Advancements in Microanalysis with. Bruker Nano Analytics, Berlin, Germany Webinar, April 18 th 2018

Similar documents
Latest advances in identifying mineral composition variation by the M4 TORNADO AMICS

MT Electron microscopy Scanning electron microscopy and electron probe microanalysis

Electron probe microanalysis - Electron microprobe analysis EPMA (EMPA) What s EPMA all about? What can you learn?

LAB REPORT ON XRF OF POTTERY SAMPLES By BIJOY KRISHNA HALDER Mohammad Arif Ishtiaque Shuvo Jie Hong

EPMA IMAGES. Figure 9. Energy-dispersive spectra of spot mineral analyses in sample 89GGR-33A for locations 1-5 in Figure 8.

XUV 773: X-Ray Fluorescence Analysis of Gemstones

APPENDIX TABLES. Table A2. XRF analytical results for samples from drill hole AP5 (Areachap)

EDS User School. Principles of Electron Beam Microanalysis

Standardless Analysis by XRF but I don t know what s in my sample!! Dr Colin Slater Applications Scientist, XRF Bruker UK Limited

Breeding et al., Data Repository Material Figure DR1. Athens. Study Area

Micro-XRF excitation in an SEM

Metcalf and Buck. GSA Data Repository

Overview of X-Ray Fluorescence Analysis

X-Ray Fluorescence and Natural History

Q. WANG, Q-K. XIA, S. Y. O REILLY, W. L. GRIFFIN, E. E. BEYER AND H. K. BRUECKNER

Treatment of Data. Methods of determining analytical error -Counting statistics -Reproducibility of reference materials -Homogeneity of sample

GSA DATA REPOSITORY

Quantitative XRF Analysis. algorithms and their practical use

MICRO-TOMOGRAPHY AND X-RAY ANALYSIS OF GEOLOGICAL SAMPLES

1 of 5 14/10/ :21

APPENDICES. Appendix 1

MT Electron microscopy Scanning electron microscopy and electron probe microanalysis

Applications in Geosciences EPMA

MS482 Materials Characterization ( 재료분석 ) Lecture Note 4: XRF

X Rays & Crystals. Characterizing Mineral Chemistry & Structure. J.D. Price

Chromite and tourmaline chemical composition as a guide to mineral exploration

Supplementary information

Lithogeochemistry Using a Portable X-Ray Fluorescence (pxrf) Spectrometer and Preliminary Results From the Eagle Ford Shale

Massachusetts Institute of Technology. Dr. Nilanjan Chatterjee

WORKING WITH ELECTRON MICROPROBE DATA FROM A HIGH PRESSURE EXPERIMENT CALCULATING MINERAL FORMULAS, UNIT CELL CONTENT, AND GEOTHERMOMETRY

Bulyanhulu: Anomalous gold mineralisation in the Archaean of Tanzania. Claire Chamberlain, Jamie Wilkinson, Richard Herrington, Ettienne du Plessis

ESS 439 Lab 2 Examine Optical Properties of Minerals

GSA Data Repository

LAB 6: COMMON MINERALS IN IGNEOUS ROCKS

XM1/331 XM1/331 BLFX-3 XM1/331

Become a Microprobe Power User Part 2: Qualitative & Quantitative Analysis

Preliminary Progress Report. Mineralogy and Geochemistry of Well Cuttings. Prepared for: Gastem USA. Colgate University Department of Geology

Australia. Australian Journal of Earth Sciences (2002) 49,

Ore deposits related to mafic igneous rocks Diamonds - GLY 361 Lecture 3

GSA Data Repository

Supporting Information

Geogenic versus Anthropogenic Metals and Metalloids

S8 TIGER Series 2 for ASTM D 6443

Lecture 36. Igneous geochemistry

Auger Electron Spectroscopy Overview

Partial Energy Level Diagrams

Observations Regarding Automated SEM and SIMS Analysis of Minerals. Kristofor Ingeneri. April 22, 2009

