Bayesian Interpretations of Heteroskedastic Consistent Covariance. Estimators Using the Informed Bayesian Bootstrap

Similar documents
Bayesian Interpretations of Heteroskedastic Consistent Covariance Estimators Using the Informed Bayesian Bootstrap

A Note on Bootstraps and Robustness. Tony Lancaster, Brown University, December 2003.

Bootstrapping Heteroskedasticity Consistent Covariance Matrix Estimator

The Exact Distribution of the t-ratio with Robust and Clustered Standard Errors

The Exact Distribution of the t-ratio with Robust and Clustered Standard Errors

Bayesian Heteroskedasticity-Robust Regression. Richard Startz * revised February Abstract

Models, Testing, and Correction of Heteroskedasticity. James L. Powell Department of Economics University of California, Berkeley

New heteroskedasticity-robust standard errors for the linear regression model

The Bayesian Approach to Multi-equation Econometric Model Estimation

A Course in Applied Econometrics Lecture 18: Missing Data. Jeff Wooldridge IRP Lectures, UW Madison, August Linear model with IVs: y i x i u i,

Bootstrapping heteroskedastic regression models: wild bootstrap vs. pairs bootstrap

A COMPARISON OF HETEROSCEDASTICITY ROBUST STANDARD ERRORS AND NONPARAMETRIC GENERALIZED LEAST SQUARES

Stat 5101 Lecture Notes

Heteroskedasticity-Robust Inference in Finite Samples

Heteroskedasticity-Consistent Covariance Matrix Estimators in Small Samples with High Leverage Points

NONINFORMATIVE NONPARAMETRIC BAYESIAN ESTIMATION OF QUANTILES

11. Bootstrap Methods

More efficient tests robust to heteroskedasticity of unknown form

Preliminaries The bootstrap Bias reduction Hypothesis tests Regression Confidence intervals Time series Final remark. Bootstrap inference

Preliminaries The bootstrap Bias reduction Hypothesis tests Regression Confidence intervals Time series Final remark. Bootstrap inference

NBER WORKING PAPER SERIES ROBUST STANDARD ERRORS IN SMALL SAMPLES: SOME PRACTICAL ADVICE. Guido W. Imbens Michal Kolesar

A better way to bootstrap pairs

Bootstrap Quasi-Likelihood Ratio Tests for Nested Models

Estimation of the Conditional Variance in Paired Experiments

Econometric Analysis of Cross Section and Panel Data

A Course in Applied Econometrics Lecture 7: Cluster Sampling. Jeff Wooldridge IRP Lectures, UW Madison, August 2008

Experimental Design and Data Analysis for Biologists

Multinomial Data. f(y θ) θ y i. where θ i is the probability that a given trial results in category i, i = 1,..., k. The parameter space is

Improving Weighted Least Squares Inference

Preface Introduction to Statistics and Data Analysis Overview: Statistical Inference, Samples, Populations, and Experimental Design The Role of

POLSCI 702 Non-Normality and Heteroskedasticity

Quantile methods. Class Notes Manuel Arellano December 1, Let F (r) =Pr(Y r). Forτ (0, 1), theτth population quantile of Y is defined to be

A Note on Demand Estimation with Supply Information. in Non-Linear Models

Review of Classical Least Squares. James L. Powell Department of Economics University of California, Berkeley

Multivariate Versus Multinomial Probit: When are Binary Decisions Made Separately also Jointly Optimal?

Some Monte Carlo Evidence for Adaptive Estimation of Unit-Time Varying Heteroscedastic Panel Data Models

ROBUSTNESS OF TWO-PHASE REGRESSION TESTS

Introductory Econometrics

G. S. Maddala Kajal Lahiri. WILEY A John Wiley and Sons, Ltd., Publication

Carl N. Morris. University of Texas

Robust Standard Errors in Small Samples: Some Practical Advice

Andreas Steinhauer, University of Zurich Tobias Wuergler, University of Zurich. September 24, 2010

Gravity Models, PPML Estimation and the Bias of the Robust Standard Errors

Economic modelling and forecasting

Flexible Estimation of Treatment Effect Parameters

Bayesian inference. Fredrik Ronquist and Peter Beerli. October 3, 2007

Ronald Christensen. University of New Mexico. Albuquerque, New Mexico. Wesley Johnson. University of California, Irvine. Irvine, California

