Nine lectures for the Maths II course given to first year physics students in the Spring Term. Lecturer: Professor Peter Main

Similar documents
Classification of Equations Characteristics

Some algorthim for solving system of linear volterra integral equation of second kind by using MATLAB 7 ALAN JALAL ABD ALKADER

Invert and multiply. Fractions express a ratio of two quantities. For example, the fraction

ME 141. Engineering Mechanics

Faraday s Law. To be able to find. motional emf transformer and motional emf. Motional emf

ISSUES RELATED WITH ARMA (P,Q) PROCESS. Salah H. Abid AL-Mustansirya University - College Of Education Department of Mathematics (IRAQ / BAGHDAD)

Axis. Axis. Axis. Solid cylinder (or disk) about. Hoop about. Annular cylinder (or ring) about central axis. central axis.

Ch.4 Motion in 2D. Ch.4 Motion in 2D

1. Kinematics of Particles

Physics 201, Lecture 5

15/03/1439. Lecture 4: Linear Time Invariant (LTI) systems

The sphere of radius a has the geographical form. r (,)=(acoscos,acossin,asin) T =(p(u)cos v, p(u)sin v,q(u) ) T.

Section 35 SHM and Circular Motion

PHYSICS 102. Intro PHYSICS-ELECTROMAGNETISM

Chapter 4 Circular and Curvilinear Motions

f(x) dx with An integral having either an infinite limit of integration or an unbounded integrand is called improper. Here are two examples dx x x 2

Motion on a Curve and Curvature

Physics 232 Exam I Feb. 13, 2006

() t. () t r () t or v. ( t) () () ( ) = ( ) or ( ) () () () t or dv () () Section 10.4 Motion in Space: Velocity and Acceleration

CSE590B Lecture 4 More about P 1

Rotations.

Compressive modulus of adhesive bonded rubber block

LECTURE 5. is defined by the position vectors r, 1. and. The displacement vector (from P 1 to P 2 ) is defined through r and 1.

Science Advertisement Intergovernmental Panel on Climate Change: The Physical Science Basis 2/3/2007 Physics 253

D zone schemes

1. Find a basis for the row space of each of the following matrices. Your basis should consist of rows of the original matrix.

2IV10/2IV60 Computer Graphics

Special Vector Calculus Session For Engineering Electromagnetics I. by Professor Robert A. Schill Jr.

Homework 5 for BST 631: Statistical Theory I Solutions, 09/21/2006

Control Volume Derivation

Motion. ( (3 dim) ( (1 dim) dt. Equations of Motion (Constant Acceleration) Newton s Law and Weight. Magnitude of the Frictional Force

Axis Thin spherical shell about any diameter

10.3 The Quadratic Formula

Physics 232 Exam I Feb. 14, 2005

FM Applications of Integration 1.Centroid of Area

An object moving with speed v around a point at distance r, has an angular velocity. m/s m

Section P.1 Notes Page 1 Section P.1 Precalculus and Trigonometry Review

Mathcad Lecture #4 In-class Worksheet Vectors and Matrices 1 (Basics)

Go over vector and vector algebra Displacement and position in 2-D Average and instantaneous velocity in 2-D Average and instantaneous acceleration

Average & instantaneous velocity and acceleration Motion with constant acceleration

Technical Vibration - text 2 - forced vibration, rotational vibration

Hyperbolic Heat Equation as Mathematical Model for Steel Quenching of L-shape and T-shape Samples, Direct and Inverse Problems

T h e C S E T I P r o j e c t

ANALYSIS OF KINEMATICS AND KINETOSTATICS OF FOUR-BAR LINKAGE MECHANISM BASED ON GIVEN PROGRAM

AP Calculus AB Exam Review Sheet B - Session 1

GEOMETRY Properties of lines

Today - Lecture 13. Today s lecture continue with rotations, torque, Note that chapters 11, 12, 13 all involve rotations

P a g e 5 1 of R e p o r t P B 4 / 0 9

Dividing Algebraic Fractions

Derivatives of Inverse Trig Functions

DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING FLUID MECHANICS III Solutions to Problem Sheet 3

Axis. Axis. Axis. Solid cylinder (or disk) about. Hoop about. Annular cylinder (or ring) about central axis. central axis.

