Session 7 Overview: Part A I. Prediction of Vibrational Frequencies (IR) Part B III. Prediction of Electronic Transitions (UV-Vis) IV.

Similar documents
Session 1. Introduction to Computational Chemistry. Computational (chemistry education) and/or (Computational chemistry) education

NMR and IR spectra & vibrational analysis

Introduction to Computational Chemistry Computational (chemistry education) and/or. (Computational chemistry) education

Performance of Hartree-Fock and Correlated Methods

Principles of Molecular Spectroscopy

Figure 1: Transition State, Saddle Point, Reaction Pathway

Advanced Electronic Structure Theory Density functional theory. Dr Fred Manby

An Introduction to Quantum Chemistry and Potential Energy Surfaces. Benjamin G. Levine

DFT calculations of NMR indirect spin spin coupling constants

AN INTRODUCTION TO QUANTUM CHEMISTRY. Mark S. Gordon Iowa State University

Molecular Simulation I

Computational Methods. Chem 561

6.2 Polyatomic Molecules

Chemistry 334 Part 2: Computational Quantum Chemistry

Ideal Gas Laws Empirical Gas Laws The Mole Equations of State Dalton's Law The Mole Fraction Extensive and Intensive Variables Graham's Law of

Intro/Review of Quantum

Intro/Review of Quantum

Computational Chemistry. An Introduction to Molecular Dynamic Simulations

Jack Simons, Henry Eyring Scientist and Professor Chemistry Department University of Utah

MO Calculation for a Diatomic Molecule. /4 0 ) i=1 j>i (1/r ij )

Chemistry 3502/4502. Final Exam Part I. May 14, 2005

Quantum Chemical Simulations and Descriptors. Dr. Antonio Chana, Dr. Mosè Casalegno

Example questions for Molecular modelling (Level 4) Dr. Adrian Mulholland

Project 1 Report File: Chem4PB3_project_1_2017-solutions last changed: 02-Feb-2017

Chem 1140; Molecular Modeling

Beyond the Hartree-Fock Approximation: Configuration Interaction

THE VIBRATIONAL SPECTRA OF A POLYATOMIC MOLECULE (Revised 3/27/2006)

Chemistry 3502/4502. Final Exam Part I. May 14, 2005

Oslo node. Highly accurate calculations benchmarking and extrapolations

Symmetry: Translation and Rotation

THE VIBRATIONAL SPECTRUM OF A POLYATOMIC MOLECULE (Revised 4/7/2004)

Chemistry 4560/5560 Molecular Modeling Fall 2014

Using Web-Based Computations in Organic Chemistry

MD simulation: output

Semi-Empirical MO Methods

Same idea for polyatomics, keep track of identical atom e.g. NH 3 consider only valence electrons F(2s,2p) H(1s)

Excited States Calculations for Protonated PAHs

Exercise 1: Structure and dipole moment of a small molecule

Chemistry 543--Final Exam--Keiderling May 5, pm SES

Exercises 16.3a, 16.5a, 16.13a, 16.14a, 16.21a, 16.25a.

Gherman Group Meeting. Thermodynamics and Kinetics and Applications. June 25, 2009

Density Functional Theory

Quantum mechanics can be used to calculate any property of a molecule. The energy E of a wavefunction Ψ evaluated for the Hamiltonian H is,

I 2 Vapor Absorption Experiment and Determination of Bond Dissociation Energy.

I 2 Vapor Absorption Experiment and Determination of Bond Dissociation Energy.

Introduction to Computational Chemistry

1+e θvib/t +e 2θvib/T +

QUANTUM CHEMISTRY FOR TRANSITION METALS

5.62 Physical Chemistry II Spring 2008

This is a very succinct primer intended as supplementary material for an undergraduate course in physical chemistry.