New Developments in Econometrics Lecture 16: Quantile Estimation

A noninformative Bayesian approach to domain estimation

Inference in VARs with Conditional Heteroskedasticity of Unknown Form

Bayesian Inference: Probit and Linear Probability Models

A Bootstrap Test for Causality with Endogenous Lag Length Choice. - theory and application in finance

Christopher Dougherty London School of Economics and Political Science

Bayesian Inference: Concept and Practice

Using Estimating Equations for Spatially Correlated A

Generalized Method of Moments: I. Chapter 9, R. Davidson and J.G. MacKinnon, Econometric Theory and Methods, 2004, Oxford.

Research Article A Nonparametric Two-Sample Wald Test of Equality of Variances

Robust Confidence Intervals for Effects Sizes in Multiple Linear Regression

1 Estimation of Persistent Dynamic Panel Data. Motivation

CRE METHODS FOR UNBALANCED PANELS Correlated Random Effects Panel Data Models IZA Summer School in Labor Economics May 13-19, 2013 Jeffrey M.

Recent Advances in the Field of Trade Theory and Policy Analysis Using Micro-Level Data

Outline. Possible Reasons. Nature of Heteroscedasticity. Basic Econometrics in Transportation. Heteroscedasticity

A Bootstrap Test for Conditional Symmetry

Finite Sample Performance of A Minimum Distance Estimator Under Weak Instruments

Bootstrap Testing in Econometrics

Generated Covariates in Nonparametric Estimation: A Short Review.

A Course in Applied Econometrics Lecture 14: Control Functions and Related Methods. Jeff Wooldridge IRP Lectures, UW Madison, August 2008

AN EVALUATION OF PARAMETRIC AND NONPARAMETRIC VARIANCE ESTIMATORS IN COMPLETELY RANDOMIZED EXPERIMENTS. Stanley A. Lubanski. and. Peter M.

Chapter 1 Likelihood-Based Inference and Finite-Sample Corrections: A Brief Overview

Heteroskedasticity ECONOMETRICS (ECON 360) BEN VAN KAMMEN, PHD

Bayesian Methods for Machine Learning

Specification Test for Instrumental Variables Regression with Many Instruments

WILD CLUSTER BOOTSTRAP CONFIDENCE INTERVALS*

A New Approach to Robust Inference in Cointegration

Bootstrap Approach to Comparison of Alternative Methods of Parameter Estimation of a Simultaneous Equation Model

Testing for Regime Switching: A Comment

Binary choice 3.3 Maximum likelihood estimation

Testing for Regime Switching in Singaporean Business Cycles

TESTING FOR NORMALITY IN THE LINEAR REGRESSION MODEL: AN EMPIRICAL LIKELIHOOD RATIO TEST

the error term could vary over the observations, in ways that are related

STA 4273H: Statistical Machine Learning

Alternative HAC Covariance Matrix Estimators with Improved Finite Sample Properties

A Measure of Robustness to Misspecification

Introduction to Bayesian Statistics with WinBUGS Part 4 Priors and Hierarchical Models

Bayesian inference for sample surveys. Roderick Little Module 2: Bayesian models for simple random samples

APEC 8212: Econometric Analysis II

Economics 471: Econometrics Department of Economics, Finance and Legal Studies University of Alabama

Outline. Introduction to Bayesian nonparametrics. Notation and discrete example. Books on Bayesian nonparametrics

Vector Autoregressive Model. Vector Autoregressions II. Estimation of Vector Autoregressions II. Estimation of Vector Autoregressions I.

σ(a) = a N (x; 0, 1 2 ) dx. σ(a) = Φ(a) =

LECTURE 5 NOTES. n t. t Γ(a)Γ(b) pt+a 1 (1 p) n t+b 1. The marginal density of t is. Γ(t + a)γ(n t + b) Γ(n + a + b)

Contents. Preface to Second Edition Preface to First Edition Abbreviations PART I PRINCIPLES OF STATISTICAL THINKING AND ANALYSIS 1

Lossless Online Bayesian Bagging

Joint Estimation of Risk Preferences and Technology: Further Discussion

3 Joint Distributions 71

Wooldridge, Introductory Econometrics, 2d ed. Chapter 8: Heteroskedasticity In laying out the standard regression model, we made the assumption of

