Outline. Raman Scattering Spectroscopy Resonant Raman Scattering: Surface Enhaced Raman Scattering Applications. RRS in crystals RRS in molecules

Similar documents
Terahertz acoustics with multilayers and superlattices Bernard Perrin Institut des NanoSciences de Paris

Sub-Terahertz Monochromatic Transduction with Semiconductor Acoustic Nanodevices

Mapping Atomic Structure at Epitaxial Interfaces

GeSi Quantum Dot Superlattices

Lecture #2 Nanoultrasonic imaging

Electrically Driven Polariton Devices

Contents Part I Concepts 1 The History of Heterostructure Lasers 2 Stress-Engineered Quantum Dots: Nature s Way

Acoustic metamaterials in nanoscale

Simple strategy for enhancing terahertz emission from coherent longitudinal optical phonons using undoped GaAs/n-type GaAs epitaxial layer structures

Time-resolved Diffuse Scattering: phonon spectoscopy with ultrafast x rays

Laser Physics OXFORD UNIVERSITY PRESS SIMON HOOKER COLIN WEBB. and. Department of Physics, University of Oxford

Raman spectroscopy of self-assembled InAs quantum dots in wide-bandgap matrices of AlAs and aluminium oxide

Holcomb Group Capabilities

Enhancing the Rate of Spontaneous Emission in Active Core-Shell Nanowire Resonators

Model Answer (Paper code: AR-7112) M. Sc. (Physics) IV Semester Paper I: Laser Physics and Spectroscopy

Intraband emission of GaN quantum dots at λ =1.5 μm via resonant Raman scattering

Optical Spectroscopy of Advanced Materials

Last Lecture. Overview and Introduction. 1. Basic optics and spectroscopy. 2. Lasers. 3. Ultrafast lasers and nonlinear optics

Nanoscale Energy Conversion and Information Processing Devices - NanoNice - Photoacoustic response in mesoscopic systems

Lecture #6 High pressure and temperature phononics & SASER

Theory of quantum dot cavity-qed

Phys 2310 Fri. Dec. 12, 2014 Today s Topics. Begin Chapter 13: Lasers Reading for Next Time

Ultrafast nanoscience with ELI ALPS

Interfacial Coherency and Ferroelectricity of BaTiO 3 /SrTiO 3 Superlattice Films

ECE280: Nano-Plasmonics and Its Applications. Week8

Comments to Atkins: Physical chemistry, 7th edition.

QS School Summary

(b) Spontaneous emission. Absorption, spontaneous (random photon) emission and stimulated emission.

SWOrRD. For direct detection of specific materials in a complex environment

Chemistry Instrumental Analysis Lecture 5. Chem 4631

Ultrafast Structural Dynamics in Solids Klaus Sokolowski-Tinten

Vortices and superfluidity

Laser Basics. What happens when light (or photon) interact with a matter? Assume photon energy is compatible with energy transition levels.

Metal Vapour Lasers Use vapoured metal as a gain medium Developed by W. Silfvast (1966) Two types: Ionized Metal vapour (He-Cd) Neutral Metal vapour

Efficient Hydrogen Evolution. University of Central Florida, 4000 Central Florida Blvd. Orlando, Florida, 32816,

Signal regeneration - optical amplifiers

Defect-based Photonic Crystal Cavity for Silicon Laser

Survey on Laser Spectroscopic Techniques for Condensed Matter

Laserphysik. Prof. Yong Lei & Dr. Yang Xu. Fachgebiet Angewandte Nanophysik, Institut für Physik

Doctor of Philosophy

Crossover from incoherent to coherent phonon scattering in epitaxial oxide superlattices

Laser Types Two main types depending on time operation Continuous Wave (CW) Pulsed operation Pulsed is easier, CW more useful

Optical and Terahertz Characterization of Be-Doped GaAs/AlAs Multiple Quantum Wells

Laser Types Two main types depending on time operation Continuous Wave (CW) Pulsed operation Pulsed is easier, CW more useful

Self-Assembled InAs Quantum Dots

Phys 2310 Mon. Dec. 4, 2017 Today s Topics. Begin supplementary material: Lasers Reading for Next Time

3-1-2 GaSb Quantum Cascade Laser

Introduction to semiconductor nanostructures. Peter Kratzer Modern Concepts in Theoretical Physics: Part II Lecture Notes

-I (PH 6151) UNIT-V PHOTONICS AND FIBRE OPTICS

Figure 1 Relaxation processes within an excited state or the ground state.

Patrick E. Hopkins Assistant Professor Dept. Mech. & Aero. Eng.