V( x) = V( 0) + dv. V( x) = 1 2

Molecular energy levels and spectroscopy

3: Many electrons. Orbital symmetries. l =2 1. m l

Jack Smith. Center for Environmental, Geotechnical and Applied Science. Marshall University

The symmetry properties & relative energies of atomic orbitals determine how they react to form molecular orbitals. These molecular orbitals are then

Introduction to Vibrational Spectroscopy

Physics 622. T.R. Lemberger. Jan. 2003

CHEMISTRY 4021/8021 MIDTERM EXAM 1 SPRING 2014

EXAM INFORMATION. Radial Distribution Function: B is the normalization constant. d dx. p 2 Operator: Heisenberg Uncertainty Principle:

The successful wavefunction can be written as a determinant: # 1 (2) # 2 (2) Electrons. This can be generalized to our 2N-electron wavefunction:

Lecture 9 Electronic Spectroscopy

Ab initio calculations for potential energy surfaces. D. Talbi GRAAL- Montpellier

Part 1. Answer 7 of the following 8 questions. If you answer more than 7 cross out the one you wish not to be graded. 12 points each.

Rotations and vibrations of polyatomic molecules

CHEM 344 Molecular Modeling

THEORY OF MOLECULE. A molecule consists of two or more atoms with certain distances between them

Chemistry 416 Spectroscopy Fall Semester 1997 Dr. Rainer Glaser

where, c is the speed of light, ν is the frequency in wave numbers (cm -1 ) and µ is the reduced mass (in amu) of A and B given by the equation: ma

Literature values: ΔH f, gas = % error Source: ΔH f, solid = % error. For comparison, your experimental value was ΔH f = phase:

OVERVIEW OF QUANTUM CHEMISTRY METHODS

Electron Correlation Methods

Introduction to computational chemistry Exercise I: Structure and electronic energy of a small molecule. Vesa Hänninen

Molecular Orbitals for Ozone

Molecular spectroscopy Multispectral imaging (FAFF 020, FYST29) fall 2017

one ν im: transition state saddle point

Introduction to Hartree-Fock calculations in Spartan

The Ideal Gas. One particle in a box:

Lecture 4: methods and terminology, part II

Chapter 6 Vibrational Spectroscopy

Molecular Aggregation

Thermochemistry in Gaussian

Molecular Physics. Attraction between the ions causes the chemical bond.

Statistical thermodynamics for MD and MC simulations

CHAPTER-IV. FT-IR and FT-Raman investigation on m-xylol using ab-initio HF and DFT calculations

Practical 1: Structure and electronic properties of organic molecules. B/ Structure, electronic and vibrational properties of the water molecule

Chemistry 881 Lecture Topics Fall 2001

Introduction to Computational Chemistry

Chem 442 Review for Exam 2. Exact separation of the Hamiltonian of a hydrogenic atom into center-of-mass (3D) and relative (3D) components.

Vibrations and Rotations of Diatomic Molecules

Homework Problem Set 5 Solutions. E e + H corr (a.u.) a.) Determine the bond dissociation enthalpy of ethane in kcal/mol (1 a.u. = kcal/mol).

Calculating Bond Enthalpies of the Hydrides

Department of Chemistry. The Intersection of Computational Chemistry and Experiment

What dictates the rate of radiative or nonradiative excited state decay?

Quantum chemistry and vibrational spectra

Electronic structure calculations: fundamentals George C. Schatz Northwestern University

Model for vibrational motion of a diatomic molecule. To solve the Schrödinger Eq. for molecules, make the Born- Oppenheimer Approximation:

Calculations of band structures

计算物理作业二. Excercise 1: Illustration of the convergence of the dissociation energy for H 2 toward HF limit.

Computational Material Science Part II. Ito Chao ( ) Institute of Chemistry Academia Sinica

Chemistry 4021/8021 Computational Chemistry 3/4 Credits Spring Semester 2007 Key PS3

Transcription:

Session 7 Overview: Part A I. Prediction of Vibrational Frequencies (IR) II. Thermochemistry Part B III. Prediction of Electronic Transitions (UV-Vis) IV. NMR Predictions 1 I. Prediction of Vibrational Frequencies Purposes: 1. IR data is used to help determine molecular structure and environment Compare experimental vs. computed spectra Interpreting normal modes: Correlate vibrational motions with spectral peaks Fingerprint region assignments difficult. Help in identifying transition state structures Identifying the nature of stationary points on the PES: (More in Session 9) Prediction of Vibrational Frequencies Purposes: 3. Compute force constants for a geometry optimization: (As in Session 4) 4. Compute zero point vibration and thermal energy corrections to the total energies, as well as other thermodynamic quantities of interest Enthalpy (H), Entropy (S), Free energy (G), etc. 3 1