Econometrics II. Nonstandard Standard Error Issues: A Guide for the. Practitioner

The Wild Bootstrap, Tamed at Last. Russell Davidson. Emmanuel Flachaire

Testing Overidentifying Restrictions with Many Instruments and Heteroskedasticity

Bayesian Econometrics - Computer section

Transcription:

Bayesian Interpretations of Heteroskedastic Consistent Covariance Estimators Using the Informed Bayesian Bootstrap Dale J. Poirier University of California, Irvine May 22, 2009 Abstract This paper provides Bayesian rationalizations for White s heteroskedastic consistent (HC) covariance estimator, and various modifications of it, in linear regression models. An informed Bayesian bootstrap provides the statistical framework. JEL Codes: C1, C11 Keywords: semiparametric, multinomial, Dirichlet 1. Introduction Often researchers find it useful to recast frequentist procedures in Bayesian terms, so as to get a clearer understanding of how and when the procedures work. This paper takes this approach with respect to the consistent, in the face of heteroskedasticity of unknown form, covariance matrix estimator proposed by White (1980) for the case of stochastic regressors, building on the fixed regressor analysis of Eicker (1963, 1967), and the misspecified ML analysis of Huber (1967).

2 Kim, Morse and Zingales (2006) note that White (1980) has received 4,318 citations, making it the paper most cited by others in peer-reviewed economics literature since 1970. Those citations reflect how often the technique is used in practice, in part as a result of its routine inclusion in computer packages. Despite this popularity, its rationale from the Bayesian perspective has been unclear. This paper aims to fill this noticeable void. 2. Preliminaries Let z denote a discrete random variable belonging to one of J categories indexed ( = 1, 2,..., J) with associated probabilities Prob(z = ) = ( = 1, 2,..., J), where and J J denotes the unit simplex in. n independent draws on z imply the multinomial likelihood function (1) where N = n, the number of z (i = 1, 2,..., n) equal to ( = 1, 2,..., J), are sufficient statistics for. The natural conugate prior for is the Dirichlet distribution with density (2) 1 given ( = 1, 2,..., J) and Without loss of generality assume the first m categories have N = n > 0. It follows from Bayes Theorem that the posterior distribution of is the Dirichlet distribution where ( = 1, 2,..., m), and 1 Note: and

( = m+1, m+2,..., J). The marginal mass function of z is multinomial-dirichlet 3 (3) The predictive mass function for a new observation z N+1 is (4) Sampling from a Dirichlet distribution can be accomplished by simulating J independent gamma random variables with means and variances both equal to ( = 1, 2,..., J) and unit scale parameters, i.e., with densities (5) and then forming (6) The resulting constitutes one draw from the Dirichlet distribution When the draw is from the prior density ; when =, the draw is from the posterior density. 3. Bayesian Bootstrap Interpret the multinomial categories of z as J distinct values taken by a (K+1) 1 vector z = 2 [ y, x ], where y is scalar and x is K 1. In other words, the J categories are reinterpreted as the 2 Chamberlain and Imbens (2003, p. 12) note that because J can be arbitrarily large and our data are measured with finite precision, the finite support assumption is arguably not restrictive.

4 support points for the oint distribution of z, i.e., z = is reinterpreted as z = z where z = [y, x ]. Suppose m of the J support points for z are observed in a sample of size n m and others are not observed. Denote the m observed points by (1) (1) where y is m 1 and X is m K, and denote the unobserved support points by where is 1 and is K. Note that n = 0 ( = m + 1, m + 2,..., m + ). Similarly, partition, g,, and into m and (1) components corresponding to z and and The standard case corresponds to data that are distinct and exhaust the (2) support: J = n = m, n 1= n 2=... = n J= 1, = 0, and z is null. See Chamberlain and Imbens (2003), Lancaster (2003; 2004, Section 3.4), and Ragusa (2007). The general case is any non-standard case. The Bayesian bootstrap of Rubin (1981) begins by selecting a parameter/functional of interest, say, = ( ). For example, in the context of the linear regression model studied here, 3 suppose interest focuses on the moment condition E z [x(y - x )] = 0 K. Then = ( ) are the -1 coefficients associated with the linear proection of y on x: = [E (x x)] E (x y), where (x x), (7) z z (x y), (8) (1) (2) (1) (2) with X = [X, X ], y = [y, y ], and diag{ } denotes a diagonal matrix with diagonal elements equal to the given argument. has the weighted least squares (WLS) representation 4,5 3 Chamberlain and Imbens (2003, p. 13) discuss how this approach can be extended to the overidentified case in which the number of moment conditions exceeds the dimension of. 4 Since the denominator in (6) is common across, Lancaster (2003) notes that also has the WLS representation This leads to a slightly different approximation than discussed in the text. 5 Gilstein and Learner (1983) characterize the set of WLS estimates as the union of the bounded convex polytopes formed by the hyperplanes on which residuals are zero.

