Peracetic Acid Bleaching CH CO H

Similar documents
Basics of Bleaching Chemical Pulps Art J. Ragauskas Institute of Paper Science and Technology Georgia Institute of Technology

*Now with Weyerhaeuser Company, USA.

ELEMENTAL CHLORINE-FREE BLEACHING OF SODA RAPESEED PULP. Potůček F., Říhová M.

CHEMICAL OXIDATION. The use of oxidizing agents without the need of microorganisms for the reactions to proceed

MASTER'S THESIS. Soft ECF-bleaching of Softwood Pulps. Maria Demchishina. Master of Science Chemical Engineering

EFFICIENCY AND EFFLUENT CHARACTERISTICS FROM Mg(OH) 2 -BASED PEROXIDE BLEACHING OF HIGH-YIELD PULPS AND DEINKED PULP

IPC TECHNICAL PAPER SERIES NUMBER 227 THE EFFECT OF NITROGEN DIOXIDE PRETREATMENTS ON SOME PROPERTIES OF OXYGEN-BLEACHED KRAFT PULPS

TAPPI proceedings of the 1988 pulping conference; 1988 October 30-November2; New Orleans, LA. Atlanta, GA: TAPPI Press; 1988: Book 3.

Optimization of ECF bleaching of kraft pulp: II. Effects of acid prehydrolysis on hardwood pulp bleachability

Chapter 9 Aldehydes and Ketones Excluded Sections:

Techniques for effluent treatment. Lecture 5

Chapter 23 Phenols CH. 23. Nomenclature. The OH group takes precedence as the parent phenol.

How can oxidation be done

T 282. WORKING GROUP CHAIRMAN Junyong Zhu SUBJECT

Chemical Oxidation Oxidizing agents

Nuggets of Knowledge for Chapter 12 Alkenes (II) Chem reaction what is added to the C=C what kind of molecule results addition of HX HX only

CALCIUM HYDROXIDE AS AN ALTERNATIVE ALKALI FOR THE OXYGEN BLEACHING STAGE OF KRAFT PULP

POM-ASSISTED ELECTROCHEMICAL DELIGNIFICATION AND BLEACHING OF CHEMICAL PULP

Carboxylic Acids and Nitriles

The Effect of D 0 -Stage Temperature, ph and Kappa Factor on Chlorine Dioxide Decompositon and D-(Ep)-D Bleaching Performance for Eucalypt pulp

SUBSTITUTION OF SODIUM HYDROXIDE WITH MAGNESIUM HYDROXIDE AS AN ALKALI SOURCE IN THE PEROXIDE BLEACHING OF SOFTWOOD TMP

Ozonation of conventional kraft and SuperBatch residual lignins in methanol/water and water

Lignin. delignification. Outline. kraft pulping. Reaction of non-phenolic structures

The Effects of H 2 O 2 Bleaching and DTPA Spraying on the Brightness Stability of Hornbeam CMP Pulp following Accelerated Irradiation Aging

Pulp and Paper Applications

CHEMISTRY HIGHER LEVEL

Aldehydes and Ketones : Aldol Reactions

Introduction into Biochemistry. Dr. Mamoun Ahram Lecture 1

Chapter 20: Carboxylic Acids and Nitriles شیمی آلی 2

Ch 20 Carboxylic Acids and Nitriles

ABSTRACT. CUI, Yu. Delignification of Kraft-AQ Southern Pine Pulp with Hydrogen Peroxide

1.10 Structural formulas

2nd Semester Exam Review. C. K eq = [N 2][H 2 ]

I Write the reference number of the correct answer in the Answer Sheet below.

