The Pilot Design Studio-Classroom. Joseph Cataldo The Cooper Union for the Advancement of Science and Art

Similar documents
CLASS SCHEDULE 2013 FALL

Fundamentals of Fluid Mechanics

Detailed Outline, M E 320 Fluid Flow, Spring Semester 2015

B.E/B.Tech/M.E/M.Tech : Chemical Engineering Regulation: 2016 PG Specialisation : NA Sub. Code / Sub. Name : CH16304 FLUID MECHANICS Unit : I

Fluid Mechanics. du dy

CALIFORNIA POLYTECHNIC STATE UNIVERSITY Mechanical Engineering Department ME 347, Fluid Mechanics II, Winter 2018

ENGINEERING FLUID MECHANICS. CHAPTER 1 Properties of Fluids

ME3560 Tentative Schedule Spring 2019

FE Fluids Review March 23, 2012 Steve Burian (Civil & Environmental Engineering)


ME3560 Tentative Schedule Fall 2018

Process Fluid Mechanics

Theory and Fundamental of Fluid Mechanics

Figure 3: Problem 7. (a) 0.9 m (b) 1.8 m (c) 2.7 m (d) 3.6 m

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad AERONAUTICAL ENGINEERING QUESTION BANK : AERONAUTICAL ENGINEERING.

Chapter 1 INTRODUCTION

10.52 Mechanics of Fluids Spring 2006 Problem Set 3

Engineering Fluid Mechanics

S.E. (Mech.) (First Sem.) EXAMINATION, (Common to Mech/Sandwich) FLUID MECHANICS (2008 PATTERN) Time : Three Hours Maximum Marks : 100

ME EN 3700: FLUID MECHANICS (Fall 2003)

R09. d water surface. Prove that the depth of pressure is equal to p +.

UNIT I FLUID PROPERTIES AND STATICS

William В. Brower, Jr. A PRIMER IN FLUID MECHANICS. Dynamics of Flows in One Space Dimension. CRC Press Boca Raton London New York Washington, D.C.

SCHOOL OF CHEMICAL ENGINEERING FACULTY OF ENGINEERING AND TECHNOLOGY SRM UNIVERSITY COURSE PLAN

VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur

Iran University of Science & Technology School of Mechanical Engineering Advance Fluid Mechanics

Dimensions represent classes of units we use to describe a physical quantity. Most fluid problems involve four primary dimensions

2.The lines that are tangent to the velocity vectors throughout the flow field are called steady flow lines. True or False A. True B.

Q1 Give answers to all of the following questions (5 marks each):

FE Exam Fluids Review October 23, Important Concepts

1. Introduction, tensors, kinematics

Mass of fluid leaving per unit time

M E 320 Supplementary Material Pralav Shetty

Chemical and Biomolecular Engineering 150A Transport Processes Spring Semester 2017

Fluid Mechanics Prof. T.I. Eldho Department of Civil Engineering Indian Institute of Technology, Bombay. Lecture - 17 Laminar and Turbulent flows

University of Engineering and Technology, Taxila. Department of Civil Engineering

5 ENERGY EQUATION OF FLUID MOTION

Part A: 1 pts each, 10 pts total, no partial credit.

V/ t = 0 p/ t = 0 ρ/ t = 0. V/ s = 0 p/ s = 0 ρ/ s = 0

FRIDAYS 14:00 to 15:40. FRIDAYS 16:10 to 17:50

Physical Science and Engineering. Course Information. Course Number: ME 100

DEPARTMENT OF CHEMICAL ENGINEERING University of Engineering & Technology, Lahore. Fluid Mechanics Lab

ESSEX COUNTY COLLEGE Engineering Technologies and Computer Sciences Division MET 215 Fluid Mechanics Course Outline

EXPERIMENT No.1 FLOW MEASUREMENT BY ORIFICEMETER

Contents. I Introduction 1. Preface. xiii

Fluid Mechanics Testbank By David Admiraal

4 Finite Control Volume Analysis Introduction Reynolds Transport Theorem Conservation of Mass

BERNOULLI EQUATION. The motion of a fluid is usually extremely complex.

