Hints and Tips for APGC Coupled with Xevo TQ-S for Food and Environmental Analysis

Similar documents
Sensitive and Repeatable Analysis of Pesticides in QuEChERS Extracts with APGC-MS/MS

A Rapid Approach to the Confirmation of Drug Metabolites in Preclinical and Clinical Bioanalysis Studies

Highly Sensitive and Rugged GC/MS/MS Tool

Identification and Characterization of an Isolated Impurity Fraction: Analysis of an Unknown Degradant Found in Quetiapine Fumarate

The Use of the ACQUITY QDa Detector for a Selective, Sensitive, and Robust Quantitative Method for a Potential Genotoxic Impurity

Investigating Source, Age, Maturity, and Alteration Characteristics of Oil Reservoirs Using APGC/MS/MS Analysis of Petroleum Biomarkers

Yun W. Alelyunas, Mark D. Wrona, Russell J. Mortishire-Smith, Nick Tomczyk, and Paul D. Rainville Waters Corporation, Milford, MA, USA INTRODUCTION

Improved Extraction of THC and its Metabolites from Oral Fluid Using Oasis PRiME HLB Solid Phase Extraction (SPE) and a UPLC CORTECS C 18

Determination of N-Nitrosamines by USEPA Method 521 using Triple Quadrupole Gas Chromatography Mass Spectrometry

Simplified Approaches to Impurity Identification using Accurate Mass UPLC/MS

A Workflow Approach for the Identification and Structural Elucidation of Impurities of Quetiapine Hemifumarate Drug Substance

Rapid, Reliable Metabolite Ratio Evaluation for MIST Assessments in Drug Discovery and Preclinical Studies

Agilent G3212 GC-APCI Source

UPLC Intact MASS Analysis Application Kit

SEAMLESS INTEGRATION OF MASS DETECTION INTO THE UV CHROMATOGRAPHIC WORKFLOW

Quantitation of High Resolution MS Data Using UNIFI: Acquiring and Processing Full Scan or Tof-MRM (Targeted HRMS) Datasets for Quantitative Assays

Metabolic Phenotyping Using Atmospheric Pressure Gas Chromatography-MS

[application note] ACQUITY UPLC/SQD ANALYSIS OF POLYMER ADDITIVES. Peter J. Lee, and Alice J. Di Gioia, Waters Corporation, Milford, MA, U.S.A.

Identification and Quantitation of PCB Aroclor Mixtures in a Single Run Using the Agilent 7000B Triple Quadrupole GC/MS

[application note] INTRODUCTION EXPERIMENTAL. Specimens. Extraction

Streamlining the Analysis of Oral Contraceptives Using the ACQUITY UPLC H-Class System

Determination of Organochlorine Pesticides and Polychlorinated Biphenyls Using GC/MS/MS Operated in the MRM Mode

The Use of Tandem Quadrupole GC/MS/MS for the Determination of Polycyclic Aromatics Hydrocarbons (PAHs) in Food Products

ENVIRONMENTAL analysis

Analysis of Opioids Using Isotope Dilution with GCMS-TQ8030 GC/MS/MS. No. GCMS No. SSI-GCMS-1401

Accelerated Solvent Extraction GC-MS Analysis and Detection of Polycyclic Aromatic Hydrocarbons in Soil

Performing Peptide Bioanalysis Using High Resolution Mass Spectrometry with Target Enhancement MRM Acquisition

UltiMetal Plus Advanced Chemistry for Stainless Steel Surface Deactivation

Routine MS Detection for USP Chromatographic Methods

Jonathan P. Danaceau, Erin E. Chambers, and Kenneth J. Fountain Waters Corporation, Milford, MA USA APPLICATION BENEFITS INTRODUCTION WATERS SOLUTIONS

OVERVIEW INTRODUCTION. Michael O Leary, Jennifer Gough, Tanya Tollifson Waters Corporation, Milford, MA USA