1. Viscosities: μ = ρν. 2. Newton s viscosity law: 3. Infinitesimal surface force df. 4. Moment about the point o, dm

Week 8. Topic 2 Properties of Logarithms

Outline. Part 1, Topic 3 Separation of Charge and Electric Fields. Dr. Sven Achenbach - based on a script by Dr. Eric Salt - Outline

Mathematical Modeling

PHYSICS 1210 Exam 1 University of Wyoming 14 February points

Physic 231 Lecture 4. Mi it ftd l t. Main points of today s lecture: Example: addition of velocities Trajectories of objects in 2 = =

ENGI 4430 Advanced Calculus for Engineering Faculty of Engineering and Applied Science Problem Set 9 Solutions [Theorems of Gauss and Stokes]

(b) 10 yr. (b) 13 m. 1.6 m s, m s m s (c) 13.1 s. 32. (a) 20.0 s (b) No, the minimum distance to stop = 1.00 km. 1.

Physics Worksheet Lesson 4: Linear Motion Section: Name:

Course Updates. Reminders: 1) Assignment #8 available. 2) Chapter 28 this week.

ENGR 1990 Engineering Mathematics The Integral of a Function as a Function

Physics 101 Lecture 4 Motion in 2D and 3D

A L A BA M A L A W R E V IE W

Ans: In the rectangular loop with the assigned direction for i2: di L dt , (1) where (2) a) At t = 0, i1(t) = I1U(t) is applied and (1) becomes

Adrian Sfarti University of California, 387 Soda Hall, UC Berkeley, California, USA

Derivation of the differential equation of motion

Chapter Primer on Differentiation

Energy Dissipation Gravitational Potential Energy Power

2D Motion WS. A horizontally launched projectile s initial vertical velocity is zero. Solve the following problems with this information.

Nonlocal Boundary Value Problem for Nonlinear Impulsive q k Symmetric Integrodifference Equation

Homework 3 MAE 118C Problems 2, 5, 7, 10, 14, 15, 18, 23, 30, 31 from Chapter 5, Lamarsh & Baratta. The flux for a point source is:

Mathematics Paper- II

Physics Courseware Electromagnetism

Angular Contac t Ball Bearings

1 Using Integration to Find Arc Lengths and Surface Areas

OH BOY! Story. N a r r a t iv e a n d o bj e c t s th ea t e r Fo r a l l a g e s, fr o m th e a ge of 9

2-d Motion: Constant Acceleration

One of the common descriptions of curvilinear motion uses path variables, which are measurements made along the tangent t and normal n to the path of

û s L u t 0 s a ; i.e., û s 0

Physics 1502: Lecture 2 Today s Agenda

10. Euler's equation (differential momentum equation)

ÖRNEK 1: THE LINEAR IMPULSE-MOMENTUM RELATION Calculate the linear momentum of a particle of mass m=10 kg which has a. kg m s

Coupled Mass Transport and Reaction in LPCVD Reactors

Circuits 24/08/2010. Question. Question. Practice Questions QV CV. Review Formula s RC R R R V IR ... Charging P IV I R ... E Pt.

A Kalman filtering simulation

3.4 Conic sections. In polar coordinates (r, θ) conics are parameterized as. Next we consider the objects resulting from

3.1 Velocity: m s. x t. dx dt. x t (1) 3.2 Acceleration: v t. v t. dv dt. (2) s. 3.3 Impulse: (3) s. lim. lim

4. Runge-Kutta Formula For Differential Equations

A study Of Salt-Finger Convection In a Nonlinear Magneto-Fluid Overlying a Porous Layer Affected By Rotation

Reinforcement learning

Chapter 2. Motion along a straight line. 9/9/2015 Physics 218

Physics 232 Exam II Mar. 28, 2005

Class Summary. be functions and f( D) , we define the composition of f with g, denoted g f by

Applications of these ideas. CS514: Intermediate Course in Operating Systems. Problem: Pictorial version. 2PC is a good match! Issues?