Lab Reports Due on Monday, 11/24/2014

Fluid Dynamics Exercises and questions for the course

Chapter 3 Bernoulli Equation

Course Syllabus: Continuum Mechanics - ME 212A

Page 1. Neatly print your name: Signature: (Note that unsigned exams will be given a score of zero.)

Lecture 3 The energy equation

MECFLUID - Advanced Fluid Mechanics

Signature: (Note that unsigned exams will be given a score of zero.)

Lesson 6 Review of fundamentals: Fluid flow

Steven Burian Civil & Environmental Engineering September 25, 2013

FUNDAMENTALS OF AERODYNAMICS

MULTIPLE-CHOICE PROBLEMS:(Two marks per answer) (Circle the Letter Beside the Most Correct Answer in the Questions Below.)

GATE PSU. Chemical Engineering. Fluid Mechanics. For. The Gate Coach 28, Jia Sarai, Near IIT Hauzkhas, New Delhi 16 (+91) ,

Detailed Outline, M E 521: Foundations of Fluid Mechanics I

Higher Education. Mc Grauu FUNDAMENTALS AND APPLICATIONS SECOND EDITION

Tutorial 10. Boundary layer theory

Syllabus for AE3610, Aerodynamics I

ME332 FLUID MECHANICS LABORATORY (PART I)

Approximate physical properties of selected fluids All properties are given at pressure kn/m 2 and temperature 15 C.

APPLIED FLUID DYNAMICS HANDBOOK

Only if handing in. Name: Student No.: Page 2 of 7

Lagrangian description from the perspective of a parcel moving within the flow. Streamline Eulerian, tangent line to instantaneous velocity field.

REE 307 Fluid Mechanics II. Lecture 1. Sep 27, Dr./ Ahmed Mohamed Nagib Elmekawy. Zewail City for Science and Technology

PART 1B EXPERIMENTAL ENGINEERING. SUBJECT: FLUID MECHANICS & HEAT TRANSFER LOCATION: HYDRAULICS LAB (Gnd Floor Inglis Bldg) BOUNDARY LAYERS AND DRAG

Chapter 4 DYNAMICS OF FLUID FLOW

CEE 3310 Control Volume Analysis, Oct. 7, D Steady State Head Form of the Energy Equation P. P 2g + z h f + h p h s.

Fluid Mechanics c) Orificemeter a) Viscous force, Turbulence force, Compressible force a) Turbulence force c) Integration d) The flow is rotational

Measurements using Bernoulli s equation

Visualization of flow pattern over or around immersed objects in open channel flow.

Aerodynamics. Basic Aerodynamics. Continuity equation (mass conserved) Some thermodynamics. Energy equation (energy conserved)

V. MODELING, SIMILARITY, AND DIMENSIONAL ANALYSIS To this point, we have concentrated on analytical methods of solution for fluids problems.

s and FE X. A. Flow measurement B. properties C. statics D. impulse, and momentum equations E. Pipe and other internal flow 7% of FE Morning Session I

SYLLABUS FORM WESTCHESTER COMMUNITY COLLEGE Valhalla, NY lo595. l. Course #: PHYSC NAME OF ORIGINATOR /REVISOR: ALENA O CONNOR

Pressure in stationary and moving fluid Lab- Lab On- On Chip: Lecture 2

Prof. Scalo Prof. Vlachos Prof. Ardekani Prof. Dabiri 08:30 09:20 A.M 10:30 11:20 A.M. 1:30 2:20 P.M. 3:30 4:20 P.M.

Rate of Flow Quantity of fluid passing through any section (area) per unit time

HOMEWORK ASSIGNMENT ON BERNOULLI S EQUATION

HOW TO GET A GOOD GRADE ON THE MME 2273B FLUID MECHANICS 1 EXAM. Common mistakes made on the final exam and how to avoid them

Fluid Mechanics II Viscosity and shear stresses

LECTURE 1 THE CONTENTS OF THIS LECTURE ARE AS FOLLOWS:

Introduction to Aerodynamics. Dr. Guven Aerospace Engineer (P.hD)

FLUID MECHANICS. Atmosphere, Ocean. Aerodynamics. Energy conversion. Transport of heat/other. Numerous industrial processes

MULTIPLE-CHOICE PROBLEMS :(Two marks per answer) (Circle the Letter Beside the Most Correct Answer in the Questions Below.)

