Plasma based modification of thin films and nanoparticles. Johannes Berndt, GREMI,Orléans

Similar documents
Modification of thin films and nanoparticles. Johannes Berndt, GREMI,Orléans

Chapter 6. Summary and Conclusions

Lecture 6 Plasmas. Chapters 10 &16 Wolf and Tauber. ECE611 / CHE611 Electronic Materials Processing Fall John Labram 1/68

Chapter 7 Plasma Basic

Introduction to Plasma

CHAPTER 6: Etching. Chapter 6 1

PIC-MCC simulations for complex plasmas

Chapter 7. Plasma Basics

Effect of Gas Flow Rate and Gas Composition in Ar/CH 4 Inductively Coupled Plasmas

Characteristics and classification of plasmas

Energy fluxes in plasmas for fabrication of nanostructured materials

Ionization Detectors

ETCHING Chapter 10. Mask. Photoresist

Plasma Chemistry Study in an Inductively Coupled Dielectric Etcher

TMT4320 Nanomaterials November 10 th, Thin films by physical/chemical methods (From chapter 24 and 25)

Plasma Deposition (Overview) Lecture 1

Photocatalysis: semiconductor physics

EE143 Fall 2016 Microfabrication Technologies. Lecture 6: Thin Film Deposition Reading: Jaeger Chapter 6

Gas utilization in remote plasma cleaning and stripping applications

Chemical Sputtering of Carbon Materials due to Combined Bombardment by Ions and Atomic Hydrogen

Section 5: Thin Film Deposition part 1 : sputtering and evaporation. Jaeger Chapter 6. EE143 Ali Javey

Methods of surface analysis

6.5 Optical-Coating-Deposition Technologies

Chapter VI: Ionizations and excitations

Thomas Schwarz-Selinger. Max-Planck-Institut for Plasmaphysics, Garching Material Science Division Reactive Plasma Processes

Combinatorial RF Magnetron Sputtering for Rapid Materials Discovery: Methodology and Applications

4 Modeling of a capacitive RF discharge

MODELING OF SEASONING OF REACTORS: EFFECTS OF ION ENERGY DISTRIBUTIONS TO CHAMBER WALLS*

Effect of Spiral Microwave Antenna Configuration on the Production of Nano-crystalline Film by Chemical Sputtering in ECR Plasma

SCALING OF PLASMA SOURCES FOR O 2 ( 1 ) GENERATION FOR CHEMICAL OXYGEN-IODINE LASERS

Supporting Information s for

Matti Laan Gas Discharge Laboratory University of Tartu ESTONIA

Ionization Detectors. Mostly Gaseous Detectors

Effect of Noble Gas. Plasma Processing Laboratory University of Houston. Acknowledgements: DoE Plasma Science Center and NSF

MODELING OF AN ECR SOURCE FOR MATERIALS PROCESSING USING A TWO DIMENSIONAL HYBRID PLASMA EQUIPMENT MODEL. Ron L. Kinder and Mark J.

T: +44 (0) W:

Etching: Basic Terminology

Physique des plasmas radiofréquence Pascal Chabert

Supplementary Information

NanoEngineering of Hybrid Carbon Nanotube Metal Composite Materials for Hydrogen Storage Anders Nilsson

INTRODUCTION TO THE HYBRID PLASMA EQUIPMENT MODEL

DOE WEB SEMINAR,

Laser matter interaction

DEPOSITION AND COMPOSITION OF POLYMER FILMS IN FLUOROCARBON PLASMAS*

Supplementary Information

SIMULATIONS OF ECR PROCESSING SYSTEMS SUSTAINED BY AZIMUTHAL MICROWAVE TE(0,n) MODES*

Collisional radiative model

1 EX/P4-8. Hydrogen Concentration of Co-deposited Carbon Films Produced in the Vicinity of Local Island Divertor in Large Helical Device

FTIR INVESTIGATION OF THE AGEING PROCESS OF CARBON NANOWALLS

CARBON NANOSTRUCTURES SYNTHESIZED THROUGH GRAPHITE ETCHING

PHOTOELECTRON SPECTROSCOPY PROBLEMS:

Tailored surface modification of substrates by atmospheric plasma for improved compatibility with specific adhesive Nicolas Vandencasteele

Atmospheric Plasma treatment, effect on the plasma chemistry on adhesion Nicolas Vandencasteele

Plasma Chamber. Fortgeschrittenes Praktikum I. Supervisors: Baran Eren, Dr. Marco Wisse, Dr. Laurent Marot. Abstract

A process whereby an electron is either removed from or added to the atom or molecule producing an ion in its ground state.