OES - Optical Emission Spectrometer 2000

Effect of tectonic setting on chemistry of mantle-derived melts

FUNDAMENTAL PARAMETER METHOD FOR THE LOW ENERGY REGION INCLUDING CASCADE EFFECT AND PHOTOELECTRON EXCITATION

Electron Probe Microanalysis (EPMA)

Summary of test results for Daya Bay rock samples. by Patrick Dobson Celia Tiemi Onishi Seiji Nakagawa

Peter L Warren, Pamela Y Shadforth ICI Technology, Wilton, Middlesbrough, U.K.

Earth and Planetary Materials

Spot Name U-Pb ages (Ma) Plagioclase ages (Ma) Biotite age (Ma) Whole rock age (Ma)

J. Mangas and F.J. Perez-Torrado. Departamento de Física. Universidad de Las Palmas de Gran Canaria Las Palmas de Gran Canaria.

SUPPORTING INFORMATION

Introduction to X-ray Photoelectron Spectroscopy (XPS) XPS which makes use of the photoelectric effect, was developed in the mid-1960

100% ionic compounds do not exist but predominantly ionic compounds are formed when metals combine with non-metals.

ESPRIT Feature. Innovation with Integrity. Particle detection and chemical classification EDS

FINDING A NEEDLE IN A HAYSTACK: PERFORMANCE EVALUATION OF PORTABLE XRF INSTRUMENTS FROM THREE MANUFACTURERS

In-Situ Analysis of Traces, Minor and Major Elements in Rocks and Soils with a Portable XRF Spectrometer*

Developments & Limitations in GSR Analysis

EPSC 233. Compositional variation in minerals. Recommended reading: PERKINS, p. 286, 41 (Box 2-4).

Tailings and Mineral Carbonation: The Potential for Atmospheric CO 2 Sequestration

Supplementary Materials for

GEOL 2312 Igneous and Metamorphic Petrology Spring 2016 Score / 58. Midterm 1 Chapters 1-10

An Investigation into

Mejdar Deposit Petrogenesis A Case Study of Copper Mineralization Belt in North West of Iran

Ultramafic rocks. Types of Ultramafic Rocks. Spinel lherzolite xenolith

doi: /nature09369

Earth Materials I Crystal Structures

Geodiversity Research Centre, Australian Museum, Sydney, NSW 2010, Australia.

TABLE DR2. Lu-Hf ISOTOPIC DATA FOR WHOLE ROCK SAMPLES AND ZIRCONS [Lu] [Hf]

GSA DATA REPOSITORY

ICP-3000 Inductively Coupled Plasma Optical Emission Spectrometer

Igneous petrology EOSC 321 Laboratory 1: Ultramafic plutonic and volcanic rocks

ED(P)XRF: SCREENING ANALYSIS AND QUANTITATIVE ANALYSIS with POLARIZED

1 st shell holds 2 electrons. 2 nd shell holds 8 electrons

LAB 9: ULTRAMAFIC ROCKS, CUMULATES AND MELT SOURCES

Geochemistry in Exploration

Sphene (Titanite) Plane polarized light. Honey brown/orange Wedge-shaped crystals

Chemistry Instrumental Analysis Lecture 19 Chapter 12. Chem 4631

Interferences: Pathological and Otherwise

Useful Methods for Processing N-dimensional X-ray Datacubes

Altitude influence of elemental distribution in grass from Rila mountain. Dr. E. Nikolova, Dr. A. Artinyan, S. Nikolova INRNE - BAS XRF Laboratory

Log Interpretation Parameters Determined by Analysis of Green River Oil Shale Samples: Initial Steps

Data report for elemental analysis of IMPROVE samples collected during April, May, June 2009 UC Davis Submitted June 18, 2010 SUMMARY

INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 3, ISSUE 2, FEBRUARY 2014 ISSN

Speciation of Individual Mineral Particles of Micrometer Size by the Combined Use of ATR-FT-IR Imaging and Quantitative ED-EPMA Techniques

Mineralogical & Chemical Studies of Gel-e-sarshooy (shampoo clay) in Manian-Iran

Sample collection was restricted to pumice from plinian fallout, from thin distal ignimbrite, and from

Modern Optical Spectroscopy

The mantle metasomatism: diversity and impact What the mantle xenoliths tell us?

