production, Case Study: Bangladesh

RBF Neural Network Combined with Knowledge Mining Based on Environment Simulation Applied for Photovoltaic Generation Forecasting

A Novel Activity Detection Method

Reading, UK 1 2 Abstract

Research Article Weather Forecasting Using Sliding Window Algorithm

Radial Basis Function Neural Networks in Protein Sequence Classification ABSTRACT

CSE 417T: Introduction to Machine Learning. Final Review. Henry Chai 12/4/18

Wind Power Forecasting using Artificial Neural Networks

Short Term Load Forecasting Of Chhattisgarh Grid Using Artificial Neural Network

THE APPLICATION OF GREY SYSTEM THEORY TO EXCHANGE RATE PREDICTION IN THE POST-CRISIS ERA

ESTIMATION OF HOURLY MEAN AMBIENT TEMPERATURES WITH ARTIFICIAL NEURAL NETWORKS 1. INTRODUCTION

CHAPTER IX Radial Basis Function Networks

Address for Correspondence

Classification of High Spatial Resolution Remote Sensing Images Based on Decision Fusion

Effects of BP Algorithm-based Activation Functions on Neural Network Convergence

Uncertain Quadratic Minimum Spanning Tree Problem

Genetic Algorithm for Solving the Economic Load Dispatch

Transcription:

Prediction of Vegetable Price Based on Neural Network and Genetic Algorithm Changshou uo 1, Qingfeng Wei 1, iying Zhou 2,, Junfeng Zhang 1, and ufen un 1 1 Institute of Information on cience and Technology of Agriculture, Beijing Academy of Agriculture and orestry ciences, Beijing, 100097, P.R. China 2 China Agricultural niversity ibrary, Beijing 100094, P.R. China Tel.: +86 10 62731045 zhouly@cau.edu.cn Abstract. In this paper, the theory and construction methods of four models are presented for predicting the vegetable market price, which are BP neural network model, the neural network model based on genetic algorithm, RB neural network model and an integrated prediction model based on the three models above. The four models are used to predict the entinus edodes price for Beijing Xinfadi wholesale market. A total of 84 records collected between 2003 and 2009 were fed into the four models for training and testing. In summary, the predicting ability of BP neural network model is the worst. The neural network model based on genetic algorithm was generally more accurate than RB neural network model. The integrated prediction model has the best results. Keywords: genetic algorithm, neural network, prediction, vegetables price. 1 Introduction There is a fashion to say:" food is the god of people, Vegetables is the half of it".vegetables industry plays an important role in providing abundant fresh agricultural products. It is also an important source of peasant's income. Vegetables price is unstable and change fast. The prediction is difficult. All those became the main obstacle factors to promoting the sustained and steady development of the vegetable production. se the scientific method to excavate the change law of the vegetables price. And forecast the trend immediately and accurately. All those works have great significance to vegetable production, government regulation and vegetable industry stabilization. In the current research, non-linear prediction methods such as neural network and genetic algorithm are used widely, and also make certain results. or the complexity of vegetable price forecasting, BP nerve network model, the neural network model based on genetic algorithm, RB neural network model are set up separately. And on the basis of them, an integrated prediction model is established to provide the price of agricultural production with a reference of accurate prediction. Corresponding author. D. i, Y. iu, and Y. Chen (Eds.): CCTA 2010, Part III, IIP AICT 346, pp. 672 681, 2011. IIP International ederation for Information Processing 2011