( ) exp i ω b ( ) [ III-1 ] exp( i ω ab. exp( i ω ba

Example: Two Stochastic Process u~u[0,1]

Lecture 10. Solution of Nonlinear Equations - II

CHAPTER 11 PARAMETRIC EQUATIONS AND POLAR COORDINATES

Transcription:

Nine leces o e Ms II cose gien o is e psics sens in e Sping Tem. Lece: Poesso Pee Min Ao e cose Tis cose sows o ow o ieenie n inege ncions o seel iles. I is pesene s n eension o e clcls o le now wic els wi single ile. I is il memics o psiciss since we lie in - imensionl wol giing s les ee iles n z o escie i. Yo will me goo se o is ms in e memicl psics coses in e secon e. Te ge oo o ne is wien in e lngge o memics. Glileo Glilei p://www-ses.o.c./~pm/pmwe/ecing.m

Pil ieeniion So o cn ieenie ncions o one ile. Fo ncions o seel iles we m pocee s ollows: Fo cline o is n eig e olme is V = I is consn e e o cnge o V w is V π I is consn e e o cnge o V w is π V I o n e iles we cn sill se ese esls n esigne e eiies s pil eiies. Tese e wien s: I V = wee n e iles en V π n π V Te opeion we e cie o is o pil ieeniion. Te ecipe is es o ieenie pill w one ile eg ll oe iles s consns. Noion Fncions: z = z Pil eiies: z z A moe son noion is oen ope: z z z z Deiniion Fo ncion o one ile: i = en δ δ δ lim Simill we cn wie o : δ δ δ lim δ δ δ lim i.e. pil ieeniion is ciee ieeniing w one ile wile eeping e oes consn. Te genelision o ncions o n nme o iles sol e oios. Geomeicl inepeion z = gies sce i.e. e le o e ncion is ploe in e z-iecion. δ δ

z gies e slope o e lines consn gies e slope o e lines consn Emple I e cos Solion: e cos e cos e Cion! in n sin e cos sin I someing cn go wong i will. Hee s n emple o wee o cn esil me ig mise in pil ieeniion. Te elionsips eween Cesin n pol cooines will gie s some simple epessions o ieenie: = cos = sin cosθ θ cn cosθ cosθ I ppes eeoe cosθ!! Te po occs ecse o slc noion. Le s se e complee smol o e pil eiies: θ cosθ cosθ n ee is no eson o e n picl elionsip eween ese wo eiies since ieen iles e el consn n ieen ncions e een ieenie. Moe coecl: om = cos we oin = sec secθ n we in s epece. θ θ θ onl i e sme iles e el consn ing e ieeniion.

Hige oe pil eiies Js s o ncions o one ile we m eine ige oe eiies: Te is oe eiies o e n so wic cn lso e wien s wic cn lso e wien s Mie eiies e lso possile ecse e o ncions o n : wic cn lso e wien s wic cn lso e wien s Fonel we e e simpliing c poie ll e eiies eis n e coninos i.e. e opeos n comme. Oe eiies eis e.g. Emple Sow = o = e cos lso Solion: om peios emple we e e cos e cos e sin e cos sin lso e cos e sin n we in Emple e cos e sin e cos sin = Sow = sin ep- sisies onl o =. Tis is Lplce s eqion pil ieenil eqion wic is e impon in memicl psics. Yo will mee i gin in secon e coses.

Solion: sin ep cos ep sin ep sin ep sin ep sin ep wen = Tol ieenil Gien e mon wic e ncion cnges wen o iles cnge simlneosl is clle e ol ieenil n is eine s: Le s epess is in ems o pil eiies. Since en Simill Aing n gies Neglecing secon oe smll qniies en gies Te is em in e inl epession is me om e pil eiie wic gies e e o cnge o wi mliplie e cnge in. Te poc eeoe gies e cnge in e o e cnge in. Liewise e secon em gies e cnge in e o e cnge in. I is seen e ol cnge in e ol ieenil is e sm o e cnges e o sis in n sepel. 5

Emple Fin e cnge in = e. n o.5 especiel. Solion: wen = : δ δ δ wen e les o n e cnge om o e e δ e δ e δ = e + wen =..5: = e. +. =. e =.9 Te cl cnge is: =..5 =.8.78 =.9 Implici ieeniion I = is eemines s ncion o o ice es i.e. is n implici ncion o since i is no eine eplicil. Tee e wo ws o eemining / in is siion e is o wic o m e seen eoe: δ. ieenie ems in s noml: ieenie ems in s noml: ieenie ems in sing e poc le: emple: cos ieeniing gies sin n n lgeic engemen gies sin sin. since = i.e. consn en = so giing emple: cos sin sin wic is n esie clclion n e is one. Fncion o ncion Fo ncions o single ile we le now o n en