Sensors Plasma Diagnostics

Surface processes during thin-film growth

MONTE CARLO SIMULATION OF RADIATION TRAPPING IN ELECTRODELESS LAMPS: A STUDY OF COLLISIONAL BROADENERS*

Extrel Application Note

3 ECR discharge modeling

Supplementary Information. Atomic Layer Deposition of Platinum Catalysts on Nanowire Surfaces for Photoelectrochemical Water Reduction

IV. Surface analysis for chemical state, chemical composition

Plasma processes under low and atmospheric pressure.

Is plasma important? Influence molecule formation?

Characteristics of Neutral Beam Generated by a Low Angle Reflection and Its Etch Characteristics by Halogen-Based Gases

Supplementary Figure 1 Detailed illustration on the fabrication process of templatestripped

LECTURE 5 SUMMARY OF KEY IDEAS

Spectroscopy at nanometer scale

3.155J/6.152J Microelectronic Processing Technology Fall Term, 2004

Lasers... the optical cavity

Equilibrium Properties of Matter and Radiation

In search for the limits of

Chapter V: Interactions of neutrons with matter

Chemistry (

Hydrogenation of solid hydrogen cyanide HCN and methanimine CH 2 NH at low temperature

Influence of RF ICP PECVD process parameters of diamond-like carbon films on DC bias and optical emission spectra

Figure 1.1: Ionization and Recombination

Tutorial on Plasma Polymerization Deposition of Functionalized Films

PhysicsAndMathsTutor.com 1

Device Fabrication: Etch

FINE PATTERN ETCHING OF SILICON USING SR-ASSISTED IONIZATION OF CF4 GAS

Plasma-Surface Interactions and Impact on Electron Energy Distribution Function

Plasma Processing of Large Curved Surfaces for SRF Cavity Modification

Surface Chemistry and Reaction Dynamics of Electron Beam Induced Deposition Processes

Technology for Micro- and Nanostructures Micro- and Nanotechnology

Increased ionization during magnetron sputtering and its influence on the energy balance at the substrate

Analysis of recombination and relaxation of non-equilibrium air plasma generated by short time energetic electron and photon beams

Some more equations describing reactive magnetron sputtering.

Ion Beam Cocktail Development and ECR Ion Source Plasma Physics Experiments at JYFL

Dissociative Excitation of H2 in an RF Plasma

Repetition: Practical Aspects

A comparison of the defects introduced during plasma exposure in. high- and low-k dielectrics

24th Symposium on Plasma Science for Materials (SPSM-24) - Keynote

Progress Report on Chamber Dynamics and Clearing

Excitation to kinetic energy transformation in colliding hydrogen and argon atoms

Pulsed Laser Deposition; laser ablation. Final apresentation for TPPM Diogo Canavarro, MEFT

Modern Methods in Heterogeneous Catalysis Research: Preparation of Model Systems by Physical Methods

Atomic layer deposition of titanium nitride

XPS & Scanning Auger Principles & Examples

PIs: Louis DiMauro & Pierre Agostini

Transcription:

Plasma based modification of thin films and nanoparticles Johannes Berndt, GREMI,Orléans

What is a plasma? A plasma is a ionized quasineutral gas! + electron electrons Neon bottle Ne atom Ne ion: Ne +

What is a plasma? A plasma is a ionized quasineutral gas! λ D = ε 0 n k B 2 ee T e debye length λ D Neon bottle Gas Plasma Neutral atoms, electrons, ions

What is a low temperature plasma? Vacuum vessel Energy Electrical current High frequency fields Plasma Gas Microwaves