Lecture 2. Electron states and optical properties of semiconductor nanostructures

Time resolved optical spectroscopy methods for organic photovoltaics. Enrico Da Como. Department of Physics, University of Bath

Infrared Reflectivity Spectroscopy of Optical Phonons in Short-period AlGaN/GaN Superlattices

Probing and Driving Molecular Dynamics with Femtosecond Pulses

Stimulated Emission Devices: LASERS

Interested in exploring science or math teaching as a career?

Laser Diodes. Revised: 3/14/14 14: , Henry Zmuda Set 6a Laser Diodes 1

Q. Shen 1,2) and T. Toyoda 1,2)

Lasers & Holography. Ulrich Heintz Brown University. 4/5/2016 Ulrich Heintz - PHYS 1560 Lecture 10 1

Application of Raman Spectroscopy for Noninvasive Detection of Target Compounds. Kyung-Min Lee

Quantum Dot Lasers. Jose Mayen ECE 355

EXTREME ULTRAVIOLET AND SOFT X-RAY LASERS

Multi-cycle THz pulse generation in poled lithium niobate crystals

Anderson localization of photons and phonons for optomechanics Guillermo Arregui

OPTICAL GAIN AND LASERS

ACOUSTIC WAVE VELOCITY IN Ag/Fe NANOLAYERS. Mikołaj ALEKSIEJUK, Feliks REJMUND

CHAPTER 13 Molecular Spectroscopy 2: Electronic Transitions

Transient lattice dynamics in fs-laser-excited semiconductors probed by ultrafast x-ray diffraction

Natallia Strekal. Plasmonic films of noble metals for nanophotonics

Coherent THz Noise Sources. T.M.Loftus Dr R.Donnan Dr T.Kreouzis Dr R.Dubrovka

OPTICAL PROPERTIES AND SPECTROSCOPY OF NANOAAATERIALS. Jin Zhong Zhang. World Scientific TECHNISCHE INFORMATIONSBIBLIOTHEK

III-V nanostructured materials synthesized by MBE droplet epitaxy

Nonlinear optics with quantum-engineered intersubband metamaterials

Introduction Fundamentals of laser Types of lasers Semiconductor lasers

Near-Infrared Spectroscopy of Nitride Heterostructures EMILY FINAN ADVISOR: DR. OANA MALIS PURDUE UNIVERSITY REU PROGRAM AUGUST 2, 2012

Elastic Constants and Microstructure of Amorphous SiO 2 Thin Films Studied by Brillouin Oscillations

OPTI510R: Photonics. Khanh Kieu College of Optical Sciences, University of Arizona Meinel building R.626

ULTRAFAST DYNAMICS OF FOLDED ACOUSTIC PHONONS FROM SEMICONDUCTOR SUPERLATTICES

Semiconductor Disk Laser on Microchannel Cooler

Multiphoton Imaging and Spectroscopy in Cell and Tissue Biophysics. J Moger and C P Winlove

Richard Miles and Arthur Dogariu. Mechanical and Aerospace Engineering Princeton University, Princeton, NJ 08540, USA

Characterisation of vibrational modes of adsorbed species

Nanophysics: Main trends

Nanoacoustics II Lecture #2 More on generation and pick-up of phonons

MPIP-Mainz. FORTH Heraklion. T.Still,W.Cheng,N.Gomopoulos G.F G.F. Sculpture by E.Sempere (Madrid)

Quantum Dot Lasers. Andrea Fiore. Ecole Polytechnique Fédérale de Lausanne

Ultralow thermal conductivity and the thermal conductance of interfaces

Lecture 20: Semiconductor Structures Kittel Ch 17, p , extra material in the class notes

Second-Harmonic Generation Studies of Silicon Interfaces

Identify two CDW amplitude modes with extremely small energy scales in LaAgSb2 by ultrafast pump-probe measurement

Fabrication and Characteristic Investigation of Multifunctional Oxide p-n Heterojunctions

CHARACTERIZATION OF THE OPTICAL PROPERTIES OF GALLIUM ARSENIDE AS A FUNCTION OF PUMP INTENSITY USING PICOSECOND ULTRASONICS. Vimal Deepchand.

Optical Characterization of Solids

What Makes a Laser Light Amplification by Stimulated Emission of Radiation Main Requirements of the Laser Laser Gain Medium (provides the light

Temperature dependence of microwave and THz dielectric response

What do we study and do?