Understanding X-rays: The electromagnetic spectrum

Dynamic weakening of ring faults and catastrophic caldera collapse

Magmatic Ore Deposits:

Common non-silicate planetary minerals

About Earth Materials

ToF-SIMS or XPS? Xinqi Chen Keck-II

Transcription:

Advancements in Microanalysis with micro-xrf on SEM Bruker Nano Analytics, Berlin, Germany Webinar, April 18 th 2018 19.04.2018

Presenters Stephan Boehm Product Manager Micro-XRF/SEM Bruker Nano Analytics, Berlin, Germany Andrew Menzies, PhD Applications Specialist, Universidad Católica del Norte (Chile), Department of Geological Sciences 19.04.2018 2

Overview Introduction / Presenters Design & principle of micro-xrf/sem Differences between EDS / XRF - examples Applications: Mantle Minerals Diamond Exploration Volcanic Fumeroles Exotic Cu Deposits Epithermal Quartz Mineral Zonation 19.04.2018 3

Introduction to Micro-XRF/SEM At a glance Non-destructive method for elemental analysis Small spot analysis Low spectral background Information from within the sample Little or no sample prep Quantification standard less (based on fundamental parameters) standard supported FP 4

Introduction to Micro-XRF Basic layout Excitation of an atom by high energetic radiation Generation of a vacancy Fill up this vacancy by outer electrons Emission of a characteristic X-ray photon Fluorescence yield depends on atomic number (low for low atomic number and vice versa) 19.04.2018 5

Bruker micro-xrf source for SEM s Hardware design Main components are a micro-focus X-Ray tube with a focusing optic. These components will be adapted to an inclined SEM port Other components are a High voltage generator for the X-ray tube and electronic control (separate electronic box) SEM image of a polycapillary structure. Inner diameter in the range of 2 µm 19.04.2018 6

Bruker micro-xrf source for SEM s Working regime Since the measurement position is given by the e-beam the X-ray source is adjustable in order to align the X-ray spot to the e-beam focus for the given WD XTrace is aligned to a given SEM WD sample focusing will be done by SEM stage Focal distance of X-ray optics is ~ 16 mm no interference with BSD e-beam EDS detector X-ray Polycapillary optics Uncoated glass makes the X-ray spot visible 19.04.2018 7

Differences between SEM/EDS - XRF XRF Elemental Mapping Working principle: Polycapillary X-ray optics is fixed, changing the measurement position will be done by moving the stage Differences to e-beam map Principle of XRF/ SEM stage map Spatial resolution for e-beam is better due to the smaller spot E-beam elemental map is faster because beam deflection is very fast compared to stage movement The information depth for X-ray excitation is larger, i.e. deeper sample regions contribute to the measured signal For not flat samples the measured distribution are influenced by the direction of excitation and detection. This means shadowing effects are possible due to the inclined angle for X-ray excitation or detection 19.04.2018 8

Bruker micro-xrf source for SEM s Software What kind of data we can obtain? Same data as for e-beam excitation: Multipoint measurements Line scan Elemental mapping Software package for XRF spectra evaluation and quantification is completely integrated in Bruker ESPRIT 2.x EDS software which means beside SEM control und EDS analysis: the control of the tube parameters, measurement time, XRF element distribution measurements (mapping, line-scan) spectrum accumulation and their complete evaluation will be performed by one software package which makes the handling easy to use 19.04.2018 9

