Testing the Neo-Classical and the Newtonian Theory of Production

Similar documents
Department of Economics University of Toronto

UNIVERSITAT AUTÒNOMA DE BARCELONA MARCH 2017 EXAMINATION

Existence and Uniqueness Results for Random Impulsive Integro-Differential Equation

Performance Analysis for a Network having Standby Redundant Unit with Waiting in Repair

( t) Outline of program: BGC1: Survival and event history analysis Oslo, March-May Recapitulation. The additive regression model

[ ] 2. [ ]3 + (Δx i + Δx i 1 ) / 2. Δx i-1 Δx i Δx i+1. TPG4160 Reservoir Simulation 2018 Lecture note 3. page 1 of 5

V.Abramov - FURTHER ANALYSIS OF CONFIDENCE INTERVALS FOR LARGE CLIENT/SERVER COMPUTER NETWORKS

In the complete model, these slopes are ANALYSIS OF VARIANCE FOR THE COMPLETE TWO-WAY MODEL. (! i+1 -! i ) + [(!") i+1,q - [(!

Data Collection Definitions of Variables - Conceptualize vs Operationalize Sample Selection Criteria Source of Data Consistency of Data

5th International Conference on Advanced Design and Manufacturing Engineering (ICADME 2015)

Graduate Macroeconomics 2 Problem set 5. - Solutions

Chapter Lagrangian Interpolation

Econ107 Applied Econometrics Topic 5: Specification: Choosing Independent Variables (Studenmund, Chapter 6)

Analysis And Evaluation of Econometric Time Series Models: Dynamic Transfer Function Approach

Cubic Bezier Homotopy Function for Solving Exponential Equations

F-Tests and Analysis of Variance (ANOVA) in the Simple Linear Regression Model. 1. Introduction

Let s treat the problem of the response of a system to an applied external force. Again,

Ordinary Differential Equations in Neuroscience with Matlab examples. Aim 1- Gain understanding of how to set up and solve ODE s

Approximate Analytic Solution of (2+1) - Dimensional Zakharov-Kuznetsov(Zk) Equations Using Homotopy

Dynamic Team Decision Theory. EECS 558 Project Shrutivandana Sharma and David Shuman December 10, 2005

II. Light is a Ray (Geometrical Optics)

Mechanics Physics 151

Relative Efficiency and Productivity Dynamics of the Metalware Industry in Hanoi

Variants of Pegasos. December 11, 2009

Estimation of Cost and. Albert Banal-Estanol

Linear Response Theory: The connection between QFT and experiments

NPTEL Project. Econometric Modelling. Module23: Granger Causality Test. Lecture35: Granger Causality Test. Vinod Gupta School of Management

Solution in semi infinite diffusion couples (error function analysis)

M. Y. Adamu Mathematical Sciences Programme, AbubakarTafawaBalewa University, Bauchi, Nigeria

John Geweke a and Gianni Amisano b a Departments of Economics and Statistics, University of Iowa, USA b European Central Bank, Frankfurt, Germany

PHYS 1443 Section 001 Lecture #4

Density Matrix Description of NMR BCMB/CHEM 8190

Advanced time-series analysis (University of Lund, Economic History Department)

Density Matrix Description of NMR BCMB/CHEM 8190

Survival Analysis and Reliability. A Note on the Mean Residual Life Function of a Parallel System

Lecture 6: Learning for Control (Generalised Linear Regression)

Motion of Wavepackets in Non-Hermitian. Quantum Mechanics

THEORETICAL AUTOCORRELATIONS. ) if often denoted by γ. Note that

THE PREDICTION OF COMPETITIVE ENVIRONMENT IN BUSINESS

P R = P 0. The system is shown on the next figure:

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 4

Relative controllability of nonlinear systems with delays in control

SOME NOISELESS CODING THEOREMS OF INACCURACY MEASURE OF ORDER α AND TYPE β

( ) () we define the interaction representation by the unitary transformation () = ()

January Examinations 2012

GENERATING CERTAIN QUINTIC IRREDUCIBLE POLYNOMIALS OVER FINITE FIELDS. Youngwoo Ahn and Kitae Kim

Oligopoly with exhaustible resource input

TSS = SST + SSE An orthogonal partition of the total SS

Fall 2009 Social Sciences 7418 University of Wisconsin-Madison. Problem Set 2 Answers (4) (6) di = D (10)

Innovative Slowdown, Productivity Reversal?

