Phylum Porifera. Phylum Porifera (sponges) Defining Characteristics of Phylum. Sponges

Similar documents
12.1. Advent of Multicellularity A. Advantages 1. Nature s experiments with larger organisms without cellular differentiation are limited. 2. Increasi

Zoology Name: Block: Exercise #7: The Sponges, Phylum Porifera Lab Guide

Phyllum Porifera: Sponges

C. Body is platelike, no symmetry, organs, muscular or nervous systems present. D. 2-3 mm E. marine F. glide over food and secrete digestive enzyme an

Lab ( 3) Kingdom: Animalia

Simplest metazoan (multi-cellular) Lecture 5 - Sponges!

basal animalia porifera, cnidaria

Bilateria. Radiata. Eumetazoa. Parazoa no true tissues. Multicellularity

Porifera. BIO2135 Animal Form & Function ACD. Page 1. Kingdom Animalia. Cladistics Useful terms. Cladistics - Useful terms

Ph. Porifera and Ph. Cnidaria

Invertebrate Zoology. Unit 2: Phylums: Porifera, Cnidaria, and Ctenophora

BIO2135 Animal Form & Function 2 9:10 AM 1 9:10 AM. A= Symplesiomorphy C= Synapomorphy. (Autoapomorphy) 3 9:10 AM

Module 4: Marine Invertebrates I. Kingdom Animalia

Sponges and Cnidarians

Mesozoa, Parazoa, and Metazoa. Chapter 12 pg. 239

The Rise of the Animals

COMPARISON BETWEEN PORIFERA AND CNIDARIA. Colwyn Sleep

Sponge and Cnidarian Review

Characteristics of Animals

Notes - Porifera and Cnideria

09/12/2012. Classification. Characteristics. Learning Outcome G2. Student Achievement Indicators. Phylum Porifera The Sponges

Porifera, Coelenterata, Ctenophora

Lab 2 Phylum Porifera and phylum Cnidaria. Grantia. Phylum Porifera. Kingdom :- Animalia. Phylum:- Porifera. Class:- Calcarea. Order:- Leucosolenida

Intro to Animals. Chapter 32

Unit 2. The pellicle acts as a membrane It maintains the shape of the protozoan but remains flexible Ectoplasm

chapter six Sponges Phylum Porifera The Advent of Multicellularity

Animal Body Plans. Aggregate Blind sac Tube-within-a-tube Segmented Molluscan Arthropod. Sponges. Acoelomate -Eucoelomate Annelid Mollusca Arthropoda

26-2: Sponges. I. Sponges A. An ancient life form; sponges date back to the beginning of the Cambrian period. Shape of Life VIDEO

Learning Objectives. The Animal Kingdom: An Introduction to Animal Diversity. Sexual Reproduction

Figure 1. Cladogram of the Major Animal Phyla based upon SSU-rRNA

INVERTEBRATE LAB. Phylum Protozoa & Porifera

Chapter 7. Marine Animals Without a Backbone

Kingdom Animalia: Phyla Porifera and Cnidaria

Sponges and Cnidarians *

What Is an Animal? Animals come in many shapes, forms, and sizes. About 98 percent of all animals are invertebrates. The Kingdom Animalia

Introduction to Animals

The Evolution of Animal Diversity. Dr. Stephen J. Salek Biology 130 Fayetteville State University

introduction to the Animal Kingdom (pages $55-560) Formulating a Definition: Building Vocabulary Skills

Chapter 24 Introduction to Animals

Outline. v Definition and major characteristics of animals v Dividing animals into groups based on: v Animal Phylogeny

v Scientists have identified 1.3 million living species of animals v The definition of an animal

Biosc 41 9/10 Announcements

Kingdom Protista. The world of Protists: Animal-like Protists Plant-like Protists Fungus-like Protists

Resources. Visual Concepts. Chapter Presentation. Copyright by Holt, Rinehart and Winston. All rights reserved.

origin and evolution of species

Animals contain specialized cells

Chapter 8. Sponges Phylum Porifera Basic characteristics: simple asymmetric sessile

Chapter 32. Objectives. Table of Contents. Characteristics. Characteristics, continued. Section 1 The Nature of Animals

What is a Cnidarian?