What we know about Fluid Mechanics. What we know about Fluid Mechanics

Chapter 14. Lecture 1 Fluid Mechanics. Dr. Armen Kocharian

MECHANICAL PROPERTIES OF FLUIDS:

Given the water behaves as shown above, which direction will the cylinder rotate?

TOPICS. Density. Pressure. Variation of Pressure with Depth. Pressure Measurements. Buoyant Forces-Archimedes Principle

SPC Aerodynamics Course Assignment Due Date Monday 28 May 2018 at 11:30

FLUID MECHANICS. Chapter 3 Elementary Fluid Dynamics - The Bernoulli Equation

Fluid Mechanics Qualifying Examination Sample Exam 2

Exercise sheet 5 (Pipe flow)

Transcription:

The Pilot Design Studio-Classroom Joseph Cataldo The Cooper Union for the Advancement of Science and Art

Studio Method Used for Many decades in Architectural and Art Schools

Origins The concept of the studio-classroom was originated at Rensselaer Polytechnic Institute Physics Department The studio-classroom model offers lectures plus in-class demonstrations and experiments

Benefits! Lab and classroom are combined. Add -- video, computer projections, interactive software -- and the classroom becomes dynamic, efficient, and engaging, providing a bridge between abstraction and application.! Next level where the dynamic environment makes the design process central to engineering education.

Cooper Union Studio-Classroom Lectures Modules Videos Demonstrations Student Classroom Participation

Studio-Classroom Model!A series of learning modules was developed to provide access to the practical, theoretical and experimental knowledge of fluids, flows, fields and pertinent analogies.

The modules consist of a series of eleven selfcontained sets of material that include:! Theory! Design Examples! Design homework problems! Design homework projects! Historical notes! Experiments and demonstrations! References

Theory!The theory consists of a brief overview of topics that generally make up one chapter in a fluid mechanics text. It is given as a guide to students; not to replace a standard fluid mechanics textbook.

Design Examples!The design examples, homework, and projects are important because they show the students how fluid mechanics is used in engineering design.!homework problems / projects in the modules stress the application of design.

III. Design Homework Problem Design the square rod AB shown, σ allowable = 20,000 psi, for the cofferdam shown. The shape and the size of the cofferdam is a 10 cube and is in 8 feet of homogeneous mud media, S.G. = 1.5. Also find what the weight of the cofferdam must be so that it stays in place. A B 8 8 Design Homework Project You are asked to check the design for an 11.875 wide gate, water temperature 57.5 0 F. A series of nine piezometers are drilled in the gate to determine the horizontal force on the gate (number 1 and number 9 are shown). The first piezometer starts.5 from the bottom of the gate and the rest of the piezometers are spaced.5 apart. A table of the height of the water in each piezometer is given (measured from the piezometer opening). 11.25 " # 4.75 7.15 2 Piezometer 1 2 3 4 5 6 7 8 9 Height of Water (ft) 7.15 7.45 7.35 7 6.5 6.25 5.75 5.25 4.75 (a) Why can you use hydrostatics to determine the horizontal force on the gate? (b) Plot the pressure on the gate. (c) Determine the horizontal force on the gate. (d) Plot the hydrostatic pressure on the gate and determine its force on the gate. (e) Why is the force determined in (d) greater than the force determined in (c)?

= II. Design Example An engineer must design the support system to hold the pipe junction shown. Determine the reactions to design this system. Take the weight of the junction and the water as 250 lb. 5 fps (PA) v 2 fps 45 O 1 4 psi v (PA) 6 psi 6 3 psi WT (PA) 8 R x 10 fps v Σ FBODY + Σ F SURFACE = Σ v v v ρ ( a) R y Horizontal Forces 2 = π 8 π 1 o R x - ( 3 144) + ( 6 144) cos 45 4 12 4 2 2 ( ) ( ) π 8 o ( )() π 1 1.94 10 10 1.94 2 cos45 2 4 12 4 2 R x = 97.5 lb. Vertical Forces π R y 250-4 ()2 1 ( 4 144 ) π 1 4 2 π 1.94 4 R y = 862.6 lb. 2 o ( 5)( 5) () 1 + 1.94( 2 sin45 )() 2 2 2 ( 6 144)sin45 o 2 π 1 4 2 2