Bruker micro-xrf source for SEM s ESPRIT 2.x Software 19.04.2018 10

XTrace Installation s 19.04.2018 11

Important parameters and analytical conditions micro-xrf and e-beam systems during automated mineralogical analysis micro-xrf Parameter e-beam Ø: 15-30 µm Information depth: µm to mm; (depending on analysed element and matrix) Atomic number Z 11 (sodium) 20 µg/g to 100%; Analyzed Volume Detectable Elements Concentration (SEM) Ø: few micrometers Information depth: µm; (depending primarily on electron energy) Atomic number Z 4 (beryllium) 1000 µg/g to 100%; (depending on analysed element) Range Generated by scattered tube radiation on Spectral Generated by continuous bremsstrahlung the sample into the detector Background (first order effect) (second order effect) Electrical Conductivity not required Sample Sample needs to be electrically conductive Preparation (commonly carbon-coated) Minimal Sample Stress Heating due to absorbed electrons Standard based or standardless Quantification Standard based or standardless Spectral fitting Mineral Elemental concentration ranges (hierarchical) Classification (hierarchical) Data presented in the table are principally based on the Bruker M4 Tornado AMICS micro-xrf and the QEMSCAN (model E430) Zeiss EVO SEM. Data updated from Haschke and Böhm (2017). Values presented in the table represent typical values and normal ranges of analysis, but are not limited to these values, and under specific circumstances values outside of those present may be preferable. 19.04.2018 12

Important parameters and analytical conditions micro-xrf and e-beam systems during automated mineralogical analysis micro-xrf Parameter e-beam (SEM) Normal Range Typical Value Analytical Values 3 Typical Value Normal Range 20-50 50 High Voltage Excitation (kv) 25 10-25 100 600 µa 200 µa X-ray Excitation or Beam Current 5 na (µa / na) 20-200 50 Pixel Spacing (µm) 5 1-50 10-500 50 Dwell Time (ms) X-Ray Count 1000 1000-10000 90-275 130 Spectroscopic Amplifier (kcps) 275 1-2 1 Number of Spectrometers 4 2-4 Data presented in the table are principally based on the Bruker M4 Tornado AMICS micro-xrf and the QEMSCAN (model E430) Zeiss EVO SEM. Data updated from Haschke and Böhm (2017). Values presented in the table represent typical values and normal ranges of analysis, but are not limited to these values, and under specific circumstances values outside of those present may be preferable. 19.04.2018 13

XTrace Installation - UCN 19.04.2018 14

Geological Aplications Applications: Mantle Minerals Diamond Exploration Volcanic Fumeroles Exotic Cu Deposits Epithermal Quartz Mineral Zonation Differences between EDS / XRF examples Point Analyses, Line Scans, and Elemental Mapping 19.04.2018 15

Ultramafic Plutonic Rocks: Definitions Terminology Streckeisen (1973, 1976) Peridotites are distinguished from pyroxemites with > 40% olivine Peridotites are subdivided into: dunite, harzburgite, lherzolite and wehrlite Pyroxenites are subdivided into : orthopyroxenite, websterite, y clinopyroxenite 19.04.2018 16

Mantle Minerals Mantle Minerals Kimberlite Indicator Minerals (KIM s) Garnet Orthopyroxene Spinel Peridotite Pyropo Peridotite Enstatite Peridotite Chromite Red Purple Green Black Olivine Peridotite Green Ilmenite Peridotite Black Garnet Clinopyroxene Eclogite Pyropo-Almandine Peridotite Cr-Diopside Orange Green 19.04.2018 17

Mantle Minerals - Composition Garnet Olivine Clinopyroxene Orthopyroxene Spinel (Ca,Mg,Fe) 3 (Al,Cr,Fe 3+ ) 2 (SiO4) 3 Minor: Mn y Ti, y Trace: Ni (Mg,Fe) 2 SiO 4 Minor: Ca, Mn, y Trace: Ni (Ca,Na)(Mg,Fe,Al)(Si,Al) 2 O 6 Minor: Cr (Mg,Fe)SiO 3 Minor: Al (Mg,Fe)(Al,Cr,Fe 3+ ) 2 O 4 Minor: Ti 19.04.2018 18