Modern Time-Rate Relations

Comparison of Differences between Power Means 1

Appendix H: Rarefaction and extrapolation of Hill numbers for incidence data

On One Analytic Method of. Constructing Program Controls

Notes on the stability of dynamic systems and the use of Eigen Values.

Lecture VI Regression

Advanced Macroeconomics II: Exchange economy

New M-Estimator Objective Function. in Simultaneous Equations Model. (A Comparative Study)

Optimal environmental charges under imperfect compliance

Lecture 9: Dynamic Properties

Attribute Reduction Algorithm Based on Discernibility Matrix with Algebraic Method GAO Jing1,a, Ma Hui1, Han Zhidong2,b

Political Economy of Institutions and Development: Problem Set 2 Due Date: Thursday, March 15, 2019.

10. A.C CIRCUITS. Theoretically current grows to maximum value after infinite time. But practically it grows to maximum after 5τ. Decay of current :

RELATIONSHIP BETWEEN VOLATILITY AND TRADING VOLUME: THE CASE OF HSI STOCK RETURNS DATA

Increasing the Probablility of Timely and Correct Message Delivery in Road Side Unit Based Vehicular Communcation

Bayesian Inference of the GARCH model with Rational Errors

Chapters 2 Kinematics. Position, Distance, Displacement

Tight results for Next Fit and Worst Fit with resource augmentation

Method of upper lower solutions for nonlinear system of fractional differential equations and applications

Application of Vector Error Correction Model (VECM) and Impulse Response Function for Analysis Data Index of Farmers Terms of Trade

FI 3103 Quantum Physics

2 Aggregate demand in partial equilibrium static framework

CH.3. COMPATIBILITY EQUATIONS. Continuum Mechanics Course (MMC) - ETSECCPB - UPC

ACEI working paper series RETRANSFORMATION BIAS IN THE ADJACENT ART PRICE INDEX

Robustness of DEWMA versus EWMA Control Charts to Non-Normal Processes

Polymerization Technology Laboratory Course

DYNAMIC ECONOMETRIC MODELS Vol. 8 Nicolaus Copernicus University Toruń 2008

Lecture 2 M/G/1 queues. M/G/1-queue

Measuring Market Power in a Dynamic Oligopoly Model: The Dallas-Forth Worth Milk Market Case

Including the ordinary differential of distance with time as velocity makes a system of ordinary differential equations.

Multi-Fuel and Mixed-Mode IC Engine Combustion Simulation with a Detailed Chemistry Based Progress Variable Library Approach

Advanced Machine Learning & Perception

Demographics in Dynamic Heckscher-Ohlin Models: Overlapping Generations versus Infinitely Lived Consumers*

Modeling and Solving of Multi-Product Inventory Lot-Sizing with Supplier Selection under Quantity Discounts

Forecasting Post-War Tourist Arrivals to Sri Lanka Using Dynamic Transfer Function Modeling Method

Productivity, Returns to Scale and Product Differentiation in the. Retail Trade Industry. --- An Empirical Analysis using Japanese Firm-Level Data ---

Mechanics Physics 151

Panel Data Regression Models

Economic Variety. by Andreas Pyka

CHAPTER 10: LINEAR DISCRIMINATION

Motion in Two Dimensions

On computing differential transform of nonlinear non-autonomous functions and its applications

Mechanics Physics 151

Applied Econometrics and International Development Vol- 8-2 (2008)

NBER WORKING PAPER SERIES NEOCLASSICAL GROWTH AND THE ADOPTION OF TECHNOLOGIES. Diego Comin Bart Hobijn

Trade Patterns and Perpetual Youth in A Dynamic Small Open Economy

Time Scale Evaluation of Economic Forecasts

Should Exact Index Numbers have Standard Errors? Theory and Application to Asian Growth

CS286.2 Lecture 14: Quantum de Finetti Theorems II

Kayode Ayinde Department of Pure and Applied Mathematics, Ladoke Akintola University of Technology P. M. B. 4000, Ogbomoso, Oyo State, Nigeria

Transcription:

Tesng he Neo-Classcal and he Newonan Theory of Producon Ma Esola * & Ala Dannenberg # * Unversy of Easern Fnland Faculy of Socal Scences and Busness Sudes, Joensuu Campus # Unversy of Easern Fnland Deparmen of Busness, Joensuu Campus Presenaon n Fyskan pävä 13.-15. 3. 212. Unversy of Easern Fnland, Joensuu Campus, Fnland.