III. Design Homework Problem Determine the number of bolts necessary to hold the reducing section shown for a flow of 4 cfs. Each bolt is designed to take a compression or tension force of 45 lb. 1 6 Open to the air Vacuum 2 psi Design Homework Project For the reducer shown, the total reaction must not exceed 4,000 lb. The pump is places in the system to increase the head. The pump characteristics are given in the table where h is the increase in head across the pump. Assume the water temperature is 50 0 F and the weight of the reducer is 1,000 lb. including the water. Will this pump work in the system? Open to the air Pump Characteristics 1 Head (feet) Flow Rate (cfs) 100 0 80 18 60 25 40 30 20 34 Vacuum 2in Hg Pump 2 1 R 1

Drag Force = ( Drag Force = 323 lb. 10 II. Design Example An engineer must design a cable system consisting of 100 of 1 diameter supporting rods. The structure that the cable is supporting is shown in the figure. Determine the wind force on the system for a maximum wind of 50 mph. Take the wind at 50 0 F. Rods Rods 4 Drag = ΣC D ρu 2 2 A C D = 0.30 Rods (Turbulent) and 1.2 (Rectangle) U = 1.4667(50) = 73.3 ft sec ρ Air =.002378 ; slug 3 ft ν = 1.8 10 4 ft 2 sec 0.3(.002378) 2 2 73.3) 1 ( 73.3) 100 + 1.2(.002378) ( 4 10) 2 12 2

and take the temperature at 0 III. Design Homework Problem A cold water station is in the shape of a half sphere. Determine the force on this station for a maximum velocity of 40 m sec 0C. 40 m/sec 4 m Design Homework Project To determine the drag force on a vessel, boundary layer tests were conducted. A pitot tube was used in the test shown. The results of these tests are given in the table. (a) Calculate and plot the boundary layer velocity profile. (b) Estimate the boundary layer thickness. y (in.).02.035.044.06.093.11.138.178.23.27.322 h (in.).3.7.8 1.4 1.8 2.6 2.9 3.3 3.9 4.0 4.0 h v y vessel

VIDEO CLIPS 10 Different Topics 16 Clips - each about 3 min.

VIDEO FLUID MECHANICS PRINCIPLES DEMONSTRATED RUNNING TIME MIN:SEC (22) Characteristics of Laminar and Turbulent Flow - Concept of viscosity due to shear flow. 2:14 (11) Flow Visualization - Path Lines :35 - Stream Lines :17 - Time Lines :58 (10) Eulerian and Lagrangian Description in Fluid Mechanics - Pipe flow showing Eulerian and Lagrangian flow 2:09 (1) Pressure Fields and Fluid Acceleration - Flow through a contracting conduit 1:26 (1) (1) Pressure Fields and Fluid Acceleration - Use of Euler s equation, showing rotating disc with 1:09 manometers (2) (1) Pressure Fields and Fluid Acceleration - Flow withdrawn along a pipe - Stagnation and pitot tubes - Venturi section showing a pressure drop (3) (2) Turbulence - Disorder, Mixing, Vorticity - Momentum transfer - Mixing across streamlines (24) Effects of Fluid Compressibility -Water waves with flow superimposed showing Froude and Mach numbers (22) Characteristics of Laminar and Turbulent flow -Couette flow -Poiseulle flow (31) Vorticity -Vortex meter near boundary layer showing vorticity and a rotating tank showing zero rotation 1:09 1:02 1:03 1:58 :38 :40 1:27 :53 :56 3:00 (23) Form, Drag, Lift, and Propulsion -Flow around a rotating cylinder and other shapes 3:36 (5) Fundamentals of Boundary Layer - Turbulent and laminar boundary layer along a flat 2:48 plate (7III) Fluid Mechanics of Drag - Boundary layer velocity profile of a channel 1:59 (7I) Fluid Mechanics of Drag -Flow of air past a sphere and bomb :48 -Sphere and bomb falling in a liquid 1:58 (23) Form, Drag, Lift, and Propulsion -Flow around curved surfaces -Flow around a disc, sphere -Flow around a cylinder and a roof :17 2:23 :46 (24) Effects of Fluid Compressibility - Shock waves on solid bodies 2:56 MODULE TOPIC Basic Principles Kinematics Kinematics Conservation of mass Conservation of momentum Equation of Energy, turbulence, and pipe flow Equation of Energy, turbulence, and pipe flow Dimensional Analysis and Similitude Navier Stokes Equations Potential Flow Potential Flow Boundary layer theory Boundary layer theory Boundary layer theory Boundary layer theory One-dimensional compressive flow