Mantle Minerals - Diamonds Garnet Chromite Diamond ~ 0.5 mm 19.04.2018 19

Point Analysis Mantle Minerals Comparison of SEM-EDS and XRF-EDS spectra for the same point. Sample AHM-D2 Peridotitic garnet 19.04.2018 20

Point Analysis Mantle Minerals Comparison XRF-EDS spectra for the same point: analytical precision Element Unit EPMA Values XRF-EDS Values Std Dev Maximum Minimum Range SiO2 (%) 39.28 39.22 0.18 39.48 38.89 0.58 TiO2 (%) 0.28 0.30 0.02 0.33 0.26 0.07 Al2O3 (%) 22.51 21.68 0.31 22.21 21.23 0.98 Cr2O3 (%) 0.12 0.11 0.01 0.11 0.09 0.02 FeO (%) 21.00 21.41 0.20 21.85 21.18 0.67 MnO (%) 0.47 0.47 0.01 0.50 0.46 0.04 MgO (%) 11.44 12.22 0.32 12.62 11.57 1.05 CaO (%) 4.57 4.36 0.05 4.45 4.29 0.16 19.04.2018 21

Point Analysis Mantle Minerals Major and trace elements Element Unit 90 sec 120 sec 180 sec SiO2 (%) 39.04 39.17 39.20 TiO2 (%) 0.28 0.28 0.29 Al2O3 (%) 22.23 21.97 21.87 Cr2O3 (%) 0.11 0.11 0.11 FeO (%) 21.16 21.05 21.02 MnO (%) 0.49 0.48 0.48 MgO (%) 12.29 12.57 12.63 CaO (%) 4.35 4.31 4.33 Ni (ppm) 26 18 28 Cu (ppm) 3 5 4 Zn (ppm) 173 143 150 Ga (ppm) 7 0 28 Ge (ppm) 17 22 17 As (ppm) 28 28 28 Rb (ppm) 41 69 59 Sr (ppm) 28 0 28 Y (ppm) 2 28 3 Zr (ppm) 157 157 171 Nb (ppm) 1 28 0 19.04.2018 22

Point Analysis Mantle Minerals Comparison of analytical results on a per element basis between EPMA and SEM-XRF (Xtrace) for 33 eclogitic garnets from Newlands kimberlite in South Africa. 19.04.2018 23

Point Analysis Mantle Minerals Comparison of analytical results on a per element basis between EPMA and SEM-XRF (Xtrace) for 33 eclogitic garnets from Newlands kimberlite in South Africa. 19.04.2018 24

Point Analysis Mantle Minerals Comparison of analytical results on a per element basis between EPMA and SEM-XRF (Xtrace) for 34 peridotitic garnets from Newlands kimberlite in South Africa. 19.04.2018 25

Garnet: Cr2O3 - CaO Reference: Grütter et al., Lithos 77 (2004) 841 857. Solid line (Gurney,1984) separates G10 (sub-calcic) and G9 (calcic) fields. Dashed line (Grütter and Sweeney, 2000) represents the graphite diamond constraint (GDC). 19.04.2018 26