The low temperature plasma Low temperature plasmas are not fully ionized! Ionisation degree: 10-6 - 10-4 Atoms/Molecules Gas temperature: 20 C Ions Ion temperature : 20 C Electrons Electron temperature : 50.000 C Low temperature plasmas are sytems far away from thermodynamic equilibrium

Low temperature plasma: T Elektron >> T Ion > T Gas Electrons have enough energy to Ionize atoms Ar + e - Ar + 2 e - Excite atoms Ar + e - Ar* + e - Dissociate molecules H 2 + e - H + H + e - v = 3kT m

Low temperature plasma: T Elektron >> T Ion > T Gas Excite atoms Ar + e- Ar* + e- Threshold: 10 ev Electron energy distribution function f(u) f(u) du: gives the number of electrons in the energy intervall [u,u+du] v = 3kT m

Example: discharge in acetylene Electron impact disscociation H 2 + e +2H +e H 2 +e H + H +e Acetylene depletion Mass spectrometer signal / a.u. 1 0.1 H 2 concentration C2H2 0 100 200 300 400 t / s Creation of radicals and ions H CH H + H -

Example: discharge in acetylene Electron impact disscociation H 2 + e +2H +e H 2 +e H + H +e Acetylene depletion Mass spectrometer signal / a.u. 1 0.1 H 2 concentration C2H2 0 100 200 300 400 t / s Creation of radicals and ions H CH H + H - further reactions Counts / s 17500 15000 12500 10000 0 25 50 75 100 125 150 7500 5000 2500 0 H 2 + Ar + C 4 H 2 + C 6 H 4 + m/e Postive ion Mass spectrum C 8 H 4 + C 10 H 4 +

H 2 + e Electon induced reactions H CH H + + CH H C H + C 2 H 2 C 4 H 2 2 + Chemical reactions H C 6 H 5 C 6 H 2 H 4 Flux of ions and radicals Substrate Thin films Etching Functionalisation 8 π* σ* 30 incident beam 1 µm Partial electron yield (au) 6 4 2 0 plasma 30s untreated 280 290 300 310 320 Photon energy (ev)

- - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + - - - - - - - - - - - - - - - - - - - - - - - -

H 2 + e Electon induced reactions H CH H + + CH H C H + C 2 H 2 C 4 H 2 2 + Chemical reactions H C 6 H 5 C 6 H 2 H 4 Positive Ion acceleration Flux of ions and radicals sheath Substrate Positive Ion acceleration Thin films Etching Functionalisation 8 π* σ* 30 incident beam 1 µm Partial electron yield (au) 6 4 2 0 plasma 30s untreated 280 290 300 310 320 Photon energy (ev)

Classification of species emerging from a plasma «Chemical reactivity» «Kinetic reactivity» «1 +2» Neutral radicals with thermal Energies 20 mev: Positive noble gas ions with high kinetic energies: Positive reactive ions with high kinetic energy H, CH 3.. N,F,H Ar + Xe +,Ne +.. H +, CH +,..

Classification of species emerging from a plasma «Chemical reactivity» «Kinetic reactivity» «1 +2» Neutral radicals with thermal Energies 20 mev: Positive noble gas ions with high kinetic energies: Positive reactive ions with high kinetic energy H, CH.. N,F,H Ar + Xe +,Ne +.. H +, CH +,..

«Separation of chemical reactivity and kinetic reactivity» «Flowing afterglow techniques» Suraftron Gas Glas cylinder pump

«Separation of chemical reactivity and kinetic reactivity» «Flowing afterglow techniques» wave launcher Power Creation of reactive species in the plasma plasma length zone L plasma L Gas flow glass cylinder Transport of reactive species sample neutral radicals neutral radicals + ions reaction chamber

«Separation of chemical reactivity and kinetic reactivity» «Flowing afterglow techniques» Example: Nitrogen plasma wave launcher plasma plasma N 2 + e - N + + N + 2 e - Gas flow glass cylinder Suraftron Gas Glas cylinder pump