DEMONSTRATIONS Capillarity Barometer Bent tubes manometers Fluid upthrust Hydrostatic Container Dye open channel uniform & nonuniform flow steady & nonsteady flow Pitot Tube Jet impact Reservoir into series pipes Laminar and turbulent flow Venturi meter Source, sink & doublet

BENCH SCALE EQUIPMENT Hydrostatic Bench 2.5m Flow Channel Impact Jet Venturi Meter Hele Shaw Fluid Friction Hydrostatic Container Reservoir Pipes

STUDENT CLASS PARTICIPATION Recite homework 3-4 times a semester weaker student more Solve a problem after demonstration Call student to answer questions in class

!The students see the most important ideas at least four times $ lecture $ video $ homework $ demonstration

Evaluation!Allows the instructor to not lose touch with her/his students' learning process.!allows students to participate in their own learning process by providing feedback.!assessment works as a communication tool between faculty and students.

Table 2. ASSESSMENT INSTRUMENT ESC 140 FALL 2000 This course has introduced a number of teaching and learning methods for fluid mechanics. We would like to know your reactions to them. Your feedback is important and will help to improve the course in the future. Please reply to this email. Your instructor will get compiled, not individual results. Confidentiality is assured. 1. How effective were the following methods to understand the material covered in class? Use this scale: not effective (1), effective to a limited extent (2) effective to a moderate extent (3), effective to a great extent (4), effective to a very great extent (5), not applicable (N/A) LECTURE 1 2 3 4 5 N/A MODULE 1 2 3 4 5 N/A VIDEOCLIPS 1 2 3 4 5 N/A DEMONSTRATIONS 1 2 3 4 5 N/A TEXTBOOK 1 2 3 4 5 N/A 2. Now please assess the effectiveness of the methods above for each of the topics covered: TOPIC LECTURE MODULE VIDEOCLIPS DEMOS TEXTBOOK 1 2 3 4 5 N/A 1 2 3 4 5 N/A 1 2 3 4 5 N/A 1 2 3 4 5 N/A 1 2 3 4 5 N/A Fluid phenomena and continuum;stress Fluid statics 1 2 3 4 5 N/A 1 2 3 4 5 N/A 1 2 3 4 5 N/A 1 2 3 4 5 N/A 1 2 3 4 5 N/A Kinematics of flow 1 2 3 4 5 N/A 1 2 3 4 5 N/A 1 2 3 4 5 N/A 1 2 3 4 5 N/A 1 2 3 4 5 N/A Basic laws; 1 2 3 4 5 N/A 1 2 3 4 5 N/A 1 2 3 4 5 N/A 1 2 3 4 5 N/A 1 2 3 4 5 N/A mass;momentum;energy;t hermodynamics laws Dimensional analysis and 1 2 3 4 5 N/A 1 2 3 4 5 N/A 1 2 3 4 5 N/A 1 2 3 4 5 N/A 1 2 3 4 5 N/A similitude Incompressible viscous flow through pipes 1 2 3 4 5 N/A 1 2 3 4 5 N/A 1 2 3 4 5 N/A 1 2 3 4 5 N/A 1 2 3 4 5 N/A Potential flow 1 2 3 4 5 N/A 1 2 3 4 5 N/A 1 2 3 4 5 N/A 1 2 3 4 5 N/A 1 2 3 4 5 N/A Boundary-layer theory 1 2 3 4 5 N/A 1 2 3 4 5 N/A 1 2 3 4 5 N/A 1 2 3 4 5 N/A 1 2 3 4 5 N/A Navier-Stokes 1 2 3 4 5 N/A 1 2 3 4 5 N/A 1 2 3 4 5 N/A 1 2 3 4 5 N/A 1 2 3 4 5 N/A 1 2 3 4 5 N/A 1 2 3 4 5 N/A 1 2 3 4 5 N/A 1 2 3 4 5 N/A 1 2 3 4 5 N/A One-dimensional compressible flow Tests 1 2 3 4 5 N/A 1 2 3 4 5 N/A 1 2 3 4 5 N/A 1 2 3 4 5 N/A 1 2 3 4 5 N/A 3. How effective were the following parts of the module to understand the material covered in class?