Point Analysis Mantle Minerals (i) EMPA Garnet Garnet Garnet Garnet Garnet Garnet Garnet Garnet Garnet Garnet AHM K1 AHM K2 AHM K3 AHM K4 AHM K5 AHM K6 AHM K7 AHM K8 AHM K9 AHM K10 1 2 3 4 5 6 7 8 9 10 UCT (EMPA) SiO 2 39.28 40.06 39.43 39.42 39.55 39.91 39.14 40.16 39.80 39.35 TiO 2 0.28 0.31 0.28 0.30 0.26 0.28 0.29 0.25 0.25 0.29 Al 2 O 3 22.51 22.92 22.05 22.49 22.61 22.77 22.66 23.16 22.89 22.70 Cr 2 O 3 0.12 0.10 0.01 0.12 0.15 0.11 0.01 0.01 0.13 0.14 FeO 21.00 20.57 20.73 20.85 21.06 20.91 21.10 18.78 20.42 20.97 MnO 0.47 0.43 0.45 0.43 0.44 0.47 0.46 0.42 0.47 0.52 MgO 11.44 11.74 11.19 11.65 11.60 11.62 11.58 12.87 11.61 11.80 CaO 4.57 4.68 4.61 4.56 4.50 4.51 4.69 5.21 4.57 4.62 Na 2 O 0.08 0.08 0.11 0.09 0.11 0.10 0.09 0.12 0.09 0.10 (ii) SEM-EDS UCN (SEM-EDS) SiO 2 39.74 39.74 39.77 41.33 39.91 39.76 39.93 40.22 39.80 39.82 TiO 2 0.26 0.27 0.25 0.23 0.27 0.26 0.26 0.26 0.27 0.26 Al 2 O 3 22.57 22.50 22.59 23.57 22.57 22.58 22.55 22.96 22.60 22.67 Cr 2 O 3 0.10 0.11 0.10 0.07 0.12 0.10 0.08 0.03 0.11 0.09 FeO 20.94 20.99 20.90 18.14 20.83 20.92 20.89 18.50 20.88 20.78 MnO 0.47 0.47 0.46 0.40 0.47 0.48 0.47 0.42 0.47 0.47 MgO 11.35 11.36 11.35 12.14 11.45 11.38 11.28 12.61 11.34 11.36 CaO 4.56 4.56 4.58 4.11 4.38 4.51 4.54 5.00 4.53 4.55 Na 2 O (iii) XTrace UCN (XTrace) SiO 2 40.02 40.14 39.90 43.63 41.27 40.10 40.02 40.39 40.13 39.69 TiO 2 0.25 0.26 0.25 0.25 0.25 0.24 0.26 0.24 0.25 0.23 Al 2 O 3 21.92 21.69 21.79 23.98 22.76 21.69 21.74 22.16 21.67 21.89 Cr 2 O 3 0.10 0.11 0.11 0.07 0.13 0.11 0.11 0.04 0.10 0.11 FeO 21.87 22.06 21.86 13.58 20.14 22.05 22.07 19.23 21.92 21.93 MnO 0.45 0.47 0.47 0.30 0.43 0.47 0.47 0.40 0.47 0.47 MgO 11.06 10.86 11.28 13.77 10.66 11.01 10.97 12.72 11.14 10.78 CaO 4.33 4.42 4.35 4.41 4.37 4.32 4.37 4.81 4.31 4.90 Na 2 O 19.04.2018 27

Point Analysis Mantle Minerals Comparison XRF-EDS spectra for the same point: analytical time Peridotitic Garnet 50,0 Data Analysis 45,0 40,0 Concentration (wt%) 35,0 30,0 25,0 20,0 15,0 10,0 5,0 SiO2 (%) TiO2 (%) Al2O3 (%) Cr2O3 (%) FeO (%) MnO (%) MgO (%) CaO (%) 0,0 1 sec 2 sec 5 sec 10 sec 20 sec 30 sec 60 sec 90 sec 120 sec 180 sec XRF-EDS 19.04.2018 28

Point Analysis Mantle Minerals Comparison XRF-EDS spectra for the same point: analytical time Eclogitic Garnet 19.04.2018 29

Point Analysis Mantle Minerals Comparison XRF-EDS spectra for the same point: analytical precision Eclogitic Garnet 19.04.2018 30

