Every graph occurs as an induced subgraph of some hypohamiltonian graph

Similar documents
STRAND F: GEOMETRY F1 Angles and Symmetry

7. SOLVING OBLIQUE TRIANGLES: THE LAW OF SINES

On-Line Construction. of Suffix Trees. Overview. Suffix Trees. Notations. goo. Suffix tries

MAT 1275: Introduction to Mathematical Analysis

The Laws of Sines and Cosines

MAT 1275: Introduction to Mathematical Analysis

Exercise sheet 6: Solutions

SECTION A STUDENT MATERIAL. Part 1. What and Why.?

Fuzzy Neutrosophic Equivalence Relations

OVERVIEW Using Similarity and Proving Triangle Theorems G.SRT.4

Solutions for HW9. Bipartite: put the red vertices in V 1 and the black in V 2. Not bipartite!

1 PYTHAGORAS THEOREM 1. Given a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

#A42 INTEGERS 11 (2011) ON THE CONDITIONED BINOMIAL COEFFICIENTS

CS 491G Combinatorial Optimization Lecture Notes

Asynchronous Sequen<al Circuits

22: Union Find. CS 473u - Algorithms - Spring April 14, We want to maintain a collection of sets, under the operations of:

SMARANDACHE GROUPOIDS

8.3 THE HYPERBOLA OBJECTIVES

6.5 Improper integrals

Section 2.3. Matrix Inverses

Numbers and indices. 1.1 Fractions. GCSE C Example 1. Handy hint. Key point

Connectivity in Graphs. CS311H: Discrete Mathematics. Graph Theory II. Example. Paths. Connectedness. Example

Greedy Algorithms. Kye Halsted. Edited by Chuck Cusack. These notes are based on chapter 17 of [1] and lectures from CSCE423/823, Spring 2001.

Experiment #4 Gauss s Law Prelab Hints

12.4 Similarity in Right Triangles

EXTENSION OF THE GCD STAR OF DAVID THEOREM TO MORE THAN TWO GCDS CALVIN LONG AND EDWARD KORNTVED

GM1 Consolidation Worksheet

SIMPLE NONLINEAR GRAPHS

On the Spectra of Bipartite Directed Subgraphs of K 4

As we have already discussed, all the objects have the same absolute value of

Suffix Trees. Philip Bille

Co-ordinated s-convex Function in the First Sense with Some Hadamard-Type Inequalities

Synchronization of regular automata

Graph Theory. Simple Graph G = (V, E). V={a,b,c,d,e,f,g,h,k} E={(a,b),(a,g),( a,h),(a,k),(b,c),(b,k),...,(h,k)}

PH2200 Practice Exam I Summer 2003

CIRCULAR COLOURING THE PLANE

In right-angled triangles the square on the side subtending the right angle is equal to the squares on the sides containing the right angle.

Section The Precise Definition Of A Limit

PAIR OF LINEAR EQUATIONS IN TWO VARIABLES

Mid-Term Examination - Spring 2014 Mathematical Programming with Applications to Economics Total Score: 45; Time: 3 hours

Counting Triangulations of Planar Point Sets

] dx (3) = [15x] 2 0

Lecture 6: Coding theory

READING STATECHART DIAGRAMS

ME306 Dynamics, Spring HW1 Solution Key. AB, where θ is the angle between the vectors A and B, the proof

Proportions: A ratio is the quotient of two numbers. For example, 2 3

List all of the possible rational roots of each equation. Then find all solutions (both real and imaginary) of the equation. 1.

Core 2 Logarithms and exponentials. Section 1: Introduction to logarithms

Precalculus Due Tuesday/Wednesday, Sept. 12/13th Mr. Zawolo with questions.

2.4 Linear Inequalities and Interval Notation

11.2. Infinite Series

Calculus Module C21. Areas by Integration. Copyright This publication The Northern Alberta Institute of Technology All Rights Reserved.

Compression of Palindromes and Regularity.

Lecture 4. Electric Potential

On small defining sets for some SBIBD(4t - 1, 2t - 1, t - 1)

Discrete Structures, Test 2 Monday, March 28, 2016 SOLUTIONS, VERSION α

CIT 596 Theory of Computation 1. Graphs and Digraphs

Data Structures LECTURE 10. Huffman coding. Example. Coding: problem definition

Medium Scale Integrated (MSI) devices [Sections 2.9 and 2.10]

On a Class of Planar Graphs with Straight-Line Grid Drawings on Linear Area

A new Type of Fuzzy Functions in Fuzzy Topological Spaces

Counting Paths Between Vertices. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs

April 8, 2017 Math 9. Geometry. Solving vector problems. Problem. Prove that if vectors and satisfy, then.