Chapter 5. Semiconductor Laser

Simo Huotari University of Helsinki, Finland TDDFT school, Benasque, Spain, January 2012

LASERS. Amplifiers: Broad-band communications (avoid down-conversion)

Transcription:

Outline Raman Scattering Spectroscopy Resonant Raman Scattering: RRS in crystals RRS in molecules Surface Enhaced Raman Scattering Applications Charging and discharging of single molecules probed by SERS Ultrasensitive Detection of Molecules on Surfaces The ferroelectric phase transition in nanostructures Pump & probe spectroscopies and the search of phonon lasing

Raman scattering and the phase transition in ferroelectric BaTiO 3 /SrTiO 3 Superlattices A. Bruchhausen, A. Fainstein, and S. Tinte, A. Soukiassian, X. X. Xi, and D. Schlom IB-CAB-CNEA, Bariloche, Argentina Universities at Penn and Cornell, USA

Multifunctional oxides: Thin films

Multifunctional oxides: Critical thickness?

Multifunctional oxides: The nanoscale

Experimental challenge: MBE growth Reactive MBE @ Cornell University (Darrell Shlom s Group) Int. RHEED (arb. u.) (BaTiO 3 ) 8 (SrTiO 3 ) 4 Ti shutter open Ba shutter open Sr shutter open (BaTiO 3 ) 8 (BaTiO 3 ) 8 (a) (b) 200 400 600 800 1000 1200 1400 (SrTiO 3 ) 4 Tiempo (sec.) (SrTiO 3 ) 4

Experimental challenge: Epitaxial quality TEM (BTO 5 / STO 4 ) x 25

Vibrational spectroscopy: Raman BaTiO 3 Tenne et al., J. Am. Ceram. Soc. 91,1820 (2008)

Experimental challenge: gaps in the UV Tenne, Bruchhausen et al., Science 313, 1614 (2006)

Experimental challenge: gaps in the UV High-resolution UV-Raman UV-enhanced CCD + 2400gr/mm gratings Tenne, Bruchhausen et al., Science 313, 1614 (2006) HeCd 325nm laser (50mW) All optics UV-back-reflection coated

Experimental challenge: gaps in the UV (BTO 5 /STO 4 )x25 (BTO 5 /STO 4 )x25 UV excitation λ L =351.1nm SrTiO 3 substrate Visible excitation λ L =514.5nm

MBE and UV-Raman in ferroelectric nanostructures Ferroelectric superlattices of excellent quality can be grown by state-of-the-art molecular beam epitaxy (MBE) UV-Raman allows the observation of phonons in ultrathin oxide multilayers

Optical phonon modes

Experimental challenge: gaps in the UV (BTO 5 /STO 4 )x25 (BTO 5 /STO 4 )x25 UV excitation λ L =351.1nm SrTiO 3 substrate Visible excitation λ L =514.5nm Tenne, Bruchhausen et al., Science 313, 1614 (2006)

SLs: temperature dependence of Raman modes Tenne, Bruchhausen et al., Science 313, 1614 (2006)

Determination of T c TO 4 mode (~540 cm -1 ) σ Raman P 2 Intesity [arb. units] 5K 400K 450 500 550 600 Raman shift [cm -1 ] SL: (BTO 2 / STO 13 ) x 20 TO 4 - Raman Int. [arb. units] Ferroelectric mean field theory: P = P ( T T ) 1/ 2 0 1 / c T c 0 50 100 150 200 250 300 350 Temperature [K]

Tuning of T c : strain, size, coupling Tc decreases with n due to dipole-dipole interaction BTO strained 2%

Tuning of T c : strain, size, coupling Tc decreases with n due to dipole-dipole interaction m=4 BTO-BTO coupling BTO strained 2% m=13

Ferroelectric transition in SrTiO 3 /BaTiO 3 superlattices The selection rules that apply to the Raman scattering of optical phonons in titanates allow the determination of T c The ferroelectric T c can be tailored to vary more than 500K by the appropriate tuning of SrTiO 3 and BaTiO 3 layer thickness (size reduction, coupling, strain)

QUESTION # 3 From what you have learnt of Raman scattering, how would you expect that a phase transition be reflected in a Raman experiment? Consider different types of transitions.

Outline Raman Scattering Spectroscopy Resonant Raman Scattering: RRS in crystals RRS in molecules Surface Enhaced Raman Scattering Applications Charging and discharging of single molecules probed by SERS Ultrasensitive Detection of Molecules on Surfaces The ferroelectric phase transition in nanostructures Pump & probe spectroscopies and the search of phonon lasing

Control of phonon emission in cavities N. D. Lanzillotti-Kimura, M. F. Pascual Winter, G. Rozas, A. Fainstein, A. Huynh, B. Perrin, B. Jusserand, A. Lemaitre, A Soukiassian, X. X. Xi, and D. G. Schlom INSP & LPN, Paris LPO (CAB)-CNEA, Bariloche Cornell U., USA

Background A. Kent, M. Henini et al., PRL 96, 215504 (2006) A. Huyhn et al., PRL 97, 115502 (2006).