Defned Economc Laws of Producon 1s knd of regulary: Von Thünen, J.H. 185: The defnon of he concep of margnal producvy of producon facors. - Spllman, W.J. 1924: Decreasng margnal producvy. 2nd knd of regulary: Cobb, C.W. & Douglas, P.H. 1928 Esmaed Cobb-Douglas -ype producon funcons for secoral producons. - Shakh, A. 1974: The esmaed aggregae level producon funcons have acually been accounng denes. 3rd knd of regulary: Nunes, L.A. e al. 1997: Scalng laws n he dsrbuons of frms value added, sales, and employmen n U.S. and Japanese daa We propose here 4h knd of regulary n producon: Un roo s observed n all producon daa n Fnnsh economy. Thus a me rend exss n flows of producon ha seems o be a general observaon hrough counres. Addonal opc of our sudy: We es Newonan heory agans he neoclasscal one n explanng ndusral flows of producon.

1. Measurng Producon and s Growh Knemacs Knemacs s he sudy of he geomery of moon; deals wh he mahemacal descrpon of moon n erms of poson, velocy, and acceleraon. Knemacs serves as a prelude o dynamcs, whch sudes force as he cause of changes n moon. Ohanan, H.C. Physcs, 2nd Ed. (1989) p. 25.

The 9 man producon secors n Fnland are: 1 = A (Agrculure, foresry and hunng) + B (Fshng), 2 = C (Mnng and quarryng) + D (Manufacurng) + E (Elecrcy, gas, and waer supply), 3 = F (Consrucon), 4 = G (Trade, repar of moor vehcles and household goods) + H (Hoels and resaurans), 5 = I (Transpor, sorage and communcaon), 6 = J (Fnancal nermedaon and nsurance), 7 = K (Real esae and busness acves), 8 = L (Admnsraon, socal secury) + M(Educaon), 9 = N (Healh and socal work) + O (Oher communy, socal and personal servces) + P (Household servce acves) - Fnancal nermedaon servces ndrecly measured. These secors cover he whole Fnnsh economy.

In Fnland, manufacurng s dvded n 13 secors: DA : Food producs, beverages and obacco, DB,DC: Texles, exle producs, leaher and leaher producs, DD: Wood and wood producs, DE: Pulp, paper and paper producs, publshng and prnng, DF: Refned peroleum producs, coke and nuclear fuel, DG: Chemcals and chemcal producs, DH: Rubber and plasc producs, DI: Oher non-meallc mneral producs, DJ: Basc meals and fabrcaed meal producs, DK: Machnery and equpmen, DL: Elecrcal and opcal equpmen, DM: Transpor equpmen, DN: Oher manufacurng and recyclng. These secors cover he whole Fnnsh manufacurng.

3, 2,5 2, 1,5 1, 5 1975 198 1985 199 1995 2 25 DA2 DBDC2 DD2 DF2 DG2 DH2 DI2 DM2 DN2 Fgure 1. Annual ndusral producon volumes a year 2 prces

24, 2, 16, 12, 8, 4, 1975 198 1985 199 1995 2 25 DE2 DK2 DJ2 DL2 Fgure 2. Annual ndusral producon volumes a year 2 prces

1.6 1.4 1.2 1..8.6.4.2 1975 198 1985 199 1995 2 25 PA PBC PD PE PF PG Fgure 3. Indusral prces n manufacurng

1.8 1.6 1.4 1.2 1..8.6.4.2 1975 198 1985 199 1995 2 25 PH PI PJ PK PL PM PN Fgure 4. Indusral prces n manufacurng