Volcanic Fumeroles LASTARRIA VOLCANO FF2 FF3 FF1 FF4 c) Location map of Lastarria volcano and fumarolic fields: a) South America and their respective volcanic zones; b) the Central Andean Volcanic Zone; c) Lastarria volcano and their four fumarolic fields (FF); d) Zoom to fumarolic field 1. d) 19.04.2018 31

Volcanic Fumeroles Sampling Point Images of sample MI-LAST-R05 and its sample point from Lastarria volcano. 19.04.2018 32

Volcanic Fumeroles SEM-EDS (x-beam) elemental maps and BSE image of sample MI-LAST-R05. Pixel size 6 um. Top Row: BSE Image, Se, and Te. Bottom Row: Zn, Tl and S distributions. 19.04.2018 33

Volcanic Fumeroles XRF-EDS elemental maps and BSE image of sample MI-LAST-R05. Pixel size 20 um. Dwell time 5s. Top Row: BSE Image overlain with Se, Te and Zn distributions. Bottom Row: Se, Te and Zn distributions.. 19.04.2018 34

Volcanic Fumeroles XRF-EDS elemental maps and BSE image of sample MI-LAST-R05. Pixel size 20 um. Dwell time 5s. Top Row: BSE Image overlain with Tl and S distributions. Bottom Row: Tl and S distributions. 19.04.2018 35

Volcanic Fumeroles BSE Image and XRF-EDS elemental maps for Se, Te, Zn and S of indicated area from sample MI-LAST-R05. Pixel size 10 um. Dwell time 1s. 19.04.2018 36

Volcanic Fumeroles BSE Image and XRF-EDS elemental maps for Se, Te, Zn and S of indicated area from sample MI-LAST-R05. Pixel size 10 um. Dwell time 5s. 19.04.2018 37

Volcanic Fumeroles Comparison between XRF-EDS (XTrace) and SEM-EDS (e-beam) total map spectra, which highlights the capabilitites of the XRF-EDS to detect trace concentrations of elements not visible in the SEM-EDS spectrum. Note the distinct peaks observable in the X-Ray beam image (blue) at various energies that are not present in the e-beam spectrum (red), and the significantly lower noise in the x-beam spectra. 19.04.2018 38

Volcanic Fumeroles Comparison between XRF-EDS (XTrace) and SEM-EDS (e-beam) Left column: X-Ray beam spectrum (blue); Right column: E-beam spectrum (red). 19.04.2018 39

Exotic-Cu Deposits Exotic-Cu deposits often form in the vicinity of the parental porphyry system due to the lateral migration of Cu-bearing fluids. Mineralisation in this type of deposit comprises different species of copper minerals and mineraloids broadly defined as green-copper (cobre-verde) and black-copper (cobre-negro) ores. The analysis and subsequent definition of Cu-bearing minerals from exotic-cu deposits is extremely complex due to the fine scaled textures and compositional variation. This is particularly true for so-called black-copper minerals. both Cu-wad and Cu-pitch, specifically related to the Mn concentrations, as well as numerous minor and trace elements such as: Mg, Al, Fe, Si, P, Ca, P, Cl, Co and S. 19.04.2018 40

Exotic-Cu Deposits 5 19.04.2018 41

Exotic-Cu Deposits Cu 2-x (Al,Fe 3+ ) x H 2-x [Si 2 O 5 ](OH) 4* nh 2 O Chrysocola Muestra TC2-01 Muestra TC2-05 19.04.2018 42

Exotic-Cu Deposits Sample AHM ET 003 A Optical Image BSE Automated Mineralogy Background Cu-Sulphides Cu-Oxides Cu-Halides Cu-Carbonates Cu-Sulphates Cu-Phosphates Cu-Silicates Cu-Pitch Cu-Mn Pitch Cu-Wad Cu-Mn Wad Silicates+Cu Fe-Oxides+Cu Cu-Other Fe-Oxides Calcite Apatite Others Cu Mn Pitch + Cu Mn Wad + Malaquita Malaquita Atacamita Cu Mn Pitch + Cu Otros Atacamita + Cu Mn Pitch + Cu Otros 19.04.2018 43