Review Normal Modes: Nonlinear: 3N-6 normal modes Linear: 3N-5 Bond stretches: Highest in energy Bends: Somewhat lower in energy Torsional motions: Lower still Breathing modes (very large molecules): Lowest energy 4 Types of Motion Stretching Symmetric Asymmetric In Plane Bending Out of Plane + + + Scissoring Rocking Wagging Twisting 5 Harmonic Oscillator Approximation Based on Hooke s Law: 1 ~ 1 ν = k π c MaMb Ma + Mb ~ ν = vibrational frequency (cm -1 ) Atomic masses (g) are Ma and Mb c = velocity of light (cm / sec) k = bond force constant (dynes / cm) 6

A Better Description? When stretched enough, a bond will break Bond stretching is more accurately described using a Morse potential: ab ( rab r ) E ( r )= D 1 e α 0 Morse ab ab { } D ab = bond dissociation energy α = k = ab k ab Dab force constant r ab = internuclear distance r o = "equilibrium" bond length 7 Differences Harmonic Oscillator Approximation gives infinite number of evenly spaced energy levels given by: E = hν ( v + 1 ) ν = frequency of the vibration v = vibrational quantum number (0, 1,, etc.) hν When v = 0, Eis the zero- point energy E o = Morse: The potential energy surface is not harmonic (See next slide) Vibrational energy levels more closely spaced at higher quantum number, and are finite in number 8 Harmonic Oscillator vs. Morse Comparison 9 3

Which Model to Use Under experimental conditions, vibrational transitions observed are between the (v = 0) (v = 1) states Both models are nearly the same for this fundamental vibration (See previous slide) Computationally: Easier to deal with polynomial expressions (HOA) than with exponential expressions (MP) HOA is most commonly used for computing molecular vibrational frequencies More accurate methods could be used, at the expense of increased CPU time 10 Calculations Normal modes of vibration are centered at the equilibrium geometry of the molecule Structure must be optimized prior to the start of a frequency calculation Frequency calculations are only valid at stationary points on the PES Frequency calculations should be computed at the same (or higher) level of theory used to optimize the molecule Frequencies should be positive for an optimized structure (stationary point on PES) If imaginary (negative) frequencies are found, the geometry represents a saddle point on the PES 11 Calculations - continued Normal mode frequencies and atom displacements are calculated using a MM force field, or via the Hessian (or force constant) matrix (f ij ) that was used to optimize the geometry (Session 3). Equation of motion for an N atom molecule: 3N &&qj = fijqi j = 1,,..., 3N i= 1 q i = M i 1/ (x i -x i,eq ) = mass-weighted Cartesian displacements defined in terms of nuclei location x i relative to eq. positions x i,eq f ij E = qi q j eq E = Potential energy at equilibrium configuration 1 4

Calculations - continued nd derivative of the energy (E) w.r.t. the Cartesian nuclear co-ordinates gives the curvature at the bottom of the PES (Slide #9) Since the real (Morse) PES is shallower, frequencies calculated in the above manner are always greater than the actual (experimental) frequencies (more on this later) 13 Method Comparison MM force fields are empirically created to describe atomic motions Can get usable results using the HOA and if the compound of interest is similar in structure to those used to create the force field Limitation: Many molecules of interest will not have an adequate MM force field available Molecular vibrations are therefore best investigated using a quantum mechanical approach 14 Method Comparison - continued Semiempirical Depends on the parameters If the molecule of interest is similar to the training set, qualitative results can be obtained Calculated frequency values are often erratic SAM1: Generally the most accurate for frequency predictions In general: PM3 is better than AM1 To compensate for systematic errors and get better agreement with experimental results, some authors will multiply PM3 and AM1 frequencies by a scaling factor (See Slide #18) 15 5