5 (1) (1) (1)` (2) (2) (2)` Note that the parameter depends on both z = [y, X ] and z = [y, X ], as well as. The prior and posterior distributions for in Section 2 induce prior and posterior distributions for via (9), albeit not particularly tractable, because is a nonlinear function of the (9). The limiting (as ) noninformative improper prior together with the standard case have received most of the attention. This is unfortunate. Because the number of hyperparameters in is J, which is greater than or equal to the sample size n, an informative prior is warranted. Unfortunately, this necessitates eliciting a large number of prior hyperpararmeters. This paper introduces an informative prior for with two properties: all elements in are positive implying prior density (2) is proper, and unobserved support points (fictitious observations) (together with ) are introduced to reflect prior beliefs about. The resulting combination is defined to be an informed Bayesian bootstrap. The multinomial probabilities are not the primary arameters of interest. The functional ( ) is the focus of attention. Choosing, so that the implied prior for is sensible, is a challenging task. An obvious reference is the standard case with a homogenous prior in which -1 Then ( = 1, 2,..., J) are identically distributed with E( ) = J ( = 1, 2,..., J), regardless of c, and 2-1 Var( ) = (J - 1)[[J (Jc + 1)] which is decreasing in c. As c, the elements of ( = 1, 2,..., J) (10) -1 become degenerate random variables equal to J. Because the posterior -1 2 mean of is the same as the prior mean J, however, the posterior variance Var( ) = (J - 1)[[J -1 (J{c+1} + 1)] is smaller than the prior variance. In other words, the hyperparameter c only affects the prior and posterior dispersions. Setting c =.005 corresponds to a fairly diffuse proper prior,

6 whereas, the uniform case c = 1 corresponds to a fairly tight prior. Jeffreys prior sets c = ½. The standard case assumption is important for the posterior analysis. Suppose only m of the possible J support points are observed. Let Then, where and In this case, the posterior mean of consists of two different subvectors and In other words, the homogeneity of the prior does not carry over to the posterior. Heterogeneous priors are introduced in Section 6. 4. HC Estimation 1 Lancaster (2003) showed the equivalence to order J of the covariance matrix of the bootstrap distribution of the OLS and the Eicker/White/Huber heteroskedasticity robust covariance matrix estimator. Furthermore, he showed that the covariance matrices of the Efron (1979) bootstrap 1 and the Bayesian bootstrap of Rubin (1981) are identical to O(J ). Lancaster used a limiting (as ) noninformative improper prior in the standard case. Extending Lancaster (2003) to the general case in which (2) > 0 and z is non-null, this paper approximates the posterior distribution of = ( ) in (9) by taking a Taylor series expansion around the posterior mean where is a J 1 vector of ones. This leads to the approximation (11)

7 th where e is a J 1 vector with the element equal to unity and all other elements equal to zero, Q( ) -1 = X(X diag{ }X), and (12) The posterior implies that the exact posterior mean and variance of (11) are (13) (14a) -1 Since the first-order condition for WLS implies (X diag{ }X) X diag{ }u( ) = 0 K, and because (15) it follows that (14a) simplifies to (14b) where To the extent that in (11) is a good approximation to ( ) in (9), (13) and (14b) should be good approximations to the posterior mean and variance of. To add some transparency to (14b), consider homogenous prior (10) and the standard case. Then, the posterior mean is, and (14b) simplifies to