Introduction to Chemical Reactions. Chapter 6

MARK SCHEME for the May/June 2012 question paper for the guidance of teachers 0620 CHEMISTRY

Essential Knowledge. 2.A.3 Organisms must exchange matter with the environment to grow, reproduce and maintain organization

Chem 263 March 28, 2006

NORTH CENTRAL HIGH SCHOOL NOTE & STUDY GUIDE. Honors Biology I

DEGRADATION OF REACTIVE RED 2 BY FENTON AND PHOTO-FENTON OXIDATION PROCESSES

Topic 1: Quantitative chemistry

Ethers can be symmetrical or not:

NEAR-NEUTRAL FINAL CHLORINE DIOXIDE BRIGHTENING: THEORY AND PRACTICE

EXPERIMENT 8 Reactions of Hydrocarbons

Chapter 10: Carboxylic Acids and Their Derivatives

1. Entropy questions: PICK TWO (6 each)

Chp 13, 14, 15 SHOW ALL WORK AND CIRCLE FINAL ANSWERS. a) 1 only b) 2 only c) 3 only d) 1 and 2 only e) 1, 2, and H 2

Lecture 2. The framework to build materials and understand properties

CHEMICAL KINETICS C.H. BAMFORD C.F.H. TIPPER WSSSKUH EDITED BY

Chapter 14. Objectives

2 Answer all the questions. 1 Nitrogen monoxide is formed when nitrogen and oxygen from the air combine. (g) + O 2

Chapter 8 Alkenes and Alkynes II: Addition Reactions. Alkenes are electron rich. Additions to Alkenes

Lecture 11 Notes: Abiotic Chemical Transformations (Chapter 2)

Alcohols, Phenols and Ethers

Experiment 1: Preparation of Vanillyl Alcohol

Dr. Mohamed El-Newehy

Sample Questions Chem 22 Student Chapters Page 1 of 5 Spring 2016

Unit-8 Equilibrium. Rate of reaction: Consider the following chemical reactions:

Please bubble in your name (LAST NAME first) and student number on the scantron

CH 221 Chapter Four Part II Concept Guide

Chapter 8: Ethers and Epoxides. Diethyl ether in starting fluid

Chapter 1 Reactions of Organic Compounds. Reactions Involving Hydrocarbons

Biobleaching of Wheat Straw Pulp using Laccase and Xylanase

ACIDS AND BASES. Note: For most of the acid-base reactions, we will be using the Bronsted-Lowry definitions.

Understanding Equations

Chemical Oxidation Overview. Jim Jacobs Tel:

Preparation of alkenes

PERFORMANCE OF A FINAL HYDROGEN PEROXIDE STAGE IN DIFFERENT ECF BLEACHING SEQUENCES

4. Carbon and Its Compounds

Shandong Polytechnic University, Ji nan, Shandong, , P. R. China.

A. Reaction Mechanisms and Catalysis (1) proximity effect (2) acid-base catalysts (3) electrostatic (4) functional groups (5) structural flexibility

2017 Enrolment The 3rd. Japan University Examination. Chemistry. Do not open the examination booklet until the starting signal for the exam is given.

TYPES OF CHEMICAL REACTIONS

Atoms, Elements, Atoms, Elements, Compounds and Mixtures. Compounds and Mixtures. Atoms and the Periodic Table. Atoms and the.

Unit 4: Reactions and Stoichiometry

Solubility Rules See also Table 4.1 in text and Appendix G in Lab Manual

PHYSICAL SCIENCES/ P2 1 SEPTEMBER 2015 CAPS CAPE WINELANDS EDUCATION DISTRICT

MCAT Organic Chemistry Problem Drill 10: Aldehydes and Ketones

Chapter 2: Chemical Basis of Life I. Introduction A. The study of chemistry is essential for the study of physiology because

Question Bank Organic Chemistry II

Background Information

Aldol Reactions pka of a-h ~ 20

Carbonyl groups react via nucleophilic addition, with the mechanism being represented as follows:

Chapter 14 Organic Compounds That Contain Oxygen, Halogen, or Sulfur

Name/CG: 2012 Term 2 Organic Chemistry Revision (Session II) Deductive Question

Ch 9 Stoichiometry Practice Test

ABSTRACT. USDA FS Forest Products Laboratory, Madison WI ADVANCING RAMAN SPECTROSCOPY FOR LlGNlN APPLICATIONS

OCR (A) Chemistry A-level. Module 6: Organic Chemistry and Analysis

Balancing Equations. Chemical reactions occur when bonds (between the electrons of atoms) are formed or broken Chemical reactions involve