Counting Triangulations of Planar Point Sets

5.1 Properties of Inverse Trigonometric Functions.

Physical Nature of the Covalent Bond Appendix H + H > H 2 ( ) ( )

Countdown: 9 Weeks. 3. Kimi has posted3 x 3,.3 " 3 puppyphotos on a social network. 6.EE.1. [-l. rhe power i.l-le. Course{. Countdown.

Linear choosability of graphs

ALGEBRA 2/TRIGONMETRY TOPIC REVIEW QUARTER 3 LOGS

Graph States EPIT Mehdi Mhalla (Calgary, Canada) Simon Perdrix (Grenoble, France)

Electric Potential Energy

NOTE ON APPELL POLYNOMIALS

POSITIVE IMPLICATIVE AND ASSOCIATIVE FILTERS OF LATTICE IMPLICATION ALGEBRAS

SEMI-EXCIRCLE OF QUADRILATERAL

WYSE Academic Challenge Regional Physics 2008 SOLUTION SET

arxiv: v1 [cs.dm] 24 Jul 2017

More Foundations. Undirected Graphs. Degree. A Theorem. Graphs, Products, & Relations

On Implicative and Strong Implicative Filters of Lattice Wajsberg Algebras

Eigenvectors and Eigenvalues

for all x in [a,b], then the area of the region bounded by the graphs of f and g and the vertical lines x = a and x = b is b [ ( ) ( )] A= f x g x dx

Part I: Study the theorem statement.

A Lower Bound for the Length of a Partial Transversal in a Latin Square, Revised Version

Chapter 6 Techniques of Integration

Introduction to Olympiad Inequalities

On the Co-Ordinated Convex Functions

raisis Institute for Science and International Security

Equilibrium of Stress

Monochromatic Plane Matchings in Bicolored Point Set

8.6 The Hyperbola. and F 2. is a constant. P F 2. P =k The two fixed points, F 1. , are called the foci of the hyperbola. The line segments F 1

Trigonometry Revision Sheet Q5 of Paper 2

m A 1 1 A ! and AC 6

Phys 201 Midterm 1 S. Nergiz, E.Oğuz, C. Saçlıoğlu T. Turgut Fall '01 No :. Name :. Total Grade :. Grade :. y=a. x=-a +q. x=a -q +q. +Q r.

Necessary and sucient conditions for some two. Abstract. Further we show that the necessary conditions for the existence of an OD(44 s 1 s 2 )

Hiding in plain sight

m m m m m m m m P m P m ( ) m m P( ) ( ). The o-ordinte of the point P( ) dividing the line segment joining the two points ( ) nd ( ) eternll in the r

Lecture 4: Graph Theory and the Four-Color Theorem

Maximum size of a minimum watching system and the graphs achieving the bound

Continuity. Recall the following properties of limits. Theorem. Suppose that lim. f(x) =L and lim. lim. [f(x)g(x)] = LM, lim

Example 1. A robot has a mass of 60 kg. How much does that robot weigh sitting on the earth at sea level? Given: m. Find: Relationships: W

Revisiting the Socrates Example

Transcription:

Reeive: 27 Oter 2016 Revise: 31 Oter 2017 Aepte: 20 Nvemer 2017 DOI: 10.1002/jgt.22228 ARTICLE Ever grph urs s n inue sugrph f sme hphmiltnin grph Crl T. Zmfiresu 1 Tur I. Zmfiresu 2,3,4 1 Deprtment f Applie Mthemtis, Cmputer Siene n Sttistis, Ghent Universit, Krijgsln 281 - S9, 9000 Ghent, Belgium 2 Fhereih Mthemtik, Universität Drtmun, 44221 Drtmun, Germn 3 Simin Stilw Institute f Mthemtis, Rumnin Aem, Buhrest, Rumni 4 Cllege f Mthemtis n Infrmtin Siene, Heei Nrml Universit, 050024 Shijihung, P.R. Chin Crrespnene Crl T. Zmfiresu, Deprtment f Applie Mthemtis, Cmputer Siene n Sttistis, Ghent Universit, Krijgsln 281 - S9, 9000 Ghent, Belgium. Emil: mfiresu@gmil.m Funing infrmtin Fns Wetenshppelijk Onerek Astrt We prve the titulr sttement. This settles prlem f Chvátl frm 1973 n enmpsses erlier results f Thmssen, wh shwe it fr K 3, n Cllier n Shmeihel, wh prve it fr iprtite grphs. We ls shw tht fr ever uterplnr grph there eists plnr hphmiltnin grph ntining it s n inue sugrph. KEYWORDS hphmiltnin, inue sugrph MSC 2010. 05C10, 05C45, 05C60 1 INTRODUCTION Cnsier nn-hmiltnin grph G. We ll G hphmiltnin if fr ever verte v in G, the grph G v is hmiltnin. In similr spirit, G is si t e lmst hphmiltnin if there eists verte w in G, whih we will ll eeptinl, suh tht G w is nn-hmiltnin, n fr n verte v w in G, the grph G v is hmiltnin. Fr n verview f results n hphmiltniit till 1993, see the surve Hltn n Sheehn [7]. Fr newer mteril tht ls inlues wrk n the reentl intrue lmst hphmiltnin grphs, we refer the reer t [4,5,8,15] n the referenes fun therein. In 1973, Chvátl [2] ske whether ever grph m ur s the inue sugrph f sme hphmiltnin grph. As Thmssen writes in [10], n imprtnt prtil nswer ws prvie Cllier n Shmeihel [3] wh prve tht ever iprtite grph is n inue sugrph f sme hphmiltnin grph. In [11], Thmssen nstruts n infinite fmil f plnr ui hphmiltnin grphs n shws tht ertin eges n e e t these grphs suh tht the resulting grphs re hphmiltnin, s well. He uses this t give simple prf f the frementine result f Cllier n Shmeihel. J Grph Ther. 2017;1 7. wilenlinelirr.m/jurnl/jgt 2017 Wile Periils, In. 1

2 ZAMFIRESCU AND ZAMFIRESCU Erlier, Thmssen [9] h prven tht hphmiltnin grphs f girth 3 n 4 eist, i.e. tht K 3 n C 4 n ur s inue sugrphs f hphmiltnin grphs see ls [3]. This refute the njeture f Her et l. [6] tht hphmiltnin grphs hve girth t lest 5. Thmssen emphsies in [10] tht even fr K 4 the nswer t Chvátl's prlem is unknwn. In this nte, we prve tht n grph n pper s n inue sugrph f sme hphmiltnin grph. 2 AUXILIARY RESULTS Cnsier plnr lmst hphmiltnin grph with ui eeptinl verte, fr emple the grph F f rer 36 (isvere Gegeeur n the first uthr [5], n inepenentl Wiener [13, 14]), with eeptinl verte v. Nte tht F is the smllest knwn plnr grph fit fr the nstrutin t me hwever, there might e smller grphs usle tht hve nt een fun et. In ft, there is smller plnr lmst hphmiltnin grph knwn (fun Wiener [14] n f rer 31), ut it es nt ntin ui eeptinl verte, whih is neee fr the meth t wrk. v FIGURE 1 The p F f F. The eeptinl verte is mrke v Tke tw isjint pies F,F f F,withv V (F ) n v V (F ) rrespning t v. Put N(v )={,, } n N(v )={,,}. Fr n illustrtin f F, see Figure 1. Tke F v, F v, ientif with, n the eges n. The neighrs,,, re hsen suh tht we tin the grph H epite in Figure 2. (The hlf-eges shwn in Figures 2 n 3 en in verties utsie H.) Alre Thmssen use suh nstrutin in [9]. In wht fllws, we see F v n F v s sugrphs f H. In prtiulr,,,, ente verties in H, s well. Suppse n ritrr ut fie grph W hs hmiltnin le Λ, n let W inlue the grph H suh tht mng the verties f H nl,,, re nnete eges with verties in W H. Lemm 1. Either H Λis (i) the unin f tw isjint pths, ne frm t n the ther frm t,r(ii)pthfrm t,r(iii)pthfrm t. Prf. There is n hmiltnin pth p in H etween n, sine p wul hve t use the ege, ieling hmiltnin pth etween n in F v r hmiltnin pth etween n in F v (epening n when p piks up ). Aing the pth v r v, respetivel, we get hmiltnin le in F n ntritin is tine. Nw ssume there is hmiltnin pth q in