8 (16) where V is the White/Eicker/Huber robust covariance matrix [J/(J+1)]V HC, and As c 0 (Lancaster s case), V. Therefore, the noninformative homogenous prior provides a Bayesian ustification for using the OLS estimate b together with V in approximate Bayesian inference for. (17) 5. Choice of ( = 1, 2) play similar roles in defining = ( ) in (9) and transforming prior beliefs about into prior beliefs about. Approximate the prior distribution of ( ) by taking a Taylor series expansion around the prior mean Then analogous to (13), the prior mean of can be approximated by (18) One goal in choosing may be to locate (18) at an a priori likely value. For example, suppose = n and once again consider homogenous prior (10). Then all the diagonal matrices in (18) cancel. Often an interesting prior for public consumption centers all the slopes in (18) over zero. Choose the first column of equal to the remaining columns of equal to the corresponding columns of, and. Then. (19)

Next consider approximate posterior mean (13). Because 9 (20) (13) has the representation (21) which is a matrix-weighted average of approximate prior mean (18) and the WLS estimate based on the observed : (22) (2) The fictitious observations z enter approximate prior mean (18) and posterior mean (21) through the K(K+1)/2 unique elements in, and the K 1 location vector [or ]. The actual (K+1) elements in are not required to compute approximation (18) or (21). Tthis is no more onerous than the customary linear regression case. 6. Choice of Homogenous prior (10) in the standard case yields an approximate posterior mean centered over OLS. When ( = 1, 2,..., J) are not identically distributed, then attention switches to WLS. But unfortunately, the not identically distributed case requires the daunting choice of J hyperparameters: ( = 1, 2,..., J). This section considers choices for ( = 1, 2,..., J) implied by frequentist criticisms of White/Eicker/Huber covariance matrix V. It is up to Bayesian readers to

10 assess the reasonableness of the implied priors, rather than the frequentist reasoning that gave rise to them. Frequentist criticisms of V are based on its sampling distribution (e.g., it tends to under- 6 estimate variances). Numerous suggestions have been made for adding weights to the diagonal elements of U. These weights can be interpreted as a choice for ( = 1, 2,..., J) in from which values of prior hyperparameters ( = 1, 2,..., J) can be backed out. Provided ( = 1, 2,..., J), this results in proper priors and a well-defined marginal mass function (3). An early critic of (17), predating White (1980), was Hinkley (1977) who suggested using b and scaling-up by J/(J - K): While this reminiscent of homogenous prior for the standard case, it is different in an important way: (23) unlike (23), (16) scales down, not up. Hence, a Bayesian interpretation of (23) is unclear. Other modifications of V involve diagonal elements ( = 1, 2,..., J) of the so-called hat -1 matrix X(X X) X. Cribari-Neto and Zarkos (2001) showed that the presence of high leverage points, as measured by ( = 1, 2,..., J), in the design matrix is more decisive for the finite-sample behavior of different HC robust covariance matrix estimators than the degree of heteroskedasticity. Table 1 summarizes the effects of adding weights to the diagonal elements of U, using a common notation -HC4 in the literature. Besides the original White/Eicker/Huber case () and Hinkley s (HC1), Table 1 contains the modifications by Horn, et al. (1975) (HC2), MacKinnon and White (1985) (HC3), and Cribari-Neto (2004) (HC4). In addition Table 1contains three Bayesian 6 See Chesher and Jewitt(1987), Cribari-Neto et al. (2000), Cribari-Neto and Zarkos (1999, 2001), Godfrey (2006), and MacKinnon and White (1985).

11 analogs (denoted HC2a, HC3a, and HC4a) that give three different choices for ( = 1, 2,..., J) (assuming no replication, i.e., n = 1) which imply the same diagonal weights for U suggested by HC2-HC4. HC2a-HC4a, however, center inferences over (instead of b) and use instead of the OLS residuals. In terms of the multinomial probabilities, these three choices for ( = 1, 2,..., J) imply that the means E( ) are largest for observations with the highest leverage. In turns this implies that these observations are most highly weighted in the WLS representation (9). If such prior properties seem reasonable to the Bayesian researcher, then HC2a, HC3a, and HC4a may be interesting prior specifications. 7. Summary The Bayesian bootstrap provides a Bayesian semiparametric analysis of the linear model not requiring a distributional assumption other than the multinomial sampling. Using the Bayesian bootstrap and a homogenous improper prior in the standard case, Lancaster (2003) showed the White/ Eicker/Huber robust standard errors are reasonable asymptotic approximations to the posterior standard deviations around OLS. Using a proper (possibly heterogeneous) prior in the general case, this paper has extended Lancaster s results and linked the White/Eicker/Huber robust standard errors to posterior Bayesian analysis, but with two important differences: the posterior location for = ( ) is WLS not OLS, and the posterior covariance matrix (14b), while of a similar form to (16), is evaluated at WLS residuals instead of OLS residuals. 7 8 Leamer (1994) calls the treatment of heteroskedasticity that alters the size but not the location of confidence sets White-washing. He argues an increase in the standard deviations after White-correction signals a potentially large change in the location of the confidence sets. On the