CHEMISTRY HIGHER LEVEL

ELEMENTAL CHLORINE-FREE BLEACHING OF SODA RAPESEED PULP

THE PEROXYMONOCARBONATE ANIONS AS PULP BLEACHING AGENTS. PART 1. RESULTS WITH LIGNIN MODEL COMPOUNDS AND CHEMICAL PULPS

Wednesday 16 January 2013 Morning

Proven Solutions to Minimize Inorganic Process Scaling in Pulp and Recovery

METHODS OF MODIFICATION OF HYDROCARBONS LIQUID PHASE OXIDATION. S.P.Prokopchuk. (S.P.Prokopchuk, 12, Kosmonavtov avenue, flat 30, Vinnytsa-21,

Page 1 of 6. (2/1/16) Lesson 1 on pg. 351 (#4 and 5)

FIVE MEMBERED AROMATIC HETEROCYCLES

CE 370. Disinfection. Location in the Treatment Plant. After the water has been filtered, it is disinfected. Disinfection follows filtration.

Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

AP Chapter 15 & 16: Acid-Base Equilibria Name

Transcription:

Peracetic Acid Bleaching CH 3 CO 3 H

Introduction of Bleaching Bleaching is a chemical decoloration and delignification process carried out on various types of pulp. Dli Delignification ifi i Removal of the chromophores At industrial i scale, bleaching is performed by chlorine, chlorine dioxide, oxygen, hydrogen peroxide, ozone and peracetic acid. Efficiency: i ClO 2 = Cl 2 = O 3 >CH 3 COOOH > H 2 O 2 > O 2 Often bleaching chemicals are wasted in secondary reactions. D. Lachenal and C. Chirat, Cellulose Chem. Technol., 39, 5-6, 511-156 (2005) 2

Electron Exchange Theory Ring opening of the aromatic units necessitates the exchange of 4 e - # of e - can be exchanged per bleaching molecule O 3 + 6 e - + 6 H + 3 H 2 O ClO CO + - + 4 H + Cl - 2 5e + 2 H 2 2O 2 O 2 + 4 e - + 4 H + 2 H 2 O H 2O 2 + 2 e - + 2 H + 2 H 2O CH 3 COOOH + 2 e - + 2 H + CH 3 COOH + H 2 O # of e - exchanged per molecule decreases in the following order: O 3 > ClO 2 > O 2 > H 2 O 2 = CH 3 COOOH D. Lachenal and C. Chirat, Cellulose Chem. Technol., 39, 5-6, 511-156 (2005) 3

Actual Electron Exchange - ClO 2 and O 3 100 g unbleached SW kraft pulp, kappa # from 30 to ~ 4-5 2.3% ClO 2 (0.034 mole) on pulp: 0.034 x 5 = 0.17 e - is exchanged 14%O 1.4% 03 03 018e 3 (0.03 mole)on pulp: 0.03 x 6 = 0.18 - is exchanged Chemicals % consumed 1 Kappa number * ClO 2 2.3 4.5 O 3 1.5 3.5 O 3 1.4 5.0 O 3 1.3 6.5 1 Chemicals consumed are shown as % on pulp. For example, For 2.3% ClO 2 consumed: 2.3 g ClO 2 was used to bleach 100g pulp. * After alkaline extraction: 3% NaOH, 10% consistency, 60 min, 70 ºC 4

Theoretical Electron Exchange - ClO 2 and O 3 Assume complete aromatic ring rupture should occur for a full delignification. Assume 200 g/mol of aromatic unit, so 3.75 g lignin in100 g pulp has 1.87 x 10-2 mole of aromatic unit. Theoretical # of e - exchanged is 1.87 x 10-2 x 4 = 0.075, which is less than half of the actual # of e - exchanged, 1.7 mole. At least half of the chemicals (ClO 2, O 3 ) are used in other reactions, and there is a considerable potential for chemical saving in the bleaching process. 5