Prediction of Vegetable Price Based on Neural Network and Genetic Algorithm 673 2 Materials Market prices of agricultural products are affected by many factors such as climate, supply and demand etc. The prediction is more complicated than commercial products. It is vary difficult to collect the data of impacting factor accurately and timely. Therefore, in this study, take the vegetable price as experimental materials. The daily price of entinus edodes is obtained in Beijing Xinfadi wholesale market from 2003 to 2009. After it was weighted, the monthly price is gain to prepare for forecasting. 3 Experimental Methods 3.1 Construction of BP Neural Network Model Artificial neural network model (abbreviations is ANN) can deal with some problems that background information is not clear and inference rule is uncertain. In theory, it can achieve arbitrary nonlinear mapping from input to output. o, it is widely used in complex nonlinear prediction, such as electricity prices and stock prices[1,2], and crop pests[3,4]. BP neural network (abbreviations is BPNN) is a kind of ANN which weight adjustment use back propagation learning algorithm. It has three layers which contain input layer, output layer and hidden layer. Connections are between upper neurons and lower neurons. But there is no link within the same layer. In this paper, take vegetable price data of a certain phase as input, the others as output to construct the BPNN. The number of neurons in hidden layer is important for forecasting. or the own characteristics of neural network, there is not a formula to determine the number of neurons in hidden layer. Practical experience shows that, with the increase of the neurons, the amount of computation is large, the simulation is better, but the generalization ability is poor. or complex matters, too few neurons can not reveal the variation. Generally, the number of neurons is more appropriate between 5 and 30. The exact number needs designer s experience and experiments to determine. The conversion from input layer to hidden layer is realized by the function of tansig(), and from hidden layer to output layer is realized by the function of purelin(). or the BPNN has the shortcoming which is easy to local minimums, the training algorithm of evenberg-marquardt is used to improve the optimization for efficiency. 3.2 Construction of Neural Network Model Based on Genetic Algorithm Genetic algorithm (abbreviations is GA) was proposed by olland professor in 1975. It is an optimal method based on natural selection and evolution in high dimension space. or the ability of global optimization, it was widely used in model optimization. Complement of GA, the BP neural network can solve the problems of falling in local minimums. ots of literature used the method to forecast, such as soil salt distribution, electricity price, and so on [5-7]. Taking the monthly market price of entinus edodes which is from 2003 to 2007 as experimental data, the neural network based on GA is constructed. Its structure is

674 C. uo et al. similar to BPNN. The main process of using GA for optimization of neural network model is as follow: (1) Gene Encoding. According to the BPNN, gain its weight number. Every weight is on behalf of a gene. All of them structure a chromosome. (2) Initial chromosome group generation. Choose the number of chromosome in initial population. To each chromosome, generate weights randomly in the given range to construct the initial group. (3) Individual fitness computation. se training samples to train the individual chromosome which is on behalf of an ANN, and then, calculate the individual learning error E. The formula is as follow: E = n i= E i Ei 1 there into = m l = 1 i i 2 ( y c ) / 2 l l (1) i y ere, n is the number of training sample, m is the number of output unit. l l is the difference between actual value and expected value of l-output when it takes i-sample to train. itness function fs is as bellow: fs = 1/ E (2) (4) electing operation. elect the individual taking roulette wheel and retain the best individuals. (5) Crossover operation. Assume x1 and x2 is parents, its children y1 and y2 after crossover is gained by the formula as bellow: y 1 = αx1 + 1 α) x2, y2 = αx2+ (1 α) ( x ere, α is an parameter which changed with the evolution algebra. (6) Variation. Take Gaussian approximate variance to improve the local search performance of GA on key search area. During the variation, using a random number of normal distribution which average is P and variance is P2 instead of original gene. (7) itness value of chromosomes group is calculated again. (8) If it meets the stop search criteria, output the result. Otherwise, go to step (4). 3.3 Construction of RB Neural Network Model Radial basis function network (abbreviations is RBN) is a kind of neural network. The ability of function approximation, patter recognition and classification is better than BPNN [8-10], and is also used in lots of forecasting fields. Its structure is similar to BPNN. Input layer nodes only pass the signal to hidden layer. Activation function in hidden layer is radial basis functions. Generally, activation function in output layer is a simple linear function. In RBN, input layer is mapped to a new space and achieves a linear combination. Adjustable parameters are the weights of linear combination and parameters which control the shape of the basis functions. The learning algorithm of RBN has three parameters to solve which are the center of function, variance and the weights from hidden layer to out layer. In the phase of selforganizing learning, solve the center of basis function and variance in hidden layer. 1 c i (3)