12 Choice of and is critical. Section 5 suggested choosing to locate the prior over zero slopes. Section 6 drew on various modifications of the White/Eicker/Huber estimator to suggest choices for. References Chamberlain, G. and G. W. Imbens, 2003, Nonparametric applications of Bayesian inference. Journal of Business & Economic Statistics 21, 12-18. Chesher, A. and I. Jewitt, 1987, The bias of a heteroskedasticity consistent covariance matrix estimator. Econometrica 55, 1217-1222. Cribari-Neto, F., 2004, Asymptotic inference under heteroskedasticity of unknown form. Computational Statistics & Data Analysis 45, 215-233. Cribari-Neto, F., S. L. P. Ferrari, and G. M. Cordeiro, 2000, Improved heteroscedasticity-consistent covariance matrix estimators. Biometrika 87, 907 918. Cribari-Neto, F., S. G. Zarkos, 1999, Bootstrap methods for heteroskedastic regression models: evidence on estimation and testing. Econometric Reviews 18, 211 228. other hand, if the White-correction leaves unchanged or reduces the standard errors, he argues the estimates are likely to be insensitive to reweighting.

13 Cribari-Neto, F., S. G. Zarkos, 2001, Heteroskedasticity-consistent covariance matrix estimation: White s estimator and the bootstrap, Journal of Statistical Computing and Simulation 68, 391-411. Efron, B., 1979, Bootstrap methods: another look at the ackknife. Annals of Statistics 7, 1-26. Eicker, F., 1963, Asymptotic normality and consistency of the least squares estimators for families of linear regressions. Annals of Mathematical Statistics 34, 447-456. Eicker, F., 1967, Limit theorems for regressions with unequal and dependent errors. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Vol. 1. University of California Press, Berkeley, 59-82. Godfrey, L. G., 2006, Tests for regression models with heteroskedasticity of unknown form. Computational Statistics & Data Analysis 50, 2715-2733, Hinkley, D. V., 1977, Jackknifing in unbalanced situations. Technometrics 19, 285-292. Horn, S. D., Horn, R. A., Duncan, D. B., 1975, Estimating heteroskedastic variances in linear models. Journal of the American Statistical Association 70, 380-385. Huber P. J., 1967, The behavior of maximum likelihood estimates under nonstandard conditions, Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Vol. I. University of California Press, Berkeley, 221 233.

14 Kim, E. H. A. Morse, and L. Zingales, 2006, What Has Mattered to Economics Since 1970, Journal of Economic Perspectives 20, 189 202. Lancaster, T., 2003, A note on bootstraps and robustness, unpublished manuscript, Brown University. Lancaster, T., 2004, An introduction to modern Bayesian econometrics. Blackwell Publishing, Oxford. Leamer, E. E., 1994, Heteroscedasticity sensitivity diagnostics. In Sturdy Econometrics: Selected Essays of Edward E. Leamer (Edward Elgar). MacKinnon, J. and H. White (1985), Some heteroskedasticity-consistent covariance matrix estimators with improved finite sample properties. Journal of Econometrics 29, 305-325. Ragusa, G., 2007, Bayesian likelihoods for moment condition models, unpublished manuscript, University of California, Irvine. Rubin, D., 1981, The Bayesian bootstrap. Annals of Statistics 9, 130-134. White, H., 1980, A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica 48, 817-838.

15 Table 1: Choice of Given n =1 Authors * E[ (g) z] White/Eicker/Huber 0 b HC1 Hinkley b HC2 Horn, et al. b HC2a HC3 MacKinnon/White b HC3a HC4 Cribari-Neto b HC4a Note: ( = 1, 2,..., m), ( = m+1, m+2,..., J), and