Actual Electron Exchange -CH 3 COOOH, H 2 O 2 and O 2 They are not possible to perform the same degree of delignification as with ClO 2 or O 3, so comparison should be made for a lower total kappa drop. Initial Chemicals T (ºC) Time (h) Kappa # charge (%) consumed 1 (%) Pa 3.00 3.00 90 3 13.5 P 1.36 1.30 60 3 17.8 O Excess 1.50* 110 1 13.5 D 1.07 1.05 70 1 10.2 Z 0.60 0.60 50-10.6 Initial lk kappa #: 24.8; Kappa # measured after alkaline extraction in the case of Pa, D and Z; 1 Chemicals consumed are shown as % on pulp; * estimation. 6

Actual Electron Exchange -CH 3 COOOH, H 2 O 2 and O 2 # of e - exchanged to obtain an one unit kappa Initial Chemical Total kappa #ofe- exchanged Efficiency kappa # drop /kappa unit %* 24.8 ClO 2 14.6 0.005 100 24.8 O 3 14.2 0.005 100 24.8 O 2 11.3 0.016 30 24.8 H 2 O 2 7.0 0.010 50 24.8 CH 3COOOH 11.3 0.007 70 * Efficiency of the electron exchange (supposed to be 100% for D). Efficiency: ClO 2 (=Cl 2 ) = O 3 > CH 3 COOOH > H 2 O 2 > O 2 D. Lachenal and C. Chirat, Cellulose Chem. Technol., 39, 5-6, 511-156 (2005) 7

Conclusion of the Efficiency Calculation Efficiency of the O, P, PAA stages is lower than that was observed with the D and Z stages Lower efficiency means that, for the same number of e - exchanged, delignification is lower. One reason in the case of P and PAA, could be their decomposition into inactive oxygen. 8

Bleaching History From chlorine to chlorine dioxide Generation of organochlorine compounds, including dioxins ClO 2 was used to bleach ~20% of all kraft pulp (2005). ECF bleaching is now the dominant technology worldwide, accounting for + 75% of bleached kraft pulp globally. TCF process peaked in the mid-1990s Economic disadvantages Lack of stricter government regulation and consumer demand 5-6% of bleached kraft pulp is made using TCF sequences (2005), mainly in Finland and Sweden. Regulations and consumer demand for TCF pulp and paper are decreasing. 9

Mechanical vs. Chemical Pulp Bleaching Mechanical pulp: remove the chromophores Alkaline H 2 O 2 and sodium dithionite (Na 2 S 2 O 4 )arethemost commonly used The brightness gains are ~temporary Chemical pulp: remove essentially all of the residual lignin Contain much less lignin i than mechanical pulps (<5%) Sodium hypochlorite chlorine (1930s) ECF TCF (?) 10

Bleaching Stages for Chemical Pulps A sequence from the 1950s could look like: CEHEH Chemical or process used Chlorine Sodium hypochlorite Chlorine dioxide Extraction with sodium hydroxide Letter designation C H D E An example of a modern TCF sequence: OZEPY OD(E+O+P)D D(E+O+P)D N D Oxygen Alkaline hydrogen peroxide Ozone Chelation to remove metals Enzymes (especially xylanase) Peracids (peroxy acids) Sodium dithionite (sodium hydrosulfite) O P Z Q X Paa Y 11

Purpose of Alkaline Extraction After bleaching, lignin is degraded into smaller, oxygen- containing molecules which are generally soluble in water, especially if the ph is greater than 7. These molecules must be removed between bleaching stages to avoid excessive use of bleaching chemicals since they are still susceptible to oxidation. 12

Purpose of Chelant Wash Chelating agents (EDTA or DTPA), ph at or near 7 Remove transition metal ions on bleaching In TCF bleaching sequences: Acidic ClO 2 stages tend to remove metal ions TCF stages rely more heavily on oxygen-based bleaching agents which are more susceptible to the detrimental effects of the metal ions. Ethylenediaminetetraacetic acid Diethylenetriaminepentaacetic acid 13