Understanding Gas Chromatography

Analysis of Serum 17-Hydroxyprogesterone, Androstenedione, and Cortisol by UPLC-MS/MS for Clinical Research

AB SCIEX SelexION Technology Used to Improve Mass Spectral Library Searching Scores by Removal of Isobaric Interferences

Analysis of Biomarkers in Crude Oil Using the Agilent 7200 GC/Q-TOF

Traditional Herbal Medicine Structural Elucidation using SYNAPT HDMS

Food analysis. Solutions for Your Analytical Business Markets and Applications Programs

Quantification of Pesticides in Food without Calibration using GC/FID with the Polyarc Reactor

FORENSIC TOXICOLOGY SCREENING APPLICATION SOLUTION

Determination of 198 pesticide residues in eggplant using Gas Chromatography tandem Mass Spectrometry/Mass Spectrometry

U.S. EPA Method 8270 for multicomponent analyte determination

PesticideScreener. Innovation with Integrity. Comprehensive Pesticide Screening and Quantitation UHR-TOF MS

APPLICATION BENEFITS INTRODUCTION WATERS SOLUTIONS KEY WORDS. Simultaneous high-throughput screening of melamine (MEL) and cyanuric acid (CYA).

ImprovIng ADmE ScrEEnIng productivity In Drug DIScovEry

Overview. Introduction. André Schreiber 1 and Yun Yun Zou 1 1 AB SCIEX, Concord, Ontario, Canada

Rapid, Robust, and Sensitive Detection of 11-nor-D 9 - Tetrahydrocannabinol-9-Carboxylic Acid in Hair

Analytical determination of testosterone in human serum using an Agilent Ultivo Triple Quadrupole LC/MS

A S ENSIT IV E M E T HO D FO R T H E D E T E RM INAT IO N O F ENDO C RIN E- D IS RU P T ING COM P OUNDS IN RIV E R WAT E R BY L C / MS/MS

Live Webinar : How to be more Successful with your ACQUITY QDa Detector?

Multi-residue analysis of pesticides by GC-HRMS

Analysis of Trace (mg/kg) Thiophene in Benzene Using Two-Dimensional Gas Chromatography and Flame Ionization Detection Application

Application of gas chromatography atmospheric pressure chemical ionization mass spectrometry for analysis of contaminants in environmental samples

Accurate Analysis of Fuel Ethers and Oxygenates in a Single Injection without Calibration Standards using GC- Polyarc/FID. Application Note.

Residual solvents analysis using an Agilent Intuvo 9000 GC system

Identifying Pesticides with Full Scan, SIM, µecd, and FPD from a Single Injection Application

T H E ANA LYSIS O F DIOX INS AND F U R A NS USING H RG C- H IG H R E SO LU T IO N MS W IT H T H E AU T OS P EC- ULTIMA NT

PAH Analyses with High Efficiency GC Columns: Column Selection and Best Practices

Rapid Screening and Confirmation of Melamine Residues in Milk and Its Products by Liquid Chromatography Tandem Mass Spectrometry

Extraction of Methylmalonic Acid from Serum Using ISOLUTE. SAX Prior to LC-MS/MS Analysis

Quadrupole Time-of-Flight Liquid Chromatograph Mass Spectrometer LCMS-9030 C146-E365

GAS CHROMATOGRAPHY (GC)

Determination of Hormones in Drinking Water by LC/MS/MS Using an Agilent InfinityLab Poroshell HPH Column (EPA 539)

Fast USEPA 8270 Semivolatiles Analysis Using the 6890/5973 inert GC/MSD with Performance Electronics Application

[ FOOD SAFETY SOLUTIONS ] FASTER, EASIER, AND MORE ACCURATE FOOD SAFETY ANALYSES

A Case of Pesticide Poisoning: The Use of a Broad-Scope Tof Screening Approach in Wildlife Protection