3. Choanoflagellates resemble what? What is the significance of this resemblance?

Importance of Protists

Cell Organelles. 2. Cells are the basic unit of organization in an organism Cells tissues organ organ system organism

BIO 221 Invertebrate Zoology I Spring Correction: Porifera. Lower Metazoan Clades: Choanoflagellata Porifera Placozoa Cnidaria Ctenophora

An Introduction to Animal Diversity

BIOLOGY. An Introduction to Invertebrates CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson

Biology. Introduction to Cells. Sunday, November 8, 15

Sponges: Animal Origins

Eukaryote Phylogeny. Glycogen. Kingdom Animalia. Amoebozoa Animalia. Plantae. Chromalveolata Rhizaria. Fungi. Excavata

The. Cell Biology. Sponges

4.1 Cells are the Fundamental Units of Life. Cell Structure. Cells. Fundamental units of life Cell theory. Except possibly viruses.

BIOS1101 Lab Notes. Contents ANIMALS. Lab 1: Animal Diversity invertebrates. Lab 2: Animal Diversity 2 vertebrates

There are two commonly accepted theories for how eukaryotic cells evolved: infolding and endosymbiosis. Infolding

VOCABULARY. Cell Membrane Nucleus Cell Wall Chloroplast Vacuole Tissue Organ Organ System

Intro to Invertebrate STUDENT NOTES Date: 1. Taxonomy : the science of classifying/grouping organisms

13. The diagram below shows two different kinds of substances, A and B, entering a cell.

Chapter 2 Development of Sponges from the Class Hexactinellida Schmidt, 1870

Characteristics of Echinoderms

The diagram below represents levels of organization within a cell of a multicellular organism.

Biology. Introduction to Cells. Tuesday, February 9, 16

Invertebrate Zoology Midterm Exam 1- Fall 2015

Microbiology: A Systems Approach

Cell Structure and Function

ZOOLOGY 101 SECTION 2 LECTURE NOTES

Unicellular Marine Organisms. Chapter 4

Use of Sandwich Cultures for the Study of Feeding in the Hexactinellid Sponge Rhabdocalyptus dawsoni (Lambe, 1892)

Biology: Life on Earth

Invertebrate Diversity

Classification. The three-domains. The six-kingdom system. The traditional five-kingdom system. Bacteria Archaea Eukarya

Chapter Life Is Cellular

prokaryotic eukaryotic

Dr. Dina A. A. Hassan Associate Professor, Pharmacology

Objective 1: I can describe protists. Protists are a kingdom of living organisms that CAN NOT be classified as animals plants or fungus.

What is an animal? Introduction to Animals. Germ Layers. Tissues and Organs. Structural Support. Types of Symmetry 11/3/2015

Anatomy of Plants Student Notes

The Discovery of Cells

The Cell Notes 1 of 11

Notes - Microbiology Protista

Cell Review: Day "Pseudopodia" literally means? a) False feet b) True motion c) False motion d) True feet

Revision Based on Chapter 25 Grade 11

What Is an Animal? Section 25.1 Typical Animal Characteristics. I. Characteristics of Animals. Biology II Mrs. Michaelsen

29/11/2012. Characteristics. Protist Diversity. Characteristics. Kingdom Protista. Examples of Plant-like Protists

Cells Cytology = the study of cells. Nonliving Levels. Organization Levels of Life. Living Levels 11/14/13. More Living Levels

Name Date Class CHAPTER 19

Cell Structure Vocab. Plasma membrane. Vacuole. Cell wall. Nuclear envelope. Chloroplast. Nucleus. Cytoskeleton. Nucleolus. Cytoplasm.

Overview of Cells. Prokaryotes vs Eukaryotes The Cell Organelles The Endosymbiotic Theory

Introduction to Animal Diversity Lecture 7 Winter 2014

Animals. What are they? Where did they come from? What are their evolutionary novelties? What characterizes their diversification?