ZAMFIRESCU AND ZAMFIRESCU 3 FIGURE 2 We epit igrmmtill the grph H shwn ve with the retngle shwn elw FIGURE 3 There re tw essentill ifferent ws t trverse the retngle : in the first situtin ( ) we trverse isnnetel, while in the ltter tw ( r ) we trverse ignll H etween n. Then there eists hmiltnin pth etween n in F r hmiltnin pth etween n in F. As ve, we re le t ntritin sine F is nn-hmiltnin. If H Λis the unin f tw isjint pths, ne frm t, the ther frm t, then ne f these pths must ntin. Assume w.l..g. the frmer t e tht pth. Cnsiering it in F n ing t it the pth v, we tin hmiltnin le in F, ntritin sine F is lmst hphmiltnin. In se (i) we s tht H is isnnetel trverse, while if se (ii) r (iii) urs H is lle ignll trverse. In ses (ii) n (iii) f Lemm 1, when H is ignll trverse, we s mre preisel tht H is n trverse, respetivel. Cnsier the grph G f Figure 4. There, A, B, C,..., Q re grphs ismrphi t H. The length f the le Γ=w equls the numer f pies f H use t nstrut G, i.e. {A, B, C,,Q} = V (Γ). Γ is inlue in n ritrr hmiltnin grph Z with the hmiltnin le Γ. Lemm 2. The grph G is nt hmiltnin. Prf. Suppse G hs hmiltnin le Λ. Oviusl, nt ll pies f H re isnnetel trverse. Suppse A is trverse. Then Λ quikl visits, s it must ntinue with the pth u. IfB is ls ignll trverse, then nlgusl Λ quikl visits, n Λ is nt hmiltnin. Hene, Lemm 1, B is isnnetel trverse. Thus Λ.

4 ZAMFIRESCU AND ZAMFIRESCU B A u v w Q C Z FIGURE 4 The grph G Neessril, Q is trverse. S, nlgusl, Λ. Cntinuing this resning, we see tht n ege f Z is in Λ. Inee, ll ther pies f H re isnnetel trverse, s Λ et. Thus w Λ, n ntritin is tine. 3 MAIN RESULTS A grph is uterplnr if it pssesses plnr emeing in whih ever verte elngs t the unune fe. Nte tht grph is uterplnr if n nl if it es nt ntin grph hmemrphi t K 4 r K 2,3, see [1]. We nw present ur min therem. Therem 1. Ever grph is ntine in sme hphmiltnin grph s n inue sugrph. Prf. Let G e n ritrr grph. In the reminer f this prf, ll nttin refers t ntins intrue in Setin 2. Chse Z t e Γ t whih G is e in suh w tht the finite sequene f its verties is ple t ever sen verte f Γ. (S, the length f Γ is 2 V (G).) B Lemm 2, G is nt hmiltnin. It remins t prvie hmiltnin le in G s, fr ever verte s in G. A hmiltnin le f G w is shwn in Figure 4. B hnging u int uw we get hmiltnin le in G. Due t the smmetries, it remins t shw tht G s is hmiltnin fr n s V (F ). Cnsier s V (F ). There is hmiltnin pth in F s jining t, r t, r t. In the sen se ( t ), we hnge the rute f Λ insie the sugrph spnne V (A) {,, u, w} s shwn in Figure 5 (), n in the thir se ( t ), we hnge the rute s epite in Figure 5 (). In the first se, if s is the entrl verte f A, we tin hmiltnin le f G s piture in Figure 6. Fr ther psitins f s V (F ), see Figure 7. Frm the ve prf, we immeitel tin the fllwing.

ZAMFIRESCU AND ZAMFIRESCU 5 s s () () FIGURE 5 The rute f Λ insie the sugrph spnne V (A) {,, u, w} A B u v w Q C Z FIGURE 6 A hmiltnin le f G s FIGURE 7 A hmiltnin le f G s Therem 2. If G is n uterplnr grph, then there eists plnr hphmiltnin grph ntining G s n inue sugrph. Therem 2 nnt e etene t inlue ll plnr grphs ue t n elegnt rgument f Thmssen, wh prves in [11] tht Whitne's Therem [12] whih sttes tht plnr tringultins withut seprting tringles re hmiltnin, plnr tringultin nnt e n inue sugrph f n pl-