Selection of a Capillary GC Column

Proudly serving laboratories worldwide since 1979 CALL for Refurbished & Certified Lab Equipment

Supporting Information

Application Note. Abstract. Introduction. Experimental-Instrument Conditions. By: Anne Jurek

Analysis of USP Method <467> Residual Solvents on the Agilent 8890 GC System

Introduction to Capillary GC

GAS CHROMATOGRAPHY MASS SPECTROMETRY. Pre-Lab Questions

Quantitative Analysis of Opioids Using a Triple-Quadrupole GC/MS/MS

Maximizing Triple Quadrupole Mass Spectrometry Productivity with the Agilent StreamSelect LC/MS System

USP Method Transfer and Routine Use Analysis of Irbesartan Tablets from HPLC to UPLC

Electron Transfer Dissociation of N-linked Glycopeptides from a Recombinant mab Using SYNAPT G2-S HDMS

environmental Rtx -CLPesticides and Rtx -CLPesticides2 Columns: The Ideal Confirmational Pair for Analyzing Polychlorinated Biphenyls (PCBs)

Confirmation and Quantitation of THC in Oral Fluid Using an MRM Method on a GC-Triple Quadrupole MS

Food & Environmental. Overview. Introduction. Method Details. André Schreiber and Yun Yun Zou SCIEX, Concord, Ontario, Canada

Determination of Pharmaceuticals in Environmental Samples

Determination of 59 potential Allergens in Perfumes by twin-line fast GCMSMS

Applying MRM Spectrum Mode and Library Searching for Enhanced Reporting Confidence in Routine Pesticide Residue Analysis

UPC 2 Strategy for Scaling from Analytical to Preparative SFC Separations

Improved Screening for 250 Pesticides in Matrix using a LC-Triple Quadrupole Mass Spectrometer

Identification of Human Hemoglobin Protein Variants Using Electrospray Ionization-Electron Transfer Dissociation Mass Spectrometry

Analysis of Geosmin and 2-Methylisoborneol Utilizing the Stratum PTC and Aquatek 70

ApplicationNOTE A STUDY OF THE ANALYSIS OF POLYBROMINATED DIPHENYL ETHER FLAME RETARDANTS BY GC/MS/MS. Introduction. Materials and Methods

The Suite for Environmental GC Analysis

Methods of Analysis of Polychlorinated Biphenyl Congeners Using an Application-Specific Capillary GC Column

Pesticides Analysis Using the Agilent 5977A Series GC/MSD

Application Note LCMS-110 Development of a Targeted Quantitative LC-MS/MS Method for 431 Positive and Negative Ion Pesticides in a Single Analysis

This document is a preview generated by EVS

Application Note # Performance of Method 8270 Using Hydrogen Carrier Gas on SCION Bruker SCION GC-MS

Introducing the Agilent 7000A QQQ-MS for GC Sunil Kulkarni Product Specialist Agilent Technologies

Spectra Library Electron Capture Negative Ion (ECNI) Mass Spectra of Selected Polybrominated Diphenyl Ethers (PBDEs)

ApplicationNOTE THE ANALYSIS OF POLYCHLORINATED BIPHENYLS (PCBS) BY GC-HIGH RESOLUTION MASS SPECTROMETRY USING THE MICROMASS AUTOSPEC ULTIMA NT

The Importance of Area and Retention Time Precision in Gas Chromatography Technical Note

USP<467> residual solvents

DIQUAT DIBROMIDE. The Determination of Ethylene Dibromide in Diquat Dibromide and Diquat Dibromide / Paraquat Dichloride SL Formulations

Analysis of Pharmaceuticals and Personal Care Products in River Water Samples by UHPLC-TOF

Transcription:

Hints and Tips for APGC Coupled with Xevo TQ-S for Food and Environmental Analysis Adam Ladak, Lauren Mullin, and Rhys Jones Waters Corporation, Milford, MA, USA TECHNOLOGY BENEFITS The Xevo TQ-S APGC, equipped with the patented StepWave Technology enables detection limits at ultra-trace levels providing: Compliance with regulatory limits. Ability to inject less sample matrix, reducing effects of contamination on the GC system. High levels of matrix tolerance. Excellent injection to injection repeatability. INTRODUCTION Ever tightening regulatory demands lead to greater sensitivity requirements from commonly used analytical techniques such as GC-MS. In addition, there is a desire to reduce the injected volume of samples in order to minimize matrix effects and the contamination of instrumentation. The powerful combination of Waters Xevo TQ-S equipped with APGC ionization provides a robust and highly sensitive analytical solution for the analysis of compounds at ultra-trace levels. This document provides a guide for using APGC with Xevo TQ-S operating with MassLynx SCN 905 or later. Ability to switch between APGC and UPLC in under five minutes for expanded compound coverage. WATERS SOLUTIONS Xevo TQ-S Figure 1. APGC components. Atmospheric Pressure Gas Chromatography (APGC) StepWave Technology MassLynx MS Software KEY WORDS GC-MS, ionization, APGC, atmospheric pressure gas chromatography 1

SETUP First install a GC column and injection liner that is suitable for your analysis. A J and W DB5 30 m x 0.25 mm x 0.25 µm column is provided with the APGC. Ensure helium is flowing before increasing any temperatures on the GC. The nitrogen make up gas flows around column to sweep the ionization chamber and delivers heat to the tip of the column. This can be set using the GC keypad. First press Aux column and enter 3 when prompted to select a number. Next set the flow to 300 ml/min (Figure 2). The transfer line temperature can be heated by selecting Aux temperature on the GC keypad (Figure 3). Normally this is set to 10 C above the top oven temperature. If you do not have that information set it 10 C below the maximum operating temperature of the column to ensure the column is not damaged. The column should be set in the transfer line with 1 mm of the column protruding from the end (Figure 4). The column should be set when the GC transfer line is at temperature to ensure correct placement. Before installing the ionization chamber, set the corona pin between the exit of the ionization chamber and the cone orifice (Figure 5). This position has been found to give the best sensitivity for APGC in all ionization modes. The distance between the ionization chamber and the transfer line should be set to 1.2 mm (+/-0.2), as shown in Figure 6. This can be set by using an Allen key on the side of the GC which is hidden by a screw. This is normally set on installation and does not need adjusting once set. Figure 2. Set up of makeup gas. Figure 5. Correct positioning of corona pin in ionization chamber. Note the position between the ionization chamber and the transfer line is set during install. It is included here for reference only and normally does not need adjusting. APGC Set Up Work Flow Figure 3. Set up of transfer line temperature. Figure 4. GC column set in transfer line. Figure 6. Positioning between the ionization chamber and the transfer line. 1.20 (+/-0.2) mm 2

TUNE PAGE SETUP Corona current This is the current that is applied to the tip of the corona for ionization of the analytes, which is generally set between 1 and 5 µa in APGC. Sample cone When applying voltage to the sample cone, the voltage has a wide optimization range between 10 and 80 volts. This is due to the large cone orifice on the Xevo TQ-S, meaning ions readily enter the system. Exceeding 80 volts may cause in source fragmentation. Figure 7. Default tune settings for APGC. Source offset Ions flowing through the sample cone are pulled through the StepWave ion transfer device. The ions then enter into the analyzer region of the mass spectrometer. The source offset again has a large optimization range between 10 and 100 volts. Cone gas (L/hr) The nitrogen gas flow around the sample cone, which can be used to affect the flow of gases through the APGC ionization chamber. A typical value is between 150 and 250 L/hr. Auxiliary gas (L/hr) The nitrogen gas flow into the API source that sweeps around the source enclosure and has more of an effect when using a modifier in the source (typically 150 to 1000 L/h). 3