Secor ADF, vol. (Pr.) Indusry ADF, vol. (Pr.) ADF, prce (Pr.) 1+ +9.6 (.99) DA.9 (.99) -2.6 (.1) 1-2.8 (.8) DB+DC -.6 (.86) -3.6 (.1) 2.6 (.99) DD -.6 (.85) -2.7 (.9) 3-1.7 (.44) DE -1.2 (.65) -2. (.3) 4-1.3 (.63) DF 2.3 (.99) -1.9 (.32) 5 2.3 (.99) DG -.5 (.89) -1. (.76) 6-1.7 (.42) DH -.4 (.89) -1.4 (.59) 7.5 (.98) DI -.7 (.83) -2.2 (.21) 8-2.2 (.22) DJ 1.9 (.99) -2.9 (.6) 9-2.2 (.22) DK 1.2 (.99) -2.1 (.23) DL 1.5 (.99) -.1 (.94) DM -3.2 (.3) -1.5 (.51) DN -1. (.73) -2.5 (.12) Table 1: ADF un roo es resuls for all secors and ndusres

The Augmened Dckey-Fuller es shows ha n all me seres he exsence of un roo canno be rejeced a crcal level.1. Un roo n me seres x n,n... 1,,1,... corresponds o: x n x n f ( n), 1 1, where α s consan and f(n) an unknown funcon. The soluon of hs frs order dfference equaon x n x n 1 n f (1 ) shows ha a lnear or a more complcaed me rend exss n x n because number n measures he order of he me nerval n dscree me. The neo-classcal assumpon ha frms produce a an equlbrum flow n a me un s hus rejeced n every secor and ndusry n Fnland.

Conclusons 1 A lnear or a more complcaed me rend s observed n producon n every secor and ndusry n Fnland. Non-zero acceleraon n accumulaed producon s hus observed a every secor and ndusry. The esmaed non-zero acceleraons for accumulaed secoral producons are n conflc wh he neo-classcal heory ha assumes frms o produce a her profmaxmzng equlbrum volume flows.

2. Theores of Frms Behavor Le he annual prof funcon Π( /y), y=year, of a frm be ( ) p( ) q( ) C( q( )), where p()( /kg) s he prce of he produc of he frm, q()(kg/y) he annual flow of producon, and C(q)( /y) he cos funcon of he frm. 2.1. Neo-classcal Theory of a Frm In he neoclasscal framework, he me passage s absraced away, and he frm s producon s modelled as a sac opmzaon problem: q p C'( q) q * f ( p), (1) where q* s he frm s annual prof maxmzng flow of producon.

If he neoclasscal heory s rue, we should observe zero acceleraon n producon a every secor and ndusry, because he heory assumes ha frms produce a her prof maxmzng flow of producon. However, n all secors and ndusres he assumpon of zero acceleraon n producon was rejeced, and a lnear or more complcaed me rend was observed n producon flows. Thus we need a heory of producon where me passage s ncluded. 2.2. Newonan Theory of a Frm 1 mq'( ) q q'( ) 1 m q. (2) The frm s acceleraon of producon q () s explaned by he frm s margnal profably Π/ q, whch s he force acng upon he producon. Consan m s nerpreed as he neral mass of producon of he frm. In our esng, we approxmae / q by average profably / q. 1 Esola 21: A Dynamc Theory of a Frm: An Applcaon of Economc Forces. Advances n Complex Sysems.

Suppose he prce a secor follows he followng process (3) ), sn( ) sn( ) ( 3 2 3 1 2 1 b b a b b a a a p where a j are consans and b j are he frequency and phase parameers of busness cycles. The cos funcon C (q (),) ( /y) of frm s assumed as follows: ), ( ) ( 2 1 ) ( ) ), ( ( 3 2 2 1 q c q c q c c q C where he las erm represens possble decreasng coss wh me due o echnologcal developmen. The margnal prof funcon s hen ). sn( ) sn( ) ( ) ( ) ( 3 2 3 1 2 3 1 2 1 b b a b b a c a q c c a q

The dfferenal equaon n (2) becomes hus he followng: ), sn( ) sn( ) ( ) ( 3 2 3 1 2 1 2 ' b b a b b a z q c z m q The soluon of he above equaon s: (4), ) cos( ) sn( ) cos( ) sn( ) ( 2 6 1 5 1 4 2 3 2 2 1 m c e B b b B b b B b B b B B B q where, 3. 1 1 1 c a z c a z where B j are consans.