The Cell. The basic unit of all living things

Basic Structure of a Cell

Transcription:

Phylum Porifera Sponges Ancient group of animals that dates back to the late Precambrian about 600 million years ago Phylum Porifera (sponges) Sessile, aquatic, benthic, suspension feeders on bacteria and protists Mainly marine (~7000 species), but some in freshwater (~300 species). ~27 freshwater species in North America. Defining Characteristics of Phylum Cellular level of organization No true tissues No true embryological germ layers Cells are not connected to each other by basement membrane as seen in true tissues Adults asymmetrical or radially symmetrical; no fixed body shape Cells are totipotent Can change form and function Unique flagellated cells choanocytes drive water through pores, canals and chambers constituting the aquiferous system 1

Defining Characteristics of Phylum Adults are sessile (immobile) suspension feeders (a few are carnivorous) Larval stages are motile Mesohyle - middle layer: variable, but always includes motile cells and usually some skeletal material. Skeletal elements Spicules composed of calcium carbonate, silicon dioxide and/or collagen fibers (protein = spongin) Phylum Porifera BAUPLAN Two Unique Characteristics 1. Aquiferous System Water current channels Choanocytes 2. Cells are totipotent Most able to change many times Reproductive cells and those that make spicules differentiate irreversibly These two features define sponges and have played major roles in poriferan success. Sponge diversity is largely derived from these two characteristics. 2

Compensating for Simplicity of Form in Sponges Increasing size/surface area comes from folding body wall in variety of patterns. Plasticity of form and totipotency of sponge cells compensate for lack of tissues and organs Aquiferous system Brings water close to the cells responsible for food gathering and gas exchange. Removes excretory and digestive wastes and reproductive products are expelled 1 x 10 cm Leucosolenia filters 22.5 liters daily What is A Sponge Old idea: individual sponge was one cell Later one choanocyte chamber = one sponge Currently two ideas: Each excurrent opening (osculum) = one sponge Preferred: each sponge in its entirety = individual Any and all sponge material bounded by a continuous outer cellular covering. Bauplan - Body Structure Outer squamous surface cells make up the pinacoderm (single cell thick) Cell = Pinacocyte Pinacoderm is perforated by small holes Incurrent pores = dermal pores or ostia Pinacocytes lining internal canals are endopinacocytes vs. exopinacoderm Inner surface is the choanoderm (single cell thick) Cell = Choanocyte 3

Sponge Anatomy Bauplan - Body Structure Between pinacoderm and choanoderm is the mesohyle Various thicknesses Contains amoeboid cells, collagen, spicules Plays roles in digestion, gamete production, transport of nutrients and waste products (via amoeboid cells) and secretion of the skeleton Water movement is driven by beating of choanocyte flagella Pump large volumes of water at low pressure = water current (aquiferous) system Bauplan - Body Structure Body covered in holes (ostia) Pores lined with porocytes Pores - hence the name Porifera Pore bearer Skeleton made of spicules Silica CaCO 3 Or Spongin protein 4

Sponge Anatomy Porifera Bauplan CELL TYPES 5

Pinacocytes ( tablet cells ) - form the pinacoderm, the outermost layer of sponge; equivalent of epidermis Porocytes (pore cells) - line the pores (or ostia) of the sponge; provide channels to spongocoel Water enters thru prosopyle, exits thru apopyle prosopyle apopyle Sponge Cell Types Microvillae form collars around flagella of Collar cells = Choanocytes Functions of choanocytes Generate currents that maintain water flow throughout sponge. Capture small food particles on sticky contractile collar. Capture sperm for fertilization/may produce sperm Flagellum Collar microvillus nucleus 6

Choanocytes - flagellated collar cells that pump water through the sponge, capture prey, capture sperm Choanocytes, form the choanoderm. Similar to choanoflagellates. Collect food matter on sticky contractile collar; may also produce sperm. Sponge Cell Types Amoebocytes (or Archaeocytes) are amoeba-like cells that are totipotent, in other words each is capable of transformation into any other type of cell. Have important roles in feeding, reproduction and in clearing debris that blocks the ostia. Store, digest and transport food, excrete wastes, secrete skeleton Amoebocytes wander through the central jelly or mesohyle Form gametes May give rise to buds in asexual reproduction. Several different types. 7