from not effective (1), effective to a limited extent (2) effective to a moderate extent (3), effective to a great extent (4), effective to a very great extent (5), not applicable (N/A) THEORY 1 2 3 4 5 N/A ILLUSTRATION 1 2 3 4 5 N/A DESIGN HOMEWORK 1 2 3 4 5 N/A DESIGN PROJECT 1 2 3 4 5 N/A HISTORY 1 2 3 4 5 N/A 4. Do you feel competent in the following areas covered in the course? Please rate according to the following scale: not at all (1), to a limited extent (2) to a moderate extent (3) to a great extent (4), to a very great extent (5) Fluid phenomena and continuum;stress Fluid statics Kinematics of flow Basic laws; mass;momentum;energy;th ermodynamics laws Dimensional analysis and similitude Incompressible viscous flow through pipes Potential flow Boundary-layer theory Navier-Stokes One-dimensional compressible flow Tests 1 2 3 4 5 N/A 1 2 3 4 5 N/A 1 2 3 4 5 N/A 1 2 3 4 5 N/A 1 2 3 4 5 N/A 1 2 3 4 5 N/A 1 2 3 4 5 N/A 1 2 3 4 5 N/A 1 2 3 4 5 N/A 1 2 3 4 5 N/A 1 2 3 4 5 N/A 5. Lets focus now on the videoclips. Please explain how they helped you to understand the material and to learn fluid mechanics. Be as detailed and specific as you can. 6. Which of the videoclips was (were) more useful? Which was (were) least useful? Why? 7. Are you generally satisfied with your knowledge of fluid mechanics after taking this course? Please explain. 8. In addition to learning fluid mechanics, have you developed any other skill or ability during this course? 9. What would you do to improve this course? Please feel free to make any suggestions

Effectiveness of teaching methods NEGATIVE POSITIVE ENTHUSIASTIC LECTURE 12.5 87.5 75 MODULE 25 75 37.5 VIDEOCLIPS 12.5 87.5 37.5 DEMONSTRATIONS 6.25 93.75 68.75 TEXTBOOK 37.5 62.5 25

Effectiveness of module parts NEGATIVE POSITIVE ENTHUSIASTIC THEORY 31.25 68.75 25 ILLUSTRATIONS 18.75 81.25 43.75 DESIGN HOMEWORK 18.75 81.25 43.75 DESIGN PROJECT 18.75 81.25 43.25 HISTORY 62.5 25 6.25

Student self-perception of competence BELOW VERY COMPETENT COMPETENT COMPETENT Fluid phenomena and continuum stress 18.75 81.25 43.25 Fluid statics 6.25 93.75 62.5 Kinematics of flow 0 100 68.75 Basic laws; mass;momentum; energy;thermodynamics laws 6.25 93.75 62.5 Dimensional analysis and similitude 0 100 56.25 Incompressible viscous flow through pipes 6.25 93.75 56.25 Potential flow 18.75 82.25 37.5 Boundary-layer theory 6.25 93.75 37.5 Navier-Stokes 43.75 56.25 18.75 One-dimensional compressible flow 0 87.75 37.5 Tests 0 93.75 62.5 AVERAGES 9.6 88.75 49.42

Conclusions! The object of this studio classroom was to present fluid mechanics by lecture, demonstrations, videos, design homework and projects, and student participation.! Almost the whole class felt that the videoclips and demonstrations were effective (over 90%) with approximately an equal amount (87.5%) scoring the lectures positive.! The students felt confident in almost all the fluid mechanics topics (average of approximately 90%).! The students gave the module a positive response (75%).! From the responses in the questionnaire, the studio-classroom was a success.! From a professor's viewpoint, the new methods made me think more about teaching. Time is spent more efficiently.

Equation of Energy, Turbulence and Pipe Flow