Ind. Cons. (T-sa.) Tme (T) Sn(b +b 1 ) (T) Sn(b 2 +b 3 ) (T) R 2 B-G, F- Pr 1. DA.4 (12.9). (12.2).6 (16.9).94. DB+DC.5 (59.8).5 (43.9).98.1 DD.7 (18.8). (7.8) -.2 (-6.3).77.15 DE -9.8 (-15.3).1 (3.9) -1.7 (-16.4).91.1 DF 1. (18.5).3 (3.5).28.2 DG.6 (26.4). (19.7) -.1 (-6.6).94. DH.4 (27.7) -.1 (-7.2) -.7 (-32.3).97.2 DI.4 (21.9).1 (5.2).6 (24.8).97. DJ.3 (9.2) 2.2 (19.8) -.3 (-5.3).95.2 DK.4 (28.8) -.6 (-35.4). (2.6).98.58 DL 1.1 (82.8) -.4 (-2.2).1 (6.5).95.45 DM.5 (19.8). (21.4).1 (5.).94.64 DN.3 (17.9).7 (28.6).96. Table 2. Esmaed models (3) for ndusral prces 1 B-G, F-Pr. s he probably of rejecng he null hypohess of no auocorrelaon n resduals n Breusch-Godfrey seral correlaon es.

Tesng he wo Theores of Producon We esmae equaons (1), (2), and (4) by usng annual daa of 13 manufacurng ndusres n Fnland a 1975-28. Only manufacurng daa s used, because hese mcro level heores su beer for mcro level daa. Because he funconal form n Eq. (1) can be any, we esed several funconal forms for he neo-classcal equaon q=f(p). However, because p, p 2, sn(p), and exp(p) correlae a every ndusry abou.9, only one of hem can be used n he esmaed equaon. We chose he bes f for every ndusry. The esmaon resuls for he Newonan model (2) are n Table 3, hose for he neo-classcal heory n Eq. (1) are n Table 4, and hose for he Newonan model (4) are n Table 5. Noce ha n (1) and (4) we model he flow of producon, and n (2) he acceleraon of producon.

Indusry Un prof (T-sa.) R 2 B-G, F-Pr. DA 157.4 (2.5).1.29 DD 197.6 (2.5).1.55 DE 611.9 (3.2).7.13 DG 11.1 (3.5).7.7 DH 91.8 (3.3).5.99 DI 93.7 (2.5).1.5 DJ 548.6 (4.6).14.16 DK 722.3 (4.).16.14 DL 223.1 (6.3).36. Table 3: Esmaed Newonan models (2) for manufacurng ndusres

Ind. Cons. (Tsa.) Prce (Tsa.) Prce 2 (T-sa.) Sn(Prce) (Tsa.) R 2 B-G, F- Pr. DA 782.1 (2.1) 126.9 (2.6).18. DB+DC 1382.8 (26.3) -781. (-11.9).82. DD 1348.9 (21.1).25. DE 8887.4 (46.8).79. DF 394.5 (1.3).. DG 45.7 (5.2) 832.2 (1.6).78. DH -146. (-2.6) 17. (14.9).87. DI 512.6 (11.9) 47.8 (7.9).66. DJ 325.5 (27.2).78. DK 986.1 (3.3) 2547. (6.1).54. DL 2829. (9.8) -27963. (-8.5).69. DM 812.4 (54.6).. DN 368. (12.5) 242.7 (7.).6. Table 4: Esmaed neo-classcal models (1) for manufacurng ndusres

Ind. Cons. (T) Tme (T) Exp(h ) (T) Sn(b 2 ) (T) Cos(b 2 ) (T) Sn(b +b 1 ) (T) Cos(b +b 1 ) (T) DA 974.4 (29.9) 46.6 (25.1) -189. (-7.8) -48.4 (-2.4).97.5 DB+ DC 126.2 (72.2) -28. (-29.3) -84. (-6.2) 114.5 (8.2).97. DD 497.2 (17.8) 31.6 (21.2) 158.9 (7.6).95.5 DE 311.7 (42.6) 15.1 (39.4) -222.9 (-4.5) -113. (-2.1).98.52 DF 23.3 (18.2) -. (-4.1) 14.6 (4.4).69.7 DG 58.4 (22.2) 39.6 (32.1) -47.9 (-2.8).97.3 DH 276.3 (2.5) 24. (32.9) 43.9 (4.6).97.3 R 2 B-G, F- Pr. DI 673.8 (44.5) 7.5 (8.5). (7.1) -18.2 (-9.9) -73.7 (-7.3) -33.8 (-3.3).96.1 DJ 597.7 (9.7) 95.4 (27.4). (7.1) -184.5 (-4.2).98.5 DK 1373.1 (19.5) 68.3 (16.4). (9.) 161.1 (3.3) -29.8 (-4.1).96.2 DL 87.4 (72.6) 315. (2.5) -348.1 (-2.6).99.3 DM 813. (81.6) -89.8 (-6.3) -4.8 (-2.9).6.1 DN 531.7 (69.4). (5.3) -66.7 (-6.4) -28.7 (-2.6) -59.4 (-5.7).85. Table 5: Esmaed Newonan models (4) for manufacurng ndusres