7 Tis is someimes clle e cin le. I cn e eene o e cse wee we e ncion o seel iles. Le n en: n Emple I n in cn Beoe soling e polem le s me se we cn ieenie e cn ncion. I o ememe e sn inegl C cn en ieeniing o sies gies immeiel cn Anoe w o oing i is o le = cn en = n sec cn Solion: Use is esl o sole e oiginl polem: Le = / en we e = cn n is ncion o single ile. We lso e n Teeoe cn Also cn Emple Gien in n Solion: We cnno ieenie e epession compleel ecse e ncion is no gien. Howee we cn me some pogess ows e eiies s ollows. Le = en e ncion ecomes n Ten n Emple Sow = - sisies e eqion φ φ wee is n i ieenile ncion n is consn. Solion: Using e sme memicl ies s in e peios emple e powe o clcls is emonse wen we sow e eqion is sisie n

8 nnown ncion. Te eqion nown s e we eqion is n impon one in memicl psics s i escies e eio o mn ins o we. Le = en n lso ecomes φ φ φ φ φ φ Cin le I we e gien n en m e epesse s ncion o lone. Te complee eiie / eeoe eiss n i cn e epesse in ems o pil eiies s ollows. Te ol ieenil o is I eeoe ollows i.e. wo ems o e om peiosl gien o ncion o single ile. Emple I e n = = - eemine / wo ieen ws. Solion: Epess s ncion o en e e e e Use e cin le e e e Cin le gin A moe genel epession o e cin le ecomes necess wen we e wee n. Usll wien s: Using ll smols: n

9 Dieenil opeos Yo e een sing ieenil opeos o some ime een i o en clle em nme. Fo emple o ieenie o ppl e opeo o poce e esl. Tis m e wien s. Simill. Yo cn ppl e opeo wice s in. Fo : n Moe complice opeos cn ise o wi n. Te cin le gies n is m e wien in ems o ieenil opeos s Te le-n opeo is o e se wen is in ems o n ; e ig-n opeo is o e se wen is in ems o n. Te opeos peom e sme opeion n e eeoe eqilen. Tis m e wien s Te ig-n opeo ells o o ieenie pill w n mlipl en is o e pil eiie w mliplie. Emple I = + wee = n = in sing wo ieen opeos. Solion:. Ssie o n in n se e opeo : giing. Lee in ems o n n se e opeo : Te pil eiies in e opeo e n So

Emple eeminion o ieenil opeos Gien = n = epess e opeos n in ems o n. Solion: Te cin le gies n Te pil eiies e: ; ; ; so e opeos ecome: Yo cn se n meo o lie o sole e eqions e ecommene meo is o se Cme s le: eeoe n Cme s le I o en seen Cme s le eoe ee i is s pplie oe. I is ecommene s i nees less lgeic mniplion n oe meos wen pplie o pi o simlneos eqions. Fo e eqions: + = + = e solion is epesse in ems o eeminns s: Te nnowns e n n e pen o eeminns is: Te ls eeminn cll i conins e o le n sie coeiciens. Te eeminn o is nnown is wi e is colmn eplce e s. Te eeminn o n nnown is wi e n colmn eplce e s. sole ese eqions o n

Commen Cn we oi ing o sole eqions oing e clclion in ieen w? Fo emple o wi n e cin le gies so e opeos e giing iecl wi n eqilen epession o. Howee on e oole. Te eiie oe is no e ecipocl o in e peios emple. Hee is ncion o n so e ll smol o e eiie is wees in e emple is ncion o n i.e. e eiie is. To oin e eqions = n = will e o e sole o n o epess em s ncions o n. Tis is consiel moe iicl s n soling e eqions in e emple so o cn win is w. Cnge o iles Cesin o pol Sow wee is ncion o n o e eqilen ncion o n n = cos = sin i.e. e epession is cnge om Cesin o pol cooines. Te epession isel is p o Lplce s eqion. Fom e cin le: cos sin sin cos Sole ese eqions o n o gie: cos sin n sin cos Tese epessions lso poie e opeos neee o oin e secon oe eiies: sin cos sin cos Epn e opeo: sin cos sin sin cos cos Now ieenie ememeing o se e poc le wee i pplies: sin cos sin cos sin sin cos sin cos sin cos