To minimize reduction in the injection solvent front reproducibility, extra functionality has been added to MassLynx Software (v.scn 905 and later). It is recommended to increase the corona voltage to 20 µa, and turn the cone gas to 0 at 0 minutes, and during the solvent front. This allows for the solvent to dissipate the solvent more readily. This is managed using Method Events in the MS method (Figure 8). After the solvent front has passed, the settings can be returned to the normal values. If the first eluting compound is 15 minutes after the solvent front, the ionization will have time to eliminate the solvent under normal conditions and it is not necessary to use the method events. Figure 8. Setting up method effects to reduce injection solvent front effects. There are a number of established optimized methods available from Waters using APGC and Xevo TQ-S. Table 1 lists the compound classes and the references for the optimized APGC methods available. These include the GC methods, MRM transitions, and source conditions. If it is necessary to perform APGC optimization, experiments should be completed using a standard of 100 ppb. APGC can be operated under charge transfer or protonation conditions. For charge transfer, the source is kept dry to allow the mechanism to occur. In protonation, the source is doped with water, methanol, or IPA using the vial holder in the bottom of the source (Figure 9). A controlled mixed mode operation where both charge transfer and protonation occur together can also be utilized. The mechanism with the largest area response should be selected for the compound of interest. Figure 9. Selection of ionization mechanism with fluoranthene as an example. 4

The type of ionization mechanism to use depends on the compounds being analyzed. Table 1 shows common classes of compounds that are analyzed in food and environmental applications for which the ionization mechanism is optimal for detection. Compound class Ionization mode Reference Dioxins Charge transfer 1 PCBs Charge transfer 1 Pyrethroids Protonation 2 Chlorinated pesticides Charge transfer 3 BDEs Charge transfer 1 Pesticides Controlled mixed mode 4 Table 1. Compound classes and preferred ionization mechanism with references. Once the ionization mechanism has been determined, optimization of key parameters can be performed. Table 2 shows each parameter and the range it should be optimized within. The typical values can be used from the setup section as a starting point. There are three key parameters that will govern sensitivity and ionization efficiency: corona current, cone gas, and auxiliary gas (Table 2). Cone gas is the parameter that has the largest effect on switching between protonation and charge transfer. The parameters will then be varied one by one to monitor the effect of each. This can be done in an overnight run, changing the parameter in the tune page and saving it in the project. The sample list can then be used to select each tune page in turn. A comparison between the starting conditions can be made using peak are, and the parameters that give the best response can be selected. Parameter Charge transfer Protonation Controlled mixed mode Corona current (µa) 1 to 5 2 to 10 2 to 8 Cone gas (L/h) 150 to 250 150 to 200 170 to 220 Auxiliary gas (L/h) 100 to 300 100 to 1000 100 to 500 Make up gas (ml/min) 350 350 350 Cone voltage (V) 30 30 30 Source offset (V) 50 50 50 Source temperature ( C) 150 150 150 Modifier None Water uncapped None Table 2. Tune values and operation range. 5

Multi-reaction-monitoring (MRMs) can be generated before or after the optimization. This involves using a standard in full scan and selecting an abundant precursor. Product ion scans can then be performed at varying collision energies to determine the MRM transition. This can be done in a single experiment or multiple injections. Multiple compounds can be optimized at the same time. This is advised to be performed in multiple injections to ensure a well-described chromatographic peak. An example of MRM set up for dichloran is shown in Figure 10. Dichloran Figure 10. MRM optimization of dichloran. MAINTENANCE AND TROUBLESHOOTING MS maintenance There is minimal MS maintenance to perform on the APGC. To clean the ionization chamber remove the ceramics and the spring. The ionization chamber should be sonicated for 5 minutes in water, followed by 5 minutes in methanol, and finally 5 minutes in dichloromethane. If there is visible ion burn, aluminum oxide can be used to clean the source followed by the solvent washes. Ensure that the corona pin is sharp by using lapping film. Ionization chamber Corona pin Corona connection cable Sample cone Figure 11. APGC ionization chamber parts. 6