Method Comparison - continued HF Calc. frequencies are ~10% too high This is due to: (1) The HOA, and () the lack of electron correlation in the calculation These (known) systematic errors can be compensated for Much better results can be obtained by scaling the calculated frequencies by a factor of ~0.9 The best scaling factor depends on the basis set used (See Slide #18) 6-31G(d) is the smallest basis set that gives decent results for a variety of molecules 16 Method Comparison - continued DFT Erratic behavior (sometimes), but with smaller deviations than semiempirical results Overall systematic errors with the better DFT functionals are less than those obtained using Hartree-Fock The pure DFT functional BLYP requires little scaling Errors are random about the experimental values Hybrid DFT functionals which include HF character need to be scaled, since they again give consistently high results 17 Scaling factors (pg. 305, Cramer) (More extensive list at: http://srdata.nist.gov/cccbdb/ Level of Theory Scale factor RMS error (cm -1 ) Outliers (%) 1 AM1 0.953 16 15 PM3 0.9761 159 17 HF/3-1G 0.9085 87 9 HF/6-31G(d) 0.8953 50 BLYP/6-31G(d) 0.9945 45 B3LYP/6-31G(d) 0.9614 34 1 B3PW91/6-31G(d) 0.9573 34 1) Number of frequencies still in error by more than 0% of the experimental value after application of the scaling factor 18 6

Exp. vs. Calc. frequencies (cm -1 ) for formamide PM3 and HF results scaled using factors from Slide #18 Experimental PM3 HF/6-31G(d) B88-LYP 3564 3451 3556 358 3439 3346 3435 345 854 846 877 883 1754 1869 1788 173 1577 1613 1609 1588 1390 119 1400 1375 158 1103 134 15 1046 1004 1059 101 101 916 1038 983 603 78 603 68 581 48 553 536 89 371 101 84 19 Peak Intensities Intensities can help in peak assignments, Can get relative intensities using the wavefunction to compute the transition dipole moments Ab initio: Preferred way of doing this (semiempirical methods often give poor results) HF results are often scaled Scaled HF, DFT, MP all give similar accuracies Hybrid DFT functionals give best results Higher-level correlated methods (CISD, CCSD) give improved values, but the computational cost is high 0 Vibrational Frequencies: Summary Computational methods are a powerful tool to gain insight into molecular vibrational motion Different methods will produce different degrees of agreement with experimental results Best: Use HF or DFT with a scaling factor If HF or DFT can t be used, try MM or semiempirical methods, but beware of limitations If working with new compounds, try to calibrate your frequency calculations using similar, known compounds that have experimental data available 1 7

II. Thermochemistry Once vibrational frequencies are calculated, it takes a small amount of CPU time to compute various thermochemical parameters Results are usually included in program output As with IR calculations, a bad starting geometry can give incorrect thermodynamic results Optimize geometry, THEN calculate the vibrational frequencies using the same (or higher) level of theory To relate calculated molecular properties to macroscopic thermodynamic properties, statistical mechanics is used Statistical Mechanics Quantum mechanics depends on Ψ Appropriate operator Property of interest Statistical mechanics depends on the partition function, which allows calculation of macroscopic values Partition function (q) for a single molecule is a sum of exponential terms involving all possible quantum energy states (ε i ): all states q = e - i ε / i k T B 3 Statistical Mechanics - continued Partition function (Q) for N identical molecules: Q q N = N! The molecular partition function (q) may also be written as a sum over all distinct energy levels multiplied by a degeneracy factor (g i ): q = all levels i g e Once the partition function is determined, a number of thermochemical and macroscopic observables can be calculated (Next two slides) i ε / k T i B 4 8

Relationships Internal energy (U): Helmholtz free energy (A): ln Q U = k T B Pressure (P): T Constant volume heat capacity (C v ): U Q Cv = kbt kbt ln = + T T V V A= kbtln Q A Q P = kbt ln = V V T V T ln Q T V 5 Other Relationships Enthalpy (H): ln Q ln Q H = U + PV = kbt + ktv B T V Entropy (S): U A ln Q S = = kt B + k T T Gibbs free energy (G): ln Q G = H TS = kbtv V V T V B T ln Q ktln Q B 6 Partition functions Molecular energy can be approximated as a sum of the various contributions: εtot = εtrans + εrot + εvib + εelec The partition function then becomes a product of terms: qtot = qtransqrotqvibqelec Enthalpy and Entropy involve ln(q), so: H = H + H + H + H S = S + S + S + S tot trans rot vib elec tot trans rot vib elec 7 9