Collec lie ems n p em in logicl oe: sin sin sin sin cos A simil nlsis gies e epession o : θ θ sin cos cos sin sin Aing em ogee gies e eqie esl: Tlo seies o ncion o wo iles Fo ncion o single ile we e: n n n!! '''! '' ' o leniel: n n n!! '''! ' ' ' Tese wo epessions e e sme wi = +. Fncions o seel iles cn e ee in simil w. Fo wo iles eine e ieenil opeo D. Te Tlo epnsion o o e poin is en:!!! D n D D D n wee D n mens ppl e ieenil opeo n imes o n ele e esl e poin. Le s loo D : Tis is e sme memicl om s inomil epnsion. Wiing o ll e ems in e Tlo epnsion p o oe gies:!! Te lenie om is oine ping = + = + :!!

Emple Epn = ep sin s powe seies o e poin / o ems o e secon egee. Hence oin n ppoime le o. /. = ep sin / = e = sin ep sin / = e = cos ep sin / = = sin ep sin / = e = cos ep sin + cos sin ep sin / = = - sin ep sin + cos ep sin / = -e Te Tlo seies o / is: Ping in e les o e eiies gies: ep sin e e e e e e Fo =. n = / e ppoime le o. /.. Usel pope Fo ncions o single ile: e Te coec le o. / ep.sin. I cn e wien s PQ en Tlo epnsion o = [Tlo epnsion o P] [Tlo epnsion o Q] Fo ncion o wo iles: I cn e wien s PQ en Tlo epnsion o = [Tlo epnsion o P] [Tlo epnsion o Q]

Inegion Recll e e ne ce is gien inegion: Elemen o e = lim Tol e In e limi s ol e Dole inegls Le s een is ie o gie n epession o e olme ne sce. Te ncion z = gies e sce n e olme eween is n gien egion in e -plne is e olme o e clcle. Te olme ssocie wi ec elemen o e in e -plne is n e sm o ese gies e esie olme. Howee is is one in e ssemic mnne. Le e olme e one : Top z = Boom -plne Sies ce ABCD Le e ce ABC e = Le e ce ADC e = Now e n elemen slice o consn. A D δ = φ C Elemen o olme = Teeoe olme o elemen slice lim δ B = φ lim So ol olme ne sce In is ole inegl noe e is inegion is oe wee is ee s consn. Dole inegls e no nomll wien in is w e moe commonl epesse wio ces s: o In e oe nlsis i is possile o inecnge e oles o n o oin secon ole inegl eql in le o e is. Ting elemen slices o consn les o e ole inegl:

Volme ne sce = c wee e olme is one on e le = ψ n on e ig = ψ. We cn eeoe eqe e wo ole inegls: c n we e cnge e oe o inegion. On e le we inege oe is oling consn en inege oe. On e ig inege oe is oling consn en inege oe. Noe e limis on e wo ole inegls e e ieen. o escie e sme iel o inegion. Cnging e oe o inegion Howee e Yo cn onl sel ece e limis on ole inegl wing e iel o inegion. Te e ollowing inegl s n emple. Te limis on e inegion oe sow e iel o inegion is one e lines = n =. Teeoe e iel o inegion is s sown in e igm wi going om o / s gien e limis on e inegion oe. On ineging oe is e igm sows goes om e line o. Tese eeoe om e limis on e inegl n e nge o is seen o e < < /. We eeoe e: In is secon emple e ole inegl s o e spli ino e sm o wo inegls o ccommoe e ieen lowe limis wen ineging oe is. c = ψ A = D B = = ψ C wen < 5