2,8 1,4 2,4 1,2 2, 1, 1,6 8 1,2 6 8 4 4 1975 198 1985 199 1995 2 25 2 1975 198 1985 199 1995 2 25 DA2 1*PA DBDC2 1*PBC Fgure 5. Prce and volume of producon n an ndusry

1,8 1,6 1,4 1,2 1, 8 6 4 2 1975 198 1985 199 1995 2 25 8, 7, 6, 5, 4, 3, 2, 1, 1975 198 1985 199 1995 2 25 DD2 1*PD DE2 1*PE Fgure6. Prce and volume of producon n an ndusry

1,6 1,4 1,2 1, 8 6 4 2 1975 198 1985 199 1995 2 25 2, 1,8 1,6 1,4 1,2 1, 8 6 4 1975 198 1985 199 1995 2 25 DF2 1*PF DG2 1*PG Fgure7. Prce and volume of producon n an ndusry

1,2 1,4 1, 1,2 8 1, 8 6 6 4 4 2 1975 198 1985 199 1995 2 25 2 1975 198 1985 199 1995 2 25 DH2 1*PH DI2 1*PI Fgure 8. Prce and volume of producon n an ndusry

5, 6, 4, 5, 3, 4, 3, 2, 2, 1, 1, 1975 198 1985 199 1995 2 25 1975 198 1985 199 1995 2 25 DJ2 1*PJ DK2 1*PK Fgure 9. Prce and volume of producon n an ndusry

24, 1,4 2, 1,2 16, 1, 12, 8 8, 6 4, 4 1975 198 1985 199 1995 2 25 2 1975 198 1985 199 1995 2 25 DL2 1*PL DM2 1*PM Fgure1. Prce and volume of producon n an ndusry

1,4 1,2 1, 8 6 4 2 1975 198 1985 199 1995 2 25 DN2 1*PM Fgure12. Prce and volume of producon n an ndusry

Comparson of Neo-classcal Model (1) and Newonan Model (4) 2,8 2,8 2,4 2,4 2, 2, 1, 75 5 25 1,6 1,2 8 3 2 1 1,6 1,2 8-1 -25-2 -5 1975 198 1985 199 1995 2 25-3 1975 198 1985 199 1995 2 25 Resdual Acual Fed Resdual Acual Fed Neo-classcal model (1) for DA Newonan model (4) for DA

Comparson of Neo-classcal Model (1) and Newonan Model (4) 1,4 1,4 1,2 1,2 1, 1, 3 2 1 8 6 4 1 5 8 6 4-5 -1-1 -2 1975 198 1985 199 1995 2 25-15 1975 198 1985 199 1995 2 25 Resdual Acual Fed Resdual Acual Fed Neo-classcal model (1) for DB+DC Newonan model (4) for DB+DC

Comparson of Neo-classcal Model (1) and Newonan Model (4) 2, 2, 1,6 1,6 8 6 4 2 1,2 8 4 2 1 1,2 8 4-2 -4-1 -6 1975 198 1985 199 1995 2 25-2 1975 198 1985 199 1995 2 25 Resdual Acual Fed Resdual Acual Fed Neo-classcal model (1) for DD Newonan model (4) for DD

Comparson of Neo-classcal Model (1) and Newonan Model (4) 2, 8, 1,6 7, 6, 8 6 4 2 1,2 8 4 4 2-2 5, 4, 3, 2, -2-4 -4-6 -6 1975 198 1985 199 1995 2 25-8 1975 198 1985 199 1995 2 25 Resdual Acual Fed Resdual Acual Fed Neo-classcal model (1) for DE Newonan model (4) for DE