Partition Function Contributions Translational: Only need MW MkBT qtrans = 3 V π h M = MW; V = Molar gas volume Rotational: q rot = π σ π kt B h 8 III Where I i = Moment of inertia; σ = # of distinct proper rotational operations plus the identity operation 3 1 3 8 Partition Function Contributions Vibrational: Total molecular vibrational energy = sum of energies for each vibration. Total partition function is a product of partition functions for each vibration h i n kt B qvib = exp ν 3 6 i= 1 h Electronic: ν 1 exp i kt B Only ground electronic state is considered Excited states typically lie much higher in energy Most molecules have a nondegenerate ground state, which means: q elec = 1 9 Zero Point Energy (ZPE) In comparing theoretical energies of individual molecules (calc. at 0K, fixed nuclei) to experimental results (done at ~98K with vibrating nuclei), two corrections are normally required: 1. Zero-point energy (ε o ): At 0K, a molecule will have vibrational energy. Summation of energy over all vibrational modes gives: normal modes 1 ε0 = Hvib( 0) = h νi May need to add zero-point energy to total energy i 30 10

Thermal Energy Correction. At temperature (T) above 0K, H is given by: HT ( ) = Htrans( T) + Hrot ( T) + Hvib( T) + RT 3 3 Htrans( T) = RT H rot( T) = RT ( = RTif linear) normal modes νi Hvib( T) = Hvib( T) Hvib( 0) = Nh hνi i kbt e 1 This correction takes into account the effects of molecular translation, rotation, and vibration at the temperature of interest Note that the thermal energy correction includes the ZPE automatically 31 Scaling Factors As with frequencies, ZPE and thermal energy values are scaled to eliminate systematic errors. Same value used for frequencies may be used, or specific factors for energies may be used Level of Theory HF/3-1G HF/6-31G(d) BLYP/6-31G(d) B3LYP/6-31G(d) Frequency Scale factor 0.9085 0.899 0.9940 0.9613 ZPE/Thermal energy scale factor 0.9409 0.9135 1.0119 0.9804 Adapted from Foresman & Frisch, Exploring Chemistry with Electronic Structure Methods, nd. Ed., p. 64 3 Program Output - Semiempirical Output varies by program and by method used MOPAC (CAChe) default values listed in mopac.out: f HE, I i, MW, Point group, ZPE, enthalpy, C p, and entropy at variety of temperatures. Includes individual partition function values for vibration, rotation, and translation (1) Electronic energy = Sum of potential energies for all electrons in the molecule (negative number) () Core-Core repulsion energy = Nuclear repulsion (3) Total energy (not printed) = (1) + () N (4) Atomization energy = () 3 + E () i (5) Heat of Formation = f i N i atomization, exp H = H() i ( 4) f,exp 33 11

Program Output DFT DGauss (CAChe) default values listed in DGauss.log: Quantities from IR frequency calculations ZPE, total energy, and the rotational symmetry number (σ), heat capacity, enthalpy, entropy, and free energy values at a variety of temperatures (1) Energy (a.u.) = electronic energy + core-core repulsion energy () Zero point energy (positive number) (3) Total energy = (1) + () The total energy is not converted into f H, as the errors would be large Total energies can be compared to calculate reaction energies, relative stabilities of isomers, etc. 34 Average Errors for Various Quantities Taken from the MOPAC 00 Manual available at: http://www.cachesoftware.com/mopac/mopac00manual/ Method f H Bond Length (Å) Bond Angles (E) Dipole Moments (D) Ionization Potential (kcal/mole) AM1 11.93 0.053 5.467 0.485 0.715 PM3 9.916 0.065 5.708 0.57 0.75 PM5 5.894 0.051 5.413 0.659 0.557 35 Representative Results Calc. of r H o for: CO + CH 4 H CO (Exp. Value: 59.9 ± 0. kcal/mole) Method AM1 PM3 PM5 B88-LYP Result (kcal/mole) 5.7 9.9 41.6 58.4 36 1

