General Certificate of Education Advanced Level Examination January 2010

Similar documents
MATHEMATICS Unit Mechanics 2B

Mathematics (JAN11MM2B01) General Certificate of Education Advanced Level Examination January Unit Mechanics 2B TOTAL

Mathematics (JUN12MM2B01) General Certificate of Education Advanced Level Examination June Unit Mechanics 2B TOTAL

Mathematics (JUN13MM2B01) General Certificate of Education Advanced Level Examination June Unit Mechanics 2B TOTAL

Mathematics (JAN11MM1B01) General Certificate of Education Advanced Subsidiary Examination January Unit Mechanics 1B TOTAL

MATHEMATICS Unit Mechanics 3

MATHEMATICS Unit Mechanics 1B

Mathematics (JUN14MM0501) General Certificate of Education Advanced Level Examination June Unit Mechanics TOTAL.

Mathematics MM1B (JUN15MM1B01) General Certificate of Education Advanced Subsidiary Examination June Unit Mechanics 1B TOTAL

Mathematics (JUN13MM0401) General Certificate of Education Advanced Level Examination June Unit Mechanics TOTAL.

Mathematics MM04 (JUN15MM0401) General Certificate of Education Advanced Level Examination June Unit Mechanics TOTAL

Mathematics (JUN10MM0401) General Certificate of Education Advanced Level Examination June Unit Mechanics TOTAL.

A-level FURTHER MATHEMATICS Paper 3 - Mechanics

Mathematics (JUN12MM0301) General Certificate of Education Advanced Level Examination June Unit Mechanics TOTAL.

MATHEMATICS Unit Pure Core 2

AS MATHEMATICS. Paper 1 PRACTICE PAPER SET 1

Morning Time allowed: 1 hour 30 minutes

Mathematics (JAN12MPC201) General Certificate of Education Advanced Subsidiary Examination January Unit Pure Core TOTAL

Mathematics (JUN10MFP301) General Certificate of Education Advanced Level Examination June Unit Further Pure TOTAL

A-level MATHEMATICS. Paper 2. Exam Date Morning Time allowed: 2 hours SPECIMEN MATERIAL

Mathematics (JUN11MFP101) General Certificate of Education Advanced Subsidiary Examination June Unit Further Pure TOTAL

Wednesday 25 May 2016 Morning

Mathematics Assessment Unit M1

AS MATHEMATICS MM1B. Unit Mechanics 1B. Tuesday 20 June 2017 Afternoon Time allowed: 1 hour 30 minutes. *jun17mm1b01*

Mathematics (JAN13MFP101) General Certificate of Education Advanced Subsidiary Examination January Unit Further Pure TOTAL

Condensed. Mathematics. General Certificate of Education Advanced Subsidiary Examination January Unit Mechanics 1B.

Mathematics (JUN13MFP401) General Certificate of Education Advanced Level Examination June Unit Further Pure TOTAL

(ii) Given that gðxþ ¼ð4x 1Þðax 2 þ bx þ cþ, find the values of the integers a, b and c. (3 marks)

PhysicsAndMathsTutor.com. Advanced/Advanced Subsidiary. You must have: Mathematical Formulae and Statistical Tables (Blue)

Advanced/Advanced Subsidiary. You must have: Mathematical Formulae and Statistical Tables (Pink)

* * MATHEMATICS (MEI) 4763 Mechanics 3 ADVANCED GCE. Wednesday 26 January 2011 Afternoon PMT

Answer all questions. Answer each question in the space provided for that question. x 3. find the values of the constants p, q and r

PhysicsAndMathsTutor.com. Advanced/Advanced Subsidiary. You must have: Mathematical Formulae and Statistical Tables (Blue)

Paper Reference. Mechanics M3 Advanced/Advanced Subsidiary. Monday 10 June 2013 Morning Time: 1 hour 30 minutes

Mathematics (JUN12MPC101) General Certificate of Education Advanced Subsidiary Examination June Unit Pure Core TOTAL

Mechanics M3 Advanced/Advanced Subsidiary

Advanced/Advanced Subsidiary. You must have: Mathematical Formulae and Statistical Tables (Blue)

Advanced/Advanced Subsidiary. You must have: Mathematical Formulae and Statistical Tables (Blue)