I is impon e iel o inegion sol e e sme eoe n e cnging e oe o inegion. Emples eling ole inegls. Ele oe e e one = n =. Vei e sme esl is oine wen e oe o inegion is eese. Solion: Te limis on e inegls e o e oine om igm o e iel o inegion. Ineging oe is: 5 5 5 Ineging oe is: 5 5 5. Ele sin Solion: Tee is no es w o peoming e inegion oe so consie cnging e oe o inegion. Tis cn onl e one ploing o e iel o inegion is. Te inegl ecomes sin Noe sin is consn in e inegion oe so i cn e en o o inegl. Te inegion oe is now iil: sin sin sin n e inegion oe now ecomes possile ecse e inegn s cnge. Use e ssiion en n e inegl ecomes:

sin cos Sepion o iles In e specil cse wee e limis o inegion e consn no ncions o e iles n e inegn is o e om FG we e: F G c F G Tis is e poc o wo single inegls cn e ele inepenenl o ec oe. c Dole inegls in pol cooines = cos; = sin Uni ecos ˆ n θˆ e eine o lie in e iecions o incesing n especiel. Cnging om Cesins o pols in ole inegl is n emple o ssiing o o iles simlneosl. θˆ ˆ is n elemen o e in e -plne. Te eqilen elemen o e in e -plne is: = i.e. elemen o e = = Noe is no eplce e imensions e wong! A A Cnge o oe o inegion ccos cos ccos = cos Te eqion = cos gies cicle o is cene on. Ce line in cicle: inege oe consn. Sig line in cicle: inege oe consn. Emple Ele wee R is e egion one + = R 7

8 Solion: Coneing o pol cooines will simpli o e inegn n e escipion o e iel o inegion. = cos = sin = Emple Ele 5 Solion: Tnsom o pol cooines o simpli e inegn: = cos = sin = 5 5 5 cos cos Tee is sepion o iles so is is poc o wo single inegls. Use e ieni cos = cos n le + = en = 5 5 cos Tiple inegls Te memicl ies gie s ole inegls cn esil e eene o iple inegls: Inegn = z Fiel o inegion = olme in D spce Elemen o olme = z = V Repee inegl: z z In oe o el wi iple inegls we nee o loo D cooine ssems. Speicl pol cooines A poin P z in Cesin cooines is lso in speicl pols wee = sin cos = sin sinz = cos + = = ˆ θˆ φˆ

A P ni ecos ˆ θˆ φˆ e eine o lie in e iecions o incesing n especiel. Tese ecos om ig-ne oogonl cooine ssem poin. A sce o consn is spee A sce o consn is cone A sce o consn is semi-ininie plne Tese sces inesec e poin Te elemen o olme is mos esil oine geomeicll: Te o in e igm s sies o sin n Tis mes e elemen o olme = V = z = sin = sin Clinicl pol cooines A poin P z in Cesin cooines is lso z in clinicl pols wee = cos = sin z = z A P ni ecos ˆ θˆ zˆ in e iecions o incesing z om n oogonl ig-ne ssem P. A sce o consn is cline A sce o consn is semi-ininie plne A sce o consn z is n ininie plne Tese sces inesec e poin z. Te elemen o olme is oine geomeicll: Te o in e igm s sies o n z Tis mes e elemen o olme = V = z = z = z ẑ ˆ θˆ 9

Soli ngle Now we e ino D cooine ssems le s loo e mesemen o ngles in ee-imensionl spce. I will e es o s wi ngles o e mili wi in wo-imensionl spce: Te igm sows n c o cicle o is. Te leng o e c is. Te ngle is e io o e leng o e c o e is i.e. leng o c is ins. I e c is lengene o complee e cicle e ngle ecomes cicmeence o cicle ins. is In D ngles e clle soli ngles e e eine in simil w o ngles in D. Te igm sows p o spee o is wic sens soli ngle is cene. e o speicl sce Te ngle is eine s is o spee seins. I e sce is eene o complee spee e soli ngle e cene ecomes sce e o e spee seins. is o e spee Soli ngles e se in psics o emple o escie e D ngle ino wic soce o iion m ie. Emple o iple inegl A simple illsion o e se o iple inegl is o clcle e olme o spee o is. Solion: Use speicl pol cooines n inege e elemen o olme oe e spee. V spee V θ sin θ sin θ θ.. Me se o nesn e ssignmen o e limis: Te inegion oe is long line om e oigin o e sce o e spee. Te inegion oe oes is line o e oigin o sweep o e e o semicicle. Te inegion oe oes e semicicle o e z-is o sweep o e olme o e spee. Te limis on e ollowing iple inegl lso gie e iel o inegion s spee: c o cicle cp o spee sin θ θ..