Exotic-Cu Deposits Sample from El Tesoro, Chile. Elemental Maps Comparison between SEM-EDS (left) and XRF-EDS (right). XRF-EDS: Increased signal intensity for trace elements: Al, Ca, Fe, P, Co SEM-EDS: Better resolution 19.04.2018 44

Exotic-Cu Deposits 19.04.2018 45

Exotic-Cu Deposits Sample from El Tesoro, Chile. Elemental Maps Comparison between SEM-EDS (left) and XRF-EDS (right). XRF-EDS: Increased signal intensity for trace elements: Al, Ca, Fe, P, Co SEM-EDS: Better resolution 19.04.2018 46

Exotic-Cu Deposits XRF-EDS (XTrace) SEM-EDS (e-beam) 19.04.2018 47

Ti-in-Quartz Sample: Epithermal Quartz Ti concentration ranges from 0 120 ppm Quartz grain border: low Ti (<20 ppm) Consistent with LA-ICPMS results 19.04.2018 48

Ti-in-Quartz Sample: Epithermal Quartz Ti concentration ranges from 0 120 ppm Quartz grain border: low Ti (<20 ppm) Consistent with LA-ICPMS results 19.04.2018 49

Mineral Zonation Sample: Central Volcanic Zone, Chile. Plagioclase Mineral Elemental zonation First Row: K and Ti Second row: Al Third Row: Ca and Sr 19.04.2018 50

Interaction Volume: Interpretation Gold: L-lines vs M-lines MAB (2.203 kev) LA (9.704 kev) LB (11.491 kev) KA (68.806 kev) KB (77.893 kev) 19.04.2018 51

Interaction Volume: Interpretation Gold: L-lines vs M-lines Small Gold Grain on Surface (<10 um) Large Gold Grain on Surface (50 um) MAB (2.203 kev) LA (9.704 kev) LB (11.491 kev) 19.04.2018 52

Interaction Volume: Interpretation Gold: L-lines vs M-lines LA (9.704 kev) LB (11.491 kev) KA (68.806 kev) KB (77.893 kev) MAB (2.203 kev) LA (9.704 kev) LB (11.491 kev) 19.04.2018 53

Elemental Mapping Overlapping K, L and M- Lines Elemental Energy lines (kev) for Au, Zn and Pb Symbol Kα Kβ Lα Lβ Mα Mβ Au 68,806 77,982 9,713 11,443 2,123 2,203 Zn 8,637 9,570 1,012 1,035 Pb 74,970 84,939 10,551 12,614 2,342 2,444 19.04.2018 54

Elemental Mapping Overlapping K, L and M- Lines MA (2.342 kev) Pb KB (9.570 kev) Zn Large Gold Grain on Surface (50 um) Small Gold Grain on Surface (<10 um) Au MAB (2.203 kev) LA (9.704 kev) LB (11.491 kev) 19.04.2018 55

Elemental Mapping: Pixel Spacing vs Dwell Time Analytical time pixel dwell time (ms) 5 10 20 50 500 pixel spacing (um) 200 100 50 Analytical Area 10 x 10 mm

Xray Tube Position Calibration Questions: 19.04.2018 57

Acknowledgements Marina Vargas Monserrat Barraza Manuel Inostroza Felipe Aguilera Eduardo Campos Javiera Errazuriz Ignacio Vieytes Mauricio Galarce Victor Hernández Sebastian Sola Patricia Muñoz

Q&A Are There Any Questions? Please type in the questions you might have in the Q&A box and press Send. 59

More Information For more information, please contact us: stephan.boehm@bruker.com info.bna@bruker.com 60

Copyright 2018 Bruker Corporation. All rights reserved. www.bruker.com Innovation with Integrity