Mathematics MPC1 (JUN15MPC101) General Certificate of Education Advanced Subsidiary Examination June Unit Pure Core TOTAL

Use black ink or black ball-point pen. Pencil should only be used for drawing. *

Mathematics (JAN12MPC401) General Certificate of Education Advanced Level Examination January Unit Pure Core TOTAL

PHYA4/2. (JUN14PHYA4201) WMP/Jun14/PHYA4/2/E4. General Certificate of Education Advanced Level Examination June 2014

MATHEMATICS 4729 Mechanics 2

Mathematics MFP1. General Certificate of Education Advanced Subsidiary Examination. Unit Further Pure 1

Advanced/Advanced Subsidiary. You must have: Mathematical Formulae and Statistical Tables (Pink)

Mathematics MFP2 (JUN15MFP201) General Certificate of Education Advanced Level Examination June Unit Further Pure TOTAL

Edexcel GCE Mechanics M3 Advanced/Advanced Subsidiary

Mathematics (JUN11MPC301) General Certificate of Education Advanced Level Examination June Unit Pure Core TOTAL

Mathematics AS/P2/M18 AS PAPER 2

PHYA4/2. (JAN12PHYA4201) WMP/Jan12/PHYA4/2. General Certificate of Education Advanced Level Examination January 2012

PHYA2 (JAN09PHYA201) General Certificate of Education Advanced Subsidiary Examination January Unit 2 Mechanics, Materials and Waves

Edexcel GCE Mechanics M3 Advanced/Advanced Subsidiary

Find the magnitude of F when t = 2. (9 marks)

Mechanics M1 Advanced Subsidiary

Advanced/Advanced Subsidiary. You must have: Mathematical Formulae and Statistical Tables (Blue)

Teaching guidance AS and A-level Further Maths

Mathematics (JAN13MFP401) General Certificate of Education Advanced Level Examination January Unit Further Pure TOTAL

Mathematics (JAN12MD0201) General Certificate of Education Advanced Level Examination January Unit Decision TOTAL.

Paper Reference. Paper Reference(s) 6677/01 Edexcel GCE Mechanics M1 Advanced/Advanced Subsidiary

Paper Reference. Mechanics M3 Advanced/Advanced Subsidiary. Friday 29 January 2010 Morning Time: 1 hour 30 minutes

Use blue or black ink or ball-point pen. Pencil should only be used for drawing. *

PA02. General Certificate of Education June 2006 Advanced Subsidiary Examination

Paper Reference. Paper Reference(s) 6678/01 Edexcel GCE Mechanics M2 Advanced/Advanced Subsidiary

You must show sufficient working to make your methods clear to the Examiner. Answers without working may gain no credit.

MEI STRUCTURED MATHEMATICS 4763

PA02. PHYSICS (SPECIFICATION A) Unit 2 Mechanics and Molecular Kinetic Theory

Mechanics M3 Advanced/Advanced Subsidiary

Wednesday 18 May 2016 Morning

PHYA2. (JUN15PHYA201) WMP/Jun15/PHYA2/E4. General Certificate of Education Advanced Subsidiary Examination June Mechanics, Materials and Waves

MEI STRUCTURED MATHEMATICS 4764

PHYA2. (JUN13PHYA201) WMP/Jun13/PHYA2. General Certificate of Education Advanced Subsidiary Examination June Mechanics, Materials and Waves

National Quali cations

Advanced/Advanced Subsidiary. You must have: Mathematical Formulae and Statistical Tables (Pink)

Advanced/Advanced Subsidiary. You must have: Mathematical Formulae and Statistical Tables (Blue)

PHYA2. General Certificate of Education Advanced Subsidiary Examination January Mechanics, Materials and Waves

M1 January Immediately after the collision Q moves with speed 5 m s 1. Calculate. the speed of P immediately after the collision,

PHYSICS (SPECIFICATION A) Unit 2 Mechanics and Molecular Kinetic Theory

Paper Reference. Mechanics M1 Advanced/Advanced Subsidiary. Wednesday 3 June 2015 Morning Time: 1 hour 30 minutes

PHYA2. General Certificate of Education Advanced Subsidiary Examination June Mechanics, Materials and Waves

PHYA4/2. (JUN15PHYA4201) WMP/Jun15/PHYA4/2/E3 PMT. General Certificate of Education Advanced Level Examination June 2015

Mechanics M1 Advanced/Advanced Subsidiary

PHYA2. General Certificate of Education Advanced Subsidiary Examination January Mechanics, Materials and Waves. (JAN13PHYA201) WMP/Jan13/PHYA2

* * MATHEMATICS (MEI) 4761 Mechanics 1 ADVANCED SUBSIDIARY GCE. Wednesday 21 January 2009 Afternoon. Duration: 1 hour 30 minutes.