Cn e olme o e spee ell e zeo? In speicl pols e elemen o olme V is sin In e is inegl e nge o is om o so V is lws posiie. Howee in e secon inegl V is negie oe l is nge cncelling o e posiie coniion o e inegl n ening p wi zeo. I o inen o e negie olme en e secon inegl is peecl coec o nee o e we o w o e oing. Dimensions in inegls emples o pplicions in psics I epesens e olme ne sce w oes z z epesen? Te ole inegl onl epesens olme i n ll e e imensions o leng. Te imension o e inegn is en leng wic is olme. We e le se iple inegl o eemine e olme o spee go c n cec e imensions e coec. No eeing is mese in mees n we nee o consie e imensions o e qniies in e inegl wen ppling i o psics. Te ing o noe is e smols ec. e no js lels emining o o e iles oe wic o peom e inegion e e lso psicl qniies wi imensions. Le s loo some emples o ow o consc ios inegls o pplicions in psics.. A egion o spce conins n elecic cge ensi o z coloms/m. W is e ol cge in picl olme V? Cge in elemen o olme = z z Teeoe ol cge in olme V = V. Volme o iel o inegion = V ρ z z V m. coloms.. Te spee o picle cnges wi ime s. Fin e isnce elle in ime T. Disnce elle in ime = Teeoe ol isnce elle in ime T = mees.. Te ensi o in see o meil ies s g/m. Fin is ol mss. Mss o elemen o e = Teeoe ol mss o see = M = R T g wee R eines e spe o e see. 5. Te men ensi o e see in e peios emple is oine iiing e ol mss e e i.e. men ensi = g/m wee A is e A e o e see. Simil inegls will eemine e ege le o ncion in D o D spce: Aege o eween = n = is R

Aege o z wiin e olme V = V V z z. Anoe impon se o inegls is o eemine e cene o mss o n ojec. Using e sme in see is in emple e mss is g so is momen o e -is is g m. Te ol momen o e -is is eeoe n is ms e eql o M wee M is e ol mss R n is e -cooine o e cene o mss. We eeoe e o e cooines o e cene o mss: n M M R 7. A sligl moe enos se o mliple inegl is in e clclion o momen o inei. Te momen o inei o poin mss m isnce om e is o oion is m. Fo o o ensi z g/m e poin mss z is z z I z is e oion is e isnce om e is o e poin mss is Te momen o inei o e poin mss is eeoe Teeoe e momen o inei o e complee o = Emple R V z z z z Fin e posiion o e cenoi o niom soli cone o eig n se is R. Solion: Te cenoi is e cene o mss o o o niom ensi. B smme e cenoi lies on e cone is so onl e z-cooine is eqie. Using e inegls in e peios emples e z- cooine o e cenoi is gien : z V cone z V Tee is coice o cooine ssem clinicl pols will e e esies. Elemen o olme = V = z Te ce sce o e cone is gien e iple inegl is R z so z R V z R z R z R R z z z z z z z R B e olme o e cone is gien V R R so z R

Volme o cone I o ogoen o nee nown e oml o e olme o cone se in e peios emple we cn eie i ee. We e le ece e limis on iple inegl escie cone so we cn immeiel se em ee: V cone V Emple cone z z R z z R R z R z Deemine e ol mss n men ensi o o occping e posiie ocn wee n z e ll posiie one + + z = n wose ensi is z = z g/m. W e e psicl imensions o e consn? Using is esl conim e psicl imensions o o nswes o p e coec. Solion Mss o elemen o olme = z V g Teeoe ol mss = V z V g Use speicl pol cooines: = sin cos; = sin sin; z = cosv = sin ol mss sin θ cosθ sinφ cosφ sin θ θ φ 5 sin θ cosθ θ sinφ cosφ φ le = sin en = cos lso se e ieni sin cos = sin cos φ sinφ φ 8 g Men ensi = ol mss olme 8 g m - 8 8 Te imensions o n z e ll mees. Since z is ensi is imensions ms e g m - wien s [z] = g m - Tis mes [] m = g m - so [] = g m - Te mss o e ojec is 8 g. Fom e oe we e [ ] = g m - m = g Te men ensi o e ojec is 8 g m - n [ ] = g m - m = g m -.