Whiteness and Brightness Whiteness a measurement of light reflectance across all wavelengths of visible light. More common in Europe. Brightness a measurement of light reflectance of a specific wavelength of blue light. More common in North America Brightness represents a more narrow measurement of light reflectance than whiteness. 2005 Xerox Corporation 14

Whiteness Index - CIE Whiteness CIE Whiteness, developed by the France-based International Commission on Illumination, is commonly used. Better correlates the visual ratings of whiteness for white and near-white surfaces (paper, paint, textile, plastic, etc.). Measurements made under D65 illumination, i which h is a standard representation of outdoor daylight. For a perfect reflecting, nonfluorescent white material, the CIE Whiteness would be 100. Papers containing fluorescent additives such as Optical Brightening Agents (OBA) will measure above 100. 2005 Xerox Corporation 15

How Chemical Bleaches Work An oxidizing bleach Works by breaking the chemical bonds that make up the chromophore. This changes the molecule into a different substance that either does not contain a chromophore, or contains a chromophore that does not absorb visible light. A reducing bleach Works by converting sites of unsaturation in the chromophore into single bonds with a reducing agent. This eliminates the ability of the chromophore to absorb visible light. 16

Oxidative Bleaching For most bleaching chemicals, oxidative delignification can be described primarily by ring opening of the aromatic units 17

Properties of Peracetic Acid PAA is a organic compound with the formula of CH 3 CO 3 H. It is a colorless liquid with a characteristic acrid odor reminiscent of acetic acid and can be highly corrosive. When ph of water solution = 8.2 (pka of PAA, weak acid): Equal amount of ionized PAA and PAA in acid form H 3 C C O O O H H 3 C C O O O - 18

Preparation of Peracetic Acid Continuously feeding CH 3 COOH and H 2 O 2 into an aqueous reaction medium containing a H 2 SO 4 catalyst. The equilibrium constant is 0.37 at room T High yields can be achieved with up to 10 days 19

Other Preparation Methods Oxidation of acetaldehyde Reaction of acetic anhydride, hydrogen peroxide and sulfuric acid. Reaction of TAED in the presence of an alkaline hydrogen peroxide solution. O N O 2 2 O N O 2HOO 2CH 3 COOO O N H A series of photochemical reactions involving formaldehyde and photo-oxidantoxidant radicals. H N O 20

PAA Bleaching Condition Used especially for Kraft pulp Usually carried out at relatively low ph ~4,5 PAA is in acid form and acts mainly as an electrophile Usually carried out at relatively low temperature Transition metal content of pulp should be low in order to avoid catalytic decomposition of PAA Sequences: O-Q-Eop-PaaQ-PO O-Q-Paa-P O-Q-P-Paa-P 21

Evaluation of PAA Bleaching Relatively efficient and selective Industrial plants for PAA production have been constructed and PAA bleaching is currently in use, either permanently or occasionally, at several mills. 22

Reason for the High Selectivity of PAA As an electrophile, PAA does not react with aliphatic hydroxyl y groups and therefore does not react with most carbohydrates. However, hexenuronic acid groups in kraft pulp xylan have a double bond and thus provide a reactive site for electrophilic attack. Furthermore, the reducing end groups of carbohydrate polymers may be oxidized dby PAA. 23

Reactions Involved in PAA Bleaching At least 6 different types Hydroxylation, demethylation, aromatic ring opening, sidechain cleavage, β-ether bond cleavage and epoxidation. Main reactions between pulp components and PAA Delignification (1) Hexenuronic acid decomposition (2) The rate of (2) is much faster than that of (1), but areboth equally T sensitive. 24

Reactions of PAA with Lignin 25

Effect of ph on the Whiteness Index Oxidative ring cleavage (initiated by nucleophilic attack of peracetate ion) is the major reaction under alkaline condition since PAA is more nucleophilic. ph<6.0, peracetate ion concentration is very low but sufficient for a small increase in WI. 6.0<pH<7.0, peracetate anion concentration increases and so does the WI. ph>7.0, PAA decomposition rate is so high that WI begins to decrease. An initial iti ph between 7.0 and 7.2 is optimum. 26