Comparson of Neo-classcal Model (1) and Newonan Model (4) 1,2 1,2 1, 1, 8 8 6 4 6 4 8 6 6 4 2 2 4 2 2-2 -2-4 1975 198 1985 199 1995 2 25-4 1975 198 1985 199 1995 2 25 Resdual Acual Fed Resdual Acual Fed Neo-classcal model (1) for DF Newonan model (4) for DF

Comparson of Neo-classcal Model (1) and Newonan Model (4) 2, 2, 1,6 1,6 6 1,23 1,2 4 8 2 8 2 4 1 4-2 -4 1975 198 1985 199 1995 2 25-1 1975 198 1985 199 1995 2 25 Resdual Acual Fed Resdual Acual Fed Neo-classcal model (1) for DG Newonan model (4) for DG

Comparson of Neo-classcal Model (1) and Newonan Model (4) 1,2 1,2 1, 1, 8 8 2 1 6 4 2 8 4 6 4 2-4 -1-8 -2 1975 198 1985 199 1995 2 25-12 1975 198 1985 199 1995 2 25 Resdual Acual Fed Resdual Acual Fed Neo-classcal model (1) for DH Newonan model (4) for DH

Comparson of Neo-classcal Model (1) and Newonan Model (4) 3 2 1-1 -2-3 1975 198 1985 199 1995 2 25 Resdual Acual Fed 1,4 1,2 1, 8 15 1 6 5 4-5 -1-15 1975 198 1985 199 1995 2 25 Resdual Acual Fed 1,4 1,2 1, 8 6 4 Neo-classcal model (1) for DI Newonan model (4) for DI

Comparson of Neo-classcal Model (1) and Newonan Model (4) 5, 6, 2, 1,5 1, 5-5 -1, -1,5 1975 198 1985 199 1995 2 25 4, 3, 2, 1, 8 6 4 2-2 -4-6 1975 198 1985 199 1995 2 25 5, 4, 3, 2, 1, Resdual Acual Fed Resdual Acual Fed Neo-classcal model (1) for DJ Newonan model (4) for DJ

Comparson of Neo-classcal Model (1) and Newonan Model (4) 6, 6, 5, 5, 3, 4, 4, 3, 2, 3, 8 2, 1, 2, 4 1, 1, -1, -4-2, 1975 198 1985 199 1995 2 25-8 1975 198 1985 199 1995 2 25 Resdual Acual Fed Resdual Acual Fed Neo-classcal model (1) for DK Newonan model (4) for DK

Comparson of Neo-classcal Model (1) and Newonan Model (4) 25, 25, 8, 4, -4, 2, 15, 1, 5, 4, 3, 2, 1, 2, 15, 1, 5, -5, -8, -1, -12, 1975 198 1985 199 1995 2 25-2, 1975 198 1985 199 1995 2 25 Resdual Acual Fed Resdual Acual Fed Neo-classcal model (1) for DL Newonan model (4) for DL

Comparson of Neo-classcal Model (1) and Newonan Model (4) 1, 1, 9 9 2 1 8 7 16 12 8 7 6 8 4 6-1 -2-4 -8-3 1975 198 1985 199 1995 2 25-12 1975 198 1985 199 1995 2 25 Resdual Acual Fed Resdual Acual Fed Neo-classcal model (1) for DM Newonan model (4) for DM

Comparson of Neo-classcal Model (1) and Newonan Model (4) 8 8 7 7 15 6 15 6 1 5 1 5 5 4 5 4-5 3 3-1 -5-15 1975 198 1985 199 1995 2 25-1 1975 198 1985 199 1995 2 25 Resdual Acual Fed Resdual Acual Fed Neo-classcal model (1) for DN Newonan model (4) for DN

Conclusons 2 Newonan model (2) gves some suppor for un profably as he force causng acceleraon n ndusral producons, bu he suppor s no mpressve. Newonan model (4) works beer han he neo-classcal one (1) n every ndusry. The rae of explanaon and he auocorrelaon problem n resduals are mproved remarkably n every ndusry. A cyclcal erm n producon s observed n every ndusry, and also a lnear or an exponenal me rend. The assumed model for ndusral prces works also reasonably well.

Thank You for Your Aenon! Commens Welcome!