TIMS Flowing nitrogen afterglow 10000 N-->N + N 2 -->N + 2 -->N + +N plasma N 2 + e - N + + N + 2 e - 1000 wave launcher plasma Gas flow glass cylinder Counts/sec 100 10 I Background I Plasma ON I Plasma OFF Suraftron 1 10 15 20 25 30 35 40 45 50 Electron Energy (ev) 1. Threshold: Ionisation of N-atoms Gas N + e - N + +2 e - 14.5 ev Glas cylinder pump 2. Threshold: Dissociative Ionisation of N 2 N 2 + e - N + + N + 2 e - 24.5 ev

Flowing nitrogen afterglow 10000 N-->N + N 2 -->N + 2 -->N + +N 1000 wave launcher plasma plasma N 2 + e - N + + N + 2 e - Gas flow glass cylinder Counts/sec 100 10 I Background I Plasma ON I Plasma OFF 1 10 15 20 25 30 35 40 45 50 Electron Energy (ev) Suraftron 1. Threshold: Ionisation of N-atoms Gas N + e - N + +2 e - 14.5 ev 2. Threshold: Glas cylinder pump Dissociative Ionisation of N 2 N + N + N 2 N 2 (B 3 Π g,ν ν = 10,11,12) + Ν 2 N 2 + e - N + + N + 2 e - N 2 (B 3 Π g ) N 2 (A 3 Σ u,ν = 7) + hν 24.5 ev

Flowing nitrogen afterglow 10000 N-->N + N 2 -->N + 2 -->N + +N 1000 wave launcher plasma plasma N 2 + e - N + + N + 2 e - Gas flow glass cylinder Counts/sec 100 10 I Background I Plasma ON I Plasma OFF 1 10 15 20 25 30 35 40 45 50 Electron Energy (ev) Suraftron Energy influx released by nitrogen recombination 1. Threshold: at different substrate materials * Ionisation of N-atoms Gas Glas cylinder * H. Kersten, D. Rohde, J. Berndt, H. Deutsch, R. Hippler Thin Solid Films 377 (2000) 585-591 pump N + e - N + +2 e - 14.5 ev 2. Threshold: Dissociative Ionisation of N 2 N + N + N 2 N 2 (B 3 Π g,ν ν = 10,11,12) + Ν 2 N 2 + e - N + + N + 2 e - N 2 (B 3 Π g ) N 2 (A 3 Σ u,ν = 7) + hν 24.5 ev

Reversible resistivity change of thin silver films R Thin 20 nm silver film on glass substrat

Reversible resistivity change of thin silver films argon/nitrogen mixture target

Etching of thin Diamond like Carbon films

Etching of thin Diamond like Carbon films T ( C) 350 300 250 200 150 125 etch rate (nm/min.) 1.00 0.37 0.14 Carbon atoms removed per impinging N atom 1,9.10-4 C/N 0 at 130 C Ar-10 % N 2 total flow : 150 sccm power : 150 Watts d = 15 mm 1,4.10-3 C/N 0 at 300 C 0.05 18.56 20.88 23.20 25.52 27.84 30.16 1/T (10-3 K -1 ) argon/nitrogen mixture target Etch rate 12 nm / min. Etch rate in an pure argon plasma 2 nm / min

H 2 Surfatron 1 Expanding plasma Surfatron 2 Double plasma experiment Wafer Ar Synergistic effects MS CH 4 H 2 H-atom source Wafer expanding argon Plasma

H 2 Surfatron 1 Expanding plasma Surfatron 2 Double plasma experiment Wafer Synergistic effects MS 1 + 1 = 5 Ar CH 4 H 2 Wafer H-atom source expanding argon Plasma etch rate in nm / min 5 4 3 2 1 argon plasma + hydrogen plasma argon plasma + H 2 gas 0 6 7 8 9 10 11 12 13 position on wafer / cm hydrogen plasma

Production of thin Diamond like Carbon films target 8 10 22 C - atoms cm 3 bias 4 10 22 C - atoms cm 3