Wednesday 14 June 2017 Morning Time allowed: 1 hour 30 minutes

Paper Reference. Mechanics M1 Advanced/Advanced Subsidiary. Friday 6 June 2014 Afternoon Time: 1 hour 30 minutes

General Certificate of Secondary Education Higher Tier June Time allowed 1 hour 30 minutes

Physics Unit 3 Investigative and Practical Skills in AS Physics PHY3T/Q09/test

Paper Reference. Paper Reference(s) 6679/01 Edexcel GCE Mechanics M3 Advanced/Advanced Subsidiary

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Subsidiary Level and Advanced Level

PHYA2. General Certificate of Education Advanced Subsidiary Examination June Mechanics, Materials and Waves

MEI STRUCTURED MATHEMATICS 4763

MEI STRUCTURED MATHEMATICS MECHANICS 1, M1. Practice Paper M1-B

Statistics Unit Statistics 1B

PHYA2. General Certificate of Education Advanced Subsidiary Examination June Mechanics, Materials and Waves. (JUN11PHYA201) WMP/Jun11/PHYA2 PMT

Mathematics (JAN12MS2B01) General Certificate of Education Advanced Level Examination January Unit Statistics 2B TOTAL

MATHEMATICS Unit Decision 1

Paper Reference R. Mechanics M1 Advanced/Advanced Subsidiary. Friday 6 June 2014 Afternoon Time: 1 hour 30 minutes

Mechanics M1 Advanced/Advanced Subsidiary

PA02. PHYSICS (SPECIFICATION A) Unit 2 Mechanics and Molecular Kinetic Theory

Paper Reference. Paper Reference(s) 6677/01 Edexcel GCE Mechanics M1 Advanced/Advanced Subsidiary

Transcription:

General Certificate of Education Advanced Level Examination January 2010 Mathematics MM2B Unit Mechanics 2B Wednesday 20 January 2010 1.30 pm to 3.00 pm For this paper you must have: an 8-page answer book the blue AQA booklet of formulae and statistical tables. You may use a graphics calculator. Time allowed 1 hour 30 minutes Instructions Use black ink or black ball-point pen. Pencil should only be used for drawing. Write the information required on the front of your answer book. The Examining Body for this paper is AQA. The Paper Reference is MM2B. Answer all questions. Show all necessary working; otherwise marks for method may be lost. The final answer to questions requiring the use of calculators should be given to three significant figures, unless stated otherwise. Take g ¼ 9.8 m s 2, unless stated otherwise. Information The marks for questions are shown in brackets. The maximum mark for this paper is 75. Advice Unless stated otherwise, you may quote formulae, without proof, from the booklet. 6/6/6/ MM2B

2 Answer all questions. 1 An inextensible rope is attached to a sledge which is at rest on a horizontal surface. A constant force of magnitude 40 newtons at an angle of 30 to the horizontal is applied to the sledge, as shown in the diagram. 40 N 30 Calculate the work done by the force as the sledge is moved 5 metres along the surface. (3 marks) 2 A piece of modern art is modelled as a uniform lamina and three particles. The diagram shows the lamina, the three particles A, B and C, and the x- and y-axes. y B C A O x The lamina, which is fixed in the x y plane, has mass 10 kg and its centre of mass is at the point ð12, 9Þ. The three particles are attached to the lamina. Particle A has mass 3 kg and is at the point ð15, 6Þ. Particle B has mass 1 kg and is at the point ð7, 14Þ. Particle C has mass 6 kg and is at the point ð8, 7Þ. Find the coordinates of the centre of mass of the piece of modern art. (6 marks)