Prediction of Vegetable Price Based on Neural Network and Genetic Algorithm 675 On instructor learning stages, solve the weights which are between hidden layer and output layer. pecific steps are as follow: (1) Determination of basis function center C based on K-mean clustering 1) Network initialization. Training samples are selected randomly as the clustering center ci (i = 1, 2..., h). 2) Training samples grouping. In accordance with the Euclidean distance between the training samples xp and the center ci, distribute the xp to cluster set ϑ p (p=1, 2, P) of input samples. ere, P is the total number of samples. 3) Re-adjustment of cluster centers. Calculate the average of training sample in crusting set ϑ p to gain the new clustering center ci. If the new clustering center does not change any more, the ci is the final center of the basic function. Otherwise, go to step 2). (2) Variance σ i olution The basic function of RBN is Gaussian. o, the variance solution formula is as follows: cmax σ = i (4) 2h i=1,2,h ere, cmax is the maximum distance among selected centers. (3) The weight calculation between hidden layer and output layer The weights between hidden layer and output layer are calculated by least square method, the formula is as follow: h w = exp 2 c max x p c i 2 p=1,2,p; i=1,2,h (5) 3.4 Integrated Prediction Model Construction The above models provide a new method for the prediction of agricultural production market price. owever, one model more or less has shortcomings. If integrate multiple models, prediction process can be reflected from different sides to gain a accurate result. or the complexity of vegetables market price, It is difficult to describe the price variation rule using single model. o, the relationship between different forecasting model and final result is described by ANN to obtain the optimal forecasting result. irstly, predict the market prices of vegetables through separate model. econdly, construct a three feed forward neural network model taking forecasting results as input value and actual result as output value. inally, train the model using GA. When it is applied in real prediction, follow the same steps above. The training steps of integrated prediction model is the same with 3.2

676 C. uo et al. 4 Results and Discussion 4.1 imulation and Prediction Analysis of BPNN Take the former four month data of entinus edodes as input and the latter one month date as output. Code the program in Matlab. Construct BPNN. se the data of 2003 2007 to train the model. The number of the hide neurons is 20. Circulation is 3000. Optimization target is 0.1. After training, the model simulates the price of 2003-2007, and predicts the price of 2008-2009. The results are as follow: GWGYDOX PDVXGYDOX ig. 1. Prediction result of BPNN VPXODWGYDOX PDVXGYDOX ig. 2. imulation result of BPNN Calculate the mean absolute error (MAE) between measured value and simulated value, predicted value. In the figure above, the MAE of simulation is 0.046%, the MAE of prediction is 0.15%. Beside few point has greater error, on the whole, it is accurate on price trend prediction. It also indicates that BPNN has the reference value for the price prediction of entinus edodes.

Prediction of Vegetable Price Based on Neural Network and Genetic Algorithm 677 4.2 imulation and Prediction Analysis of Neural Network Based on Genetic Algorithm In this model, the chromosome group is 30, optimization goal is 0.5. Optimization algebra is 3,000. Its input value and output value are the same as BP neural network. The number of hidden layer is 15. Code the program in Matlab. se the data of 2003 2007 to train model and the data of 2008-2009 to predict. The results are showed in fig. 3 and fig. 4: GWGYDOX PDVXGYDOX ig. 3. Prediction result of neural network based on GA VPXODWGYDOX PDVXGYDOX ig. 4. imulation result of neural network based on GA As can be seen from the figure above, the simulation results of neural network based on GA is worse than BP neural network. Its MAE is 0.075%.The prediction result of neural network based on GA is better than BPNN, the MAE is 0.114%.It shows that the simulation ability of neural network based on GA is worse than single ANN. owever, its generalization ability is stronger than the neural network model, and with good results in forecasting.

678 C. uo et al. 4.3 imulation and Prediction Analysis of RBN The input value and output value of RBN is similar to BPNN. The number of hidden layer neurons is 50. Optimization goal is 0.1.Code the program in Matlab. se data of 2003 2007 to train model and the data of 2008-2009 to predict. The results are showed in fig. 5 and fig. 6: GWGYDOX PDVXGYDOX ig. 5. Prediction result of RBN VPXODWGYDOX PDVXGYDOX ig. 6. imulation result of RBN In the figure above, the simulation results of RBN is worse than BPNN and near by neural network based on GA. Its MAE is 0.071%. Its prediction result is closed to BPNN and worse than neural network based on GA. The MAE of prediction is 0.144%. 4.4 imulation and Prediction Analysis of Integrated Prediction Model se the data of 2008 to train model and the data of 2009 to predict, the result is as below:

Prediction of Vegetable Price Based on Neural Network and Genetic Algorithm 679 GWGYDOX PDVXGYDOX ig. 7. Prediction result of integrated prediction model VPXODWGYDOX PDVXGYDOX ig. 8. imulation result of integrated prediction model The result show that, using integrated prediction model, the MAE of simulation is 0.059%. It is better than neural network based on GA and RBN, and worse than BPNN. The MAE of prediction is 0.106%. It is the best of all models. Apply the four models to predict the market price of entinus edodes in 2009, the absolute error is showed in the fig. 9: R W X O R V E D %311 1XDOQWZRNEDVGRQ*$ 5%)1,QWJDWGGWRQPRGO ig. 9. Absolute error of four models

680 C. uo et al. The percentage of the number which predicting absolute error is greater than 20%, 15%, 10%, in the total predicting number, is displayed in table 1: Table 1. Comparison of predicting absolute error distribution of different model model >20% >15% >10% BPNN 33.3% 50% 75% Neural network based on GA 8.3% 41.6% 75% RBN 25% 33.3% 66.7% Integrated prediction model 8.3% 8.3% 41.6% As can be seen from the table, whenever in prediction, the results of integrated prediction model is equal or better than other three models. And then, the neural network based on GA is followed by. The performance of RBN is worse than the neural network based on GA. BPNN is the worse of all. 5 Conclusions To the vegetable price of Beijing wholesale Market, three models which are the BPNN, neural network based on GA and RBN are established separately. Based on that, an integrated prediction model is constructed. Take entinus edodes price as experiment data, some conclusions is as follows: (1) BPNN is good at simulation, but relatively poor at prediction. On the whole, it has accurate prediction on the trend of vegetable market price, and can offer a reference to prediction of edodes market price. (2) The simulation ability of neural network based on GA is worse than BPNN. But its generalization ability is good, predicting accuracy is better than BPNN. (3) The RBN has a similar simulation capability with neural network based on GA. Its forecasting result is better than BPNN, and worse than neural network based on GA. (4) The integrated prediction model utilizes the advantage which is provided by single predicting method, obtains the best prediction accuracy. It can improve the performance of agricultural market price prediction effectively. The application based on the theory of ANN and GA can offer a good result for the agriculture production price predicting. In this paper, the price data itself is only considered to construct models. urther research is required for improving the accuracy of prediction. or example, more influential factors need to be considered, and the influence percentage of each factor needs more investigation. Acknowledgements We are thankful that the study is supported by the Beijing Natural cience oundation (9093019), and acknowledge the Beijing Municipal Bureau of Agriculture for providing the essential raw data.

Prediction of Vegetable Price Based on Neural Network and Genetic Algorithm 681 References 1. Amjady, N.: Day-ahead price forecasting of electricity markets by a new fuzzy neural network. IEEE Transaction on Power ystems, 887 896 (2006) 2. Yamashita, T., irasawa, K., u, J.: Multi-branch neural networks and its application to stock price prediction. In: Khosla, R., owlett, R.J., Jain,.C. (eds.) KE 2005. NC (NAI), vol. 3681, pp. 1 7. pringer, eidelberg (2005) 3. Wei, M.., i, G.Y.: NN-based Intelligent Insect Pest orecast for Crops. Journal of Taiyuan niversity of cience and Technology, 442 445 (2007) 4. Najafi, B., Zibaei, M.: orecasting price of some crop products in Pars province: application of artificial neural network. Journal of cience and Technology of Agriculture and Natural Resources, 501 512 (2007) 5. uo, C..: Estimating Root density distribution of winter wheat under Water and salinity stress using the artificial neural network model based on Genetic algorithm. China Agricultural niversity 20-60 (2002) 6. Gu, Q.W., Chen, G., Zhu,..: hort-term marginal price forecasting based on genetic algorithm and radial basis function neural network. Power ystem Technology 25(7), 18 21 (2006) 7. Wu, C.., Wu, C., Kang,..: Research on stock price forecasting methods by support vector machines based on genetic algorithms. In: 3rd International Conference on Innovation and Management. Wuhan PR China, pp. 29 30 (2005) 8. hao,., Zhou, X.D.: Industrial water demand forecast in hanxi province based on RBN. Yellow River, 53 56 (2010) 9. Qiang, X.D., Xiao, Q., uo,.y.: Research on prediction of RMB exchange rate based on improved RB neural network. Computer Engineering and Applications, 229 231 (2010) 10. Wang, J., Tian,., Jiang,.: orecasting of hort-term Power oad in RB Network Based on Genetic Algorithm. Electronic Technology 15-1 (2010)