Background A. Kent, M. Henini et al., PRL 96, 215504 (2006) Next time, Mr. Bond, I ll use a SASER

SLs as acoustic phonon mirrors 1,0 l l a b = λ / 4 = 3λ / 4 Acoustic reflectivity 0,8 0,6 0,4 0,2 stop-band 0,0 17 18 19 20 21 22 23 Energy [cm -1 ] 4 10 Energía [cm -1 ] 50 40 30 20 10 0 0.0 0.1 0.2 0.3 K [π nm -1 ] u(z) 2 [u. arb.] 3 8 6 2 4 1 2 0 0 20 40 60 80 100 0 120 Position [nm] N R = 1 4Z + O( Z 2 4N v2ρ2 v ρ Z GaAs / AlAs = 1 1 R 0.99 0.84 ) ρ [kg/m 3 ]

Acoustic phonon nanocavity l l a b = λ / 4 = 3λ / 4 l c = nλ / 2 F L = π d eff R (1 R) 3000 τ c = L eff vln( R) L eff v 500 M. Trigo et al., PRL 89, 227402 (2002) A. Fainstein and B. Jusserand, Light Scattering in Solids IX

Ultrafast optics facility Facilidad de Optica Ultrarrápida Lab. Espectroscopía Raman

Coherent phonon generation with ultrafast laser pulses Probe Pump FT Tenne, Bruchhausen et al., Science 313, 1614 (2006) A. Huyhn, D. N. Lanzillotti-Kimura et al., PRL 97, 115502 (2006).

Coherent acoustic phonon generation Probe Pump FT A. Bruchaussen et al., PRL 101, 197402 (2008) N. D. Lanzillotti-Kimura et al., PRL 104, 187402 (2010) A. Huyhn, D. N. Lanzillotti-Kimura et al., PRL 97, 115502 (2006).

Coherent control: Turning on and off confined phonons Probe Pump2 Pump1 Amplitude (arb. units) 16 14 12 10 8 6 4 2 Pump1 + Pump2 in phase Pump1 Pump 1 + Pump2 in counterphase 0 0,25 0,30 0,35 0,40 0,45 0,50 0,55 0,60 0,65 0,70 Energy (THz) * Cavity mode amplitude (arb. units) 8 7 6 5 Fixed Pump Variable Pump 4 3 2 0,50 0,75 1,00 1,25 1,50 1,75 2,00 2,25 Relative phase (λ) Lanzillotti-Kimura et al., PRB Rapid Comm., in press

Acoustic cavities and coherent phonon generation Nanocavities can be grown by epitaxial techniques that confined hypersound in the GHz-THz range (nm wavelength) These vibrations can be coherently generated and their dynamics studied with pump&probe techniques based on ultrafast lasers

The Raman-SASER SASER: Sound Amplification by Stimulated Emission of Radiation laser Raman Phonon P f N laser ( N + 1)( N + 1) Raman Phonon N. D. Lanzillotti-Kimura et al., PRL 104, 187402 (2010)

GaAs/AlAs optical+acoustic microcavities Optical spacer n n optic 2 Z GaAs / AlAs = 1 v2ρ2 v ρ 0.84 acoustic Z GaAs / AlAs = 1 1 0.84 A. Fainstein et al.,prl 75, 3764 (95) A. Fainstein et al.,prl 78, 1576 (97) A. Fainstein et al.,prl 86, 3411 (01)

Confined acoustic phonons FT 1 st 3 rd 5 th Q phonon > 1000

Time dependence of phonon population: WFTs 1. Standard GaAs bulk substrate 2. GaAs microcavity

Non-exponential coherent phonon time evolution Bulk GaAs GaAs Microcavity

Non-exponential coherent phonon time evolution Bulk GaAs GaAs Microcavity

Pump laser power dependence

Pump laser power dependence

Complex coupled mode dynamics

Cavities of light and sound Cavities can be designed that confine acoustic phonons and photons of the same wavelength (nm-thz optomechanics) Complex phonon dynamics has been observed, with possible evidence of phonon stimulation

Acknowledgements Aristide Lemaitre Daniel Lanzillotti-Kimura Axel Bruchhausen Florencia Pascual-Winter Guillermo Rozas Bernard Jusserand Darrel G. Schlom Bernard Perrin

Theory of coherent phonon generation in heterostructures In a SL: M. F. Pascual Winter. PHd Thesis IB (2009)

Theory of coherent phonon detection in heterostructures In a SL: M. F. Pascual Winter. PHd Thesis IB (2009)