6 ZAMFIRESCU AND ZAMFIRESCU nr hphmiltnin grph. Hwever, Therem 1, n plnr tringultin is ver well n inue sugrph f sme (neessril nnplnr) hphmiltnin grph. Thmssen's results frm [11] n e use t esrie ertin iprtite plnr grphs tht n e sugrphs f plnr hphmiltnin grphs. He ges n t write: Me this is the se fr ever iprtite plnr grph. This questin remins unreslve, s fr instne K 2,3 is plnr et neither plnr tringultin, nr mng Thmssen's frementine plnr iprtite grphs, nr n uterplnr grph. Therem 3. (i) There eists hphmiltnin grph f rer 20n ntining K n s n inue sugrph. In prtiulr, there eists hphmiltnin grph f rer 80 ntining K 4. (ii) There eists plnr hphmiltnin grph f girth 3 n rer 216. (iii) Fr n uterplnr grph G f rer n there eists plnr hphmiltnin grph f rer 144n ntining G s n inue sugrph. Prf. Fr (i), we m mif the nstrutin frm the prf f Therem 1 using ever verte f Γ (sine G is in this se mplete grph). Thus, here the length f Γ is V (K n ) = n. Furthermre, we use the Petersen grph inste f the grph frm Figure 1. It is nw es t verif tht the rer f G is inee 20n. The prf f (ii) is the sme s the prf f (i), ut we reple Petersen's grph the plne lmst hphmiltnin grph shwn in Figure 1. Here, n =3. In (iii), the length f Γ is 2n.Weuse2npies f the grph frm Figure 2, whih is f rer 69. We tin grph f rer ((69 + 4) 2n) 2n = 144n. Prt (ii) imprves un given in [4, Crllr 3.4]. We en this nte with the fllwing. Prlem. Chrterie thse plnr grphs tht ur s inue sugrphs f plnr hphmiltnin grphs. ACKNOWLEDGMENT The reserh f Crl T. Zmfiresu is supprte Psttrl Fellwship f the Reserh Funtin Flners (FWO). ORCID Crl T. Zmfiresu http://ri.rg/0000-0002-9673-410x REFERENCES [1] G. Chrtrn n F. Hrr, Plnr permuttin grphs, Ann. Inst. Henri Pinré, Nuv. Sér. Set. B 3 (1967), 433 438. [2] V. Chvátl, Flip-flps in hphmiltnin grphs, Cn. Mth. Bull. 16 (1973), 33 41. [3] J. B. Cllier n E. F. Shmeihel, New flip-flp nstrutins fr hphmiltnin grphs, Disrete Mth. 18 (1977), 265 271. [4] J. Gegeeur n C. T. Zmfiresu, Imprve uns fr hphmiltnin grphs, Ars Mth. Cntemp. 13 (2017), 235 257. [5] J. Gegeeur n C. T. Zmfiresu, On lmst hphmiltnin grphs. Sumitte. See Setin 3 f rxiv:1606.06577 [mth.co].

ZAMFIRESCU AND ZAMFIRESCU 7 [6] J. C. Her, J. J. Du, n F. Vigué, Reherhe sstémtique es grphes hphmiltniens, in: Ther f Grphs: Interntinl Smpsium, Rme, 1966, pp. 153 159, Grn n Breh, New Yrk, n Dun, Pris, 1967. [7] D. A. Hltn n J. Sheehn, The Petersen grph, Chpter 7: Hphmiltnin grphs, Cmrige Universit Press, New Yrk, 1993. [8] M. Jneh et l., Plnr hphmiltnin grphs n 40 verties,j.grphther84 (2017), 121 133. [9] C. Thmssen, On hphmiltnin grphs, Disrete Mth. 10 (1974), 383 390. [10] C. Thmssen, Hphmiltnin grphs n igrphs. Ther n Applitins f Grphs, Leture Ntes in Mthemtis, 642, Springer, Berlin (1978), pp. 557 571. [11] C. Thmssen, Plnr ui hphmiltnin n hptrele grphs, J. Cmin. Ther Ser. B 30 (1981), 36 44. [12] H. Whitne, A therem n grphs, Ann. Mth. 32 (1931), 378 390. [13] G. Wiener, On nstrutins f hptrele grphs, Eletrn. Ntes Disrete Mth. 54 (2016), 127 132. [14] G. Wiener, New nstrutins f hphmiltnin n hptrele grphs, T pper in J. Grph Ther, https://i.rg/10.1002/jgt.22173 [15] C. T. Zmfiresu, Hphmiltnin n lmst hphmiltnin grphs, J.GrphTher79 (2015), 63 81. Hw t ite this rtile: Zmfiresu CT, Zmfiresu TI. Ever grph urs s n inue sugrph f sme hphmiltnin grph. J Grph Ther. 2017;00:1 7. https://i.rg/ 10.1002/jgt.22228