Session 7: Part B III. Prediction of Electronic Transitions (UV-Vis) IV. NMR Predictions 37 Prediction of Electronic Transitions In order to obtain energies of electronic excited states, the following steps are taken: 1. A geometry optimization is performed for the ground state molecule Could use MM, Semiempirical, HF, or DFT methods to do this. Ground state wavefunction is calculated, generating occupied and virtual (unoccupied) orbitals Could use Semiempirical, HF or DFT methods 38 Steps - continued 3. Typically, a CIS (Configuration Interaction, Singles) calculation is performed Virtual orbitals (Ψ i ) are mixed into the ground state wave-function (Ψ o ) (i.e. electrons are swapped between occupied and virtual orbitals obtained from the ground state geometry) The geometry is held constant To keep a small number of excited states, only orbitals near the HOMO and LUMO are used (restricted active space) Ψ = coψo + c1ψ1+ cψ +... c i = mixing coefficients 39 13

Steps - continued 4. Ground state molecular electronic Hamiltonian is used to find the coefficients of mixing This gives an approximation to the energy of the excited electronic states at the fixed molecular geometry chosen to begin with (i.e. the ground state energy does not change) Eex Eg 5. Transition frequency found by: ν = Note this gives a vertical excitation energy, since E ex will not be in its equilibrium geometry O.K. for short-lived excited states (as in UV- Vis) h 40 Steps - continued 6. Transition intensity depends on the energy and the oscillator strength Oscillator strength depends on the transition dipole moment between any two states (selection rules) µ mn = Ψ $ µ Ψ 1 41 Methods Ground state geometry MM, Semiempirical, HF, or DFT CIS Use semiempirical or ab initio methods for this Can use Time-dependent DFT (TDDFT) Works well for lower energy excitations Ability to do this not included in CAChe Semiempirical (PM3 or PM5) CAChe only has these choices 4 14

UV-Vis in CAChe Software INDO/S (also called ZINDO/S, part of ZINDO) Semiempirical method specifically parameterized to reproduce UV-Vis spectra Other MOPAC methods parameterized for ground-state heats of formation (better suited for geometry optimizations) ZINDO output is in atomic units 43 ZINDO Zerner s Intermediate Neglect of Differential Overlap Only uses valence electrons Parameterization is theoretically-based, and more elements have parameters than in MOPAC Can use d-orbitals with many transition metals (this is very limited in MOPAC) Used to calculate electronic spectra 44 ZINDO - continued Limitations of ZINDO: Handles molecules up to ~00 atoms Strain energy of small ring systems not handled well May have to calibrate for particular systems of interest If studying new compounds, do calculations on known compounds of similar structure whose electronic spectra have been measured See how well the calculated spectra match 45 15

Representative Results Calc. gas phase (ZINDO CI at MM/PM3 Geometry) Compound 1,3-butadiene 1,3,6-hexatriene 1,3-cyclohexadiene Napthalene Acetophenone Benzophenone Liquid Phase Exp.(nm) 17 53 56 1, 86, 31 40 319 5 35 Calc.(nm) 13 53 54 19, 68, 308 193 7 19 70 Assignment π π* π π* π π* π π* π π* n π* π π* n π* 46 NMR Spectroscopy Chemical shift is the most important magnetic property Most widely applied spectroscopic technique for structure determination In addition to 1 H and 13 C, many other nuclei are increasingly important ( 15 N, 9 Si, 31 P, etc.) All are equally amenable to computational investigation Need to know e - density at the nucleus of an atom 47 NMR - continued Computed magnetic properties are very sensitive to the geometry used have to use reliable structural parameters Theory has lagged behind experiment More difficult to model the interaction of a wavefunction with a magnetic field (B) than an electric field (E) Electric field (E) perturbs the potential energy term of the Hamiltonian 48 16