An Improved PAA Stage The optimum ph profile for a conventional PAA stage is an initial ph in the neutral range and a final ph of 4-5. The new stage has an initial ph of 7, after 20 minutes increasing to ph 9.5, and a final ph in a neutral range. The new stage leads to a higher brightness while the carbohydrate degradation is not affected. Better bleaching effect is obtained at the expense of higher PAA consumption More consumed in the bleaching reactions Enhanced decomposition A.V. Heiningen et al. Appita Journal, 51, 5 (1998) 27

Comparison of the Two Different Processes Comparison of conventional (PAA) and improved (PAA (PH) ) processes (Chelated oxygen delignified pulp, 3% PAA, 20% pulp, 60 min) Temperature ºC Brightness % ISO Viscosity mpa.s Residual PAA % on pulp Untreated - 37.7 23.4 - PAA 60 64.9 22.3 0.65 PA A (PH) 60 68.9 21.7 0.03 PAA 80 67.0 22.0 029 0.29 PAA (PH) 80 70.8 21.6 0.04 A.V. Heiningen et al. Appita Journal, 51, 5 (1998) 28

PAA Decomposition ph < 6.0, PAA is very stable (~5.5% decomposition) 6.0 < ph < 8.1, decomposition increases 8.1 < ph < 10.0, decomposition decreases slightly Koubek classified the mechanisms of PAA decomposition in aqueous solution as follows: Hydrolysis Base-catalyzed spontaneous decomposition Trace metal ion catalyzed decomposition Thermal decomposition 29

Hydrolysis of PAA No loss of active oxygen content A loss of active bleaching agent, since H 2 O 2 is not an effective bleaching agent at low T. Koubek reported that hydrolysis can occur under acidic, neutral, or alkaline li conditions, but the mechanisms and kinetics differ. In all cases, however, the rate is 1 st order in PAA concentration. 30

Transition Metal Catalyzed Decomposition Free radicals are likely to be generated by metal catalyzed decomposition of peroxide. Gaseous products are generated through a radical chain mechanism. Decomposition of H 2 O 2 could produce hydrolytic decomposition of PAA. 31

Reaction with Carbohydrates - Hexenuronic Acid Groups It is another main reaction besides delignification and consumes considerable amounts of PAA and therefore it is advisable to remove HexA prior to the PAA stage. At neutral ph: hexenuronate anion and PAA (much faster) At low ph: undissociated hexenuronic acid and PAA 5-oxohexuronic acid Formic acid The electron density of the conjugated double bond in the carboxylate ion is higher than in the undissociated carboxylic acid group, which implies higher reactivity in electrophilic addition. A.S. Jaaskelainen and K. Poppius-Levlin, Nordic pulp and paper research journal, 15, 2 (2000) 32

Reaction with Carbohydrates - Reducing End Groups PAA react easily with reducing ends of carbohydrates, however, the amount of that in pulp is relatively low. K. Poppius-Levlin, Journal of wood chemistry and technology, 20(1), 43-59 (2000) 33

How to Improve PAA Selectivity At low ph Increasing the PAA charge: Hydrolysis of carbohydrates is not dependent d on the PAA charge, so the selectivity i of delignification ifi i can be increased. Not increasing temperature: Increases both the rate of delignification and the rate of cellulose depolymerization. At neutral ph Increasing PAA charge: Increase the rate of delignification. Increasing the temperature: Increased the rate of delignification but had no significant ifi effect on cellulose l depolymerization 34

Comparison of Various Peracids Properties of the leaving group affect the electrophilicity and reactivitity of peracids with H 2 SO 5 > HC(O)OOH > CH 3 C(O)OOH H 2 SO 5 is more electrophilic and it favors aromatic ring hydroxylation CH 3 C(O)OOH is more nucleophilic and it favors oxidative ring cleavage After Paa Pulp Bleaching: Residual lignin has a higher amount of PhOH The amount of acid groups is increased thereby improving the hydrophilicity of lignin. Due to the cleavage of lignin side chains the MW of residual lignin is decreased improving the hydrophilicity. Pulp is more bleachable 35