3 3 A uniform plank, of length 8 metres, has mass 30 kg. The plank is supported in equilibrium in a horizontal position by two smooth supports at the points A and B, as shown in the diagram. A block, of mass 20 kg, is placed on the plank at point A. 0.8 m 5m 2.2 m A B (a) Draw a diagram to show the forces acting on the plank. (2 marks) (b) Show that the magnitude of the force exerted on the plank by the support at B is 19.2g newtons. (3 marks) (c) Find the magnitude of the force exerted on the plank by the support at A. (2 marks) (d) Explain how you have used the fact that the plank is uniform in your solution. (1 mark) 4 A particle moves so that at time t seconds its velocity v ms 1 is given by v ¼ð4t 3 12t þ 3Þi þ 5j þ 8tk (a) When t ¼ 0, the position vector of the particle is ð 5i þ 6kÞ metres. Find the position vector of the particle at time t. (4 marks) (b) Find the acceleration of the particle at time t. (2 marks) (c) (d) (e) Find the magnitude of the acceleration of the particle at time t. Do not simplify your answer. (2 marks) Hence find the time at which the magnitude of the acceleration is a minimum. (2 marks) The particle is moving under the action of a single variable force F newtons. The mass of the particle is 7 kg. Find the minimum magnitude of F. (2 marks) Turn over s

4 5 A golf ball, of mass m kg, is moving in a straight line across smooth horizontal ground. At time t seconds, the golf ball has speed v ms 1. As the golf ball moves, it experiences a resistance force of magnitude 0.2mv 1 2 newtons until it comes to rest. No other horizontal force acts on the golf ball. Model the golf ball as a particle. (a) Show that dv dt ¼ 0:2v1 2 (1 mark) (b) When t ¼ 0, the speed of the golf ball is 16 m s 1. Show that v ¼ð4 0:1tÞ 2. (5 marks) (c) Find the value of t when v ¼ 1. (3 marks) (d) Find the distance travelled by the golf ball as its speed decreases from 16 m s 1 to 1ms 1. (4 marks) 6 A particle, of mass 4 kg, is attached to one end of a light inextensible string of length 1.2 metres. The other end of the string is attached to a fixed point O. The particle moves in a horizontal circle at a constant speed. The angle between the string and the vertical is y. O 1.2 m y (a) Find the radius of the horizontal circle in terms of y. (1 mark) (b) The angular speed of the particle is 5 radians per second. Find y. (6 marks)

5 7 A smooth hemisphere, of radius a and centre O, is fixed with its plane face on a horizontal surface. A particle, of mass m, can move freely on the surface of the hemisphere. The particle is placed at the point A, the highest point of the hemisphere, and is set in motion along the surface with speed u. (a) While the particle is in contact with the hemisphere at a point P, OP makes an angle y with the upward vertical. A P y O Show that the speed of the particle at P is ðu 2 þ 2ga½1 cos yšþ 1 2 (5 marks) (b) The particle leaves the surface of the hemisphere when y ¼ a. Find cos a in terms of a, u and g. (5 marks) Turn over for the next question Turn over s

6 8 A bungee jumper, of mass 49 kg, is attached to one end of a light elastic cord of natural length 22 metres and modulus of elasticity 1078 newtons. The other end of the cord is attached to a horizontal platform, which is at a height of 60 metres above the ground. The bungee jumper steps off the platform at the point where the cord is attached, and falls vertically. The bungee jumper can be modelled as a particle. Assume that Hooke s Law applies whilst the cord is taut and that air resistance is negligible throughout the motion. When the bungee jumper has fallen x metres, his speed is v ms 1. (a) By considering energy, show that, when x is greater than 22, 5v 2 ¼ 318x 5x 2 2420 (6 marks) (b) Explain why x must be greater than 22 for the equation in part (a) to be valid. (1 mark) (c) Find the maximum value of x. (4 marks) (d) (i) Show that the speed of the bungee jumper is a maximum when x ¼ 31:8. (3 marks) (ii) Hence find the maximum speed of the bungee jumper. (2 marks) END OF QUESTIONS

7 There are no questions printed on this page

8 There are no questions printed on this page Copyright Ó 2010 AQA and its licensors. All rights reserved.