NMR Calculation Problems Magnetic field (B) perturbs the kinetic energy term Electron motion produces electronic magnetic moments Angular momentum operator (L) is imaginary An origin must be specified defining the coordinate system for the calculation; The operators used depend on this origin Use of the exact Ψ gives origin independent results Ψ HF will also give origin independent results if a complete basis set is used Since neither of these are likely, the calculated results will depend on the origin used 49 Gauge Origin The origin of the coordinate system used for the calculation is called the gauge origin One way to eliminate the gauge dependence is to construct basis functions that are dependent on a magnetic field Include a complex phase factor that refers to the position of the basis function (the nucleus) Makes all calculated properties independent of the gauge origin Older versions of this approach called Gauge Invariant Atomic Orbitals (GIAO) 50 Gauge Origin - continued More recent versions keep the same acronym, that now stands for Gauge Including Atomic Orbitals Most popular technique, probably the most robust Based on perturbation theory Uses HF or DFT wavefunction to calculate shielding tensors Programs like Gaussian use this method CAChe does not use this method 51 17

Other Approaches to the Gauge Problem To eliminate the gauge dependence, use separate gauges for each (localized) molecular orbital IGLO (Individual Gauge for Localized Orbitals) LORG (Localized Orbital/Local Origin) Both techniques are rigorously correct when a complete basis set is employed For finite basis sets, results are a good approximation LORG technique (CAChe) gives slightly better overall results We will use this for the laboratory exercises 5 NMR Calculations There are two magnetic fields to worry about: NMR Chemical Shift α E B I B = External magnetic field I = Nuclear magnetic moment Computing absolute chemical shifts is difficult Shifts are therefore calculated relative to a standard (TMS for 1 H and 13 C) Gas phase results, often reasonably close to experimental 53 NMR Calculations cont. Heavy atom chemical shifts for first row elements can be computed with a fair degree of accuracy In general: CCSD(T) > MP > DFT > HF CCSD(T) & MP usually not feasible due to high cost 54 18

1 H NMR Calculations Less computational work done due to small chemical shift range (~15ppm) Rovibrational and solvent effects give errors comparable to the range of chemical shifts Recent DFT work shows promise: 80 modest-size organics: B3LYP rated best GIAO scheme used with a 6-311++G(df,p) basis set Linear scaling improved results (factor = 0.94) Routine 1 H chemical shift calculations not feasible 55 13 C NMR Calculations Calculations much more common than for 1 H Large basis sets give the best results It is largely the tails of the valence orbitals at the nucleus that affect chemical shifts, not the core orbitals Minimum recommended combination: B3LYP/6-31G(d) geometry followed by HF/6-31G(d) calc. of the chemical shifts (CH 4 : δ = -3.9 vs. TMS; Exp. = -7.0) 56 13 C NMR - continued Typical results, 14 molecules (GIAO scheme w/ large basis set): Method Average Absolute Error (ppm) HF 9 BLYP 8 B3PW91 7 BPW91 6.5 MP 1.6 Keep in mind the total chemical shift range for 13 C when judging these errors 57 19

Spin-Spin Coupling Calculations Less routine than chemical shift calculations Additional complication associated with local magnetic moments Experimentally, 1 H/ 1 H couplings are usually reported These are the most difficult to calculate Tend to be small in magnitude, so absolute errors are magnified Have to use very flexible basis sets, making the cost quite high Gaussian does do these calculations 58 Semiempirical NMR Calculations Ab initio methods: Useful and reasonably accurate results, but are computationally expensive, especially for larger molecules Semiempirical methods: Results are fairly reliable and accurate; good enough to help with correct signal assignments Only choice for larger molecules Both chemical shift and coupling constants Most widely used program is probably HyperNMR which is part of HyperChem See: http://www.hyper.com/ 59 HyperChem Defines different parameters for various atom hybridizations (i.e. sp, sp, sp 3 for C) Other semiempirical methods are parameterized for structure and energy, not for chemical shifts Uses newer Typed Neglect of Differential Overlap (TNDO/1 and TNDO/) methods parameterized to give acceptable chemical shift and coupling constant results As with all semiempirical methods, better results obtained if the molecule of interest is close in structure to those used in the parameterization set Results are not generally as accurate as ab initio 60 0

Other Software Spartan 04 does HF-only calculations ChemDraw Performs empirical calculations for 1 H and 13 C- NMR chemical shifts Can predict splitting patterns for 1 H Advanced Chemistry Development (ACD) Database-driven program will do 1 H, 13 C, 15 N, 19 F, and 31 P Can even do -D spectra $$$$$$$$$$$$$$$$$$$$ 61 1