GC maintenance When sensitivity is low, or peak shape is poor, GC maintenance should be performed first on the system. The same maintenance as for standard GC is required for APGC. Trimming of the front end of the column and changing of the liner must be performed when required. The inlet, oven, and transfer line should be cooled before turning off the helium gas flow. When installing a new column, or after a liner change or trim, helium should be set to flow for 5 minutes before increasing the temperature. This will prevent any damage to the column. Ensuring that the column is cut with a straight edge is important as this impacts transfer of the analytes to the head on the column and into the ionization chamber. A ceramic wafer should be used at 45 C to score the column, and the column should be broken away from the cut. The cut can be checked with a magnifying glass. Figure 12 shows a good and bad cut. Setting of the GC column in the injector varies for a split/splitless (SSL) and multimode injector (MMI). It is important to set this correctly, otherwise sensitivity will be detrimentally affected. Figure 13 shows the correct placement. Figure 12. Column cutting. SSL injector Figure 13. Setting of the column in the injector. MMI injector Compounds with high boiling points There are two ways to avoid peak tailing for high temperature boiling compounds. First, try increasing the transfer line temperature to aid the transit of high boiling compounds into the ionization chamber. If this is not permitted by the column s maximum operating temperature, deactivated fused silica could be fitted in the heated transfer line. By adding a retention gap the potential activity towards high boiling compounds is reduced. It is recommended to use the Siltek Guard column from RESTEK, (P/N 100026). The maximum temperature of this retention gap is 380 C which should be sufficient for most applications. The SilTite Union to make the connection can be purchased from SGE, (P/N 073560). Figure 14. Tailing reduction of PAHs benzo(g,h,i)perylene and indeno(1,2,3-c,d)pyrene by increasing the temperature of the transfer line and fitting a retention gap. Figure 15 SilTite µ-union connect column and retention gap. 7

References 1. Detection of Persistent Organic Pollutants Using Atmospheric Pressure Gas Chromatography and a Novel Acquisition Mode for Quadrupole Time-of-Flight MS. Waters poster no. PSTR134803162, June, 2014. 2. Portoles T, Mol J G J, Sancho J V, Hernandez F. Advantages of Atmospheric Pressure Chemical Ionization Gas Chromatography Tandem Mass Spectrometry: Pyrethroid Insecticides as a Case Study. Anal Chem. 84: 9802 9810, 2012. 3. Portolés T, Cherta L, Beltran J, Gledhill A, Hernández F. Enhancing MRM Experiments in GC/MS/MS Using APGC. Waters application note no. 720004772en, August, 2013. 4. Cherta L et al. Application Of Gas Chromatography-(Triple Quadrupole) Mass Spectrometry With Atmospheric Pressure Chemical Ionization for the Determination of Multiclass Pesticides in Fruits and Vegetables. J Chrom A. 1292: 132 14, 2013. 5. Young M, Van Tran K, Shia J. Multi-Residue Pesticide Analysis in Ginseng Powder: Optimized Cleanup After QuEChERS Extraction for UPLC-MS/MS and GC-MS/MS. Waters application note no. 720005006EN. April, 2014. 6. Ladak A, Organtini K L, Dorman F L. Minimizing Carryover During Dioxin Analysis Using the Xevo TQ-S with APGC. Waters technology brief no. 720004964EN. March 2014. Waters, Xevo, MassLynx, and The Science of What s Possible are registered trademarks of Waters Corporation. StepWave is a trademark of Waters Corporation. All other trademarks are the property of their respective owners. 2015 Waters Corporation. Produced in the U.S.A. August 2015 720005468EN AG-PDF Waters Corporation 34 Maple Street Milford, MA 01757 U.S.A. T: 1 508 478 2000 F: 1 508 872 1990 www.waters.com