«Chemical reactivity» «Kinetic reactivity» «1 +2» Neutral radicals with thermal Energies 20 mev: Positive noble gas ions with high kinetic energies: Positive reactive ions with high kenetic energy N atoms H - atoms Ar + ions H +, CH +,.. etching of DLC films etching of DLC films deposition of DLC films Modification of silver films Synergistic effects

Example: discharge in acetylene Electron impact disscociation H 2 + e +2H +e H 2 +e H + H +e Acetylene depletion Mass spectrometer signal / a.u. 1 0.1 C2H2 0 100 200 300 400 t / s Creation of radicals and ions H further CH H + reactions H - Counts / s 17500 15000 12500 10000 7500 5000 2500 0 + H 2 + C 4 H 2 Ar + + C 6 H 4 + C 8 H 4 + C 10 H 4 0 25 50 75 100 125 150 m/e

Electron impact disscociation 1 H 2 + e +2H +e H 2 +e H + H +e Acetylene depletion Mass spectrometer signal / a.u. 0.1 C2H2 0 100 200 300 400 t / s Creation of radicals and ions H CH H + H - further reactions

- - - - - - - - - Wall - - - - - - - - - - - - - - Wall plasma levitating dust cloud Some aspects of reactive complex plasmas J. Berndt, E. Kovacevic, I. Stefanovic, J. Winter and L. Boufendi, invited review, Contributions in Plasma Physics 49, 107-133 (2009) number of elemental charges 800 400 0 Monte-Carlo-Simulation 0 20 40 60 80 t /µs

superhydrophobic surfaces «Self-cleaning surfaces»

From superhydrophopic to superhydrophilic Plasma treatment

Deposit of Nanoparticles Well-alligned carbon nanotubes as coating Synthesized by PECVD after in-situ deposition of catalysts by PLD Contact angle ( ) 180 160 140 120 100 80 60 40 20 0 lotus effect superhydrophilic 0 50 100 150 200 Treatment time (s) Contact angle ( ) 180 160 140 120 100 80 60 40 20 0 lotus effect superhydrofilic 0 5 10 15 20 25 30 Treatment time (s)

Deposit of Nanoparticles Well-alligned carbon nanotubes as coating Synthesized by PECVD after in-situ deposition of catalysts by PLD XPS spectrum XPS spectrum Intensity (counts/s) 6.0x10 3 4.0x10 3 2.0x10 3 0.0 O C 2min N 2 plasma untreated Intensity (counts- au) 3x10 6 2x10 6 1x10 6 0 O O C C 30s untreated 600 400 200 0 Binding Energy (ev) 600 500 400 300 200 100 0 Binding energy (ev)

Deposit of Nanoparticles Well-alligned carbon nanotubes as coating Synthesized by PECVD after in-situ deposition of catalysts by PLD NEXAFS spectrum NEXAFS spectrum Total electron yield (au) 3.0 π* σ* 2.5 30s 2.0 C=C N plasma 1.5 1.0 0.5 H untreated 0.0 280 290 300 310 Photon energy (ev) Total electron yield (au) 9 π* σ* C=C 6 30s Nplasma 3 untreated 0 280 290 300 310 Photon energy (ev)

From superhydrophilic to superhydrophopic Plasma treatment 0.20 0.15 ν(c-o) δ(ch) ν(c=o) a) untreated material ν(ch) ν(oh) superhydrophob superhydrophil absorbance (au) 0.10 0.05 0.00 ν(c-o) ν(c-o) δ(ch) δ(ch) ν(c=o) b) treatment c) EUV-treatment ν(ch) ν(oh) ν(ch) ν(oh) VUV irradiation in vacuum 1000 1500 2000 2500 3000 3500 wavelength (cm -1 )

Production of patterned surfaces Super hydrophob superhydrophil Super hydrophob superhydrophob super hydrophil 1cm Plasma

Summary Each Plasma surface modification process as e.g. thin film deposition etching functionalisation is governed by a great variety of different species neutral radicals postive ions negative ions nanoparticles which can be calssified according to their «kind of reactivity» chemical reactivity kinetic reactivity chemical reactivity and kinetic reactivity The combined interaction of all these species can lead to synergistic effects