Amoebocytes Functions of Amoebocytes Transfer food from cells that do the feeding to cells that have other functions Produce spicules, collagen and other mesyhyle components. Replace missing cells Act as immune response cells Become gametes Amoebocyte Types Large Amoebocytes- distribute food to other cells of sponge; move by way of pseudopods Archeocytes- undifferentiated sponge cells that can give rise to more differentiated cells such as pinacocytes, porocytes or oocytes. Play major role in digestion, transport excretory activities. Chromocytes pigmented amoebocytes Trophocytes nurse cells (provide nutrients) involved in gemmule formation Sclerocytes - produce spicules - the mineralized spicules that form the skeletons of many sponges and in some species provide some defense against predators. Calcoblasts make calcium carbonate spicules Silicoblasts make silicious spicules 8

Other types of cells within the mesohyl Lophocytes are amoeba-like cells that move slowly through the mesohyl and secrete collagen fibers. Collenocytes are another type of collagen-producing cell. Rhabdiferous cells secrete polysaccharides that also form part of the mesohyl. Thesocytes - resting archaeocytes in gemmules of freshwater sponges Myocytes ("muscle cells") regulate the opening and closing of the ostia and osculum. "Grey cells" act as the equivalent of an immune system for the sponge. Oocytes and spermatocytes are reproductive cells. Other types of cells within the mesohyl In addition to or instead of sclerocytes, demosponges have spongocytes that secrete a form of collagen that polymerizes into spongin, a thick fibrous material that stiffens the mesohyl. No specialized cellular communication. Cells signal each other by diffusion of chemical messages Cell aggregation cells can reaggregate after mechanical disruption. Can identify self from non-self If two different species cells are mixed, each species reaggregates only with its own cells. Mesohyl Middle layer of sponge Acellular matrix Gelatinous Nonliving Acellular Contains archaeocytes Contains spicules and spongin 9

Sponge Skeletal Materials Spicules and spongin fibers are Structural Used in defense against predators Also important for identification of sponges Sclerocytes - derived from amoebocytes; produce spicules Growth of a sponge spicule Sclerocytes - derived from amoebocytes; produce spicules Founder cell Thickener cell Spicule 10

Figure 4.2 Additional spicule shapes 33 11

Massive calcium carbonate supports evolved several times independently in the Demospongiae and the Calcarea. Generalized Sponge Anatomy Osculum H 2 O inhalant pore (ostium) spongocoel (atrium) 12

Cell Layers Pinacoderm made of pinacocytes Ostia lined by porocytes Mesohyle with amoebocytes Choanoderm with choanocytes Mesohyle 13

Sponge Body Plans Asconoid Syconoid Leuconoid See handout for details of water flow and anatomy for practice, label the following diagrams 14

Asconoid Syconoid Leuconoid Choanocytes Mesohyl Pinacocytes Water flow 15

Leucosolenia Pinacoderm Leucosolenia Asconoid sponge 16

Leucosolenia Asconoid Body Plan Simplest body type Found only in the Calcarea Choanoderm is simple and continuous Water: enters through pores and flows into spongocoel then out through osculum. Structure and organization of an asconoid sponge. Osculum Spongocoel Spicule Pinacoderm Porocyte Inhalant pore Amoebocyte Choanocyte in choanoderm Mesohyl 17

Syconoid Body Plan More complex body type Choanoderm is folded into many radial canals Water: enters through pores and travels through radial canals to spongocoel then out through osculum. radial canals spongocoel Grantia = Scypha = Sycon See following slides for anatomy 18

Grantia = Scypha = Sycon Structure and organization of a syconoid sponge. Spicule Osculum Incurrent Pore Incurrent Canal Amoebocyte Mesohyl Spongocoel Pinacoderm Choanocyte Radial Canal Internal water canal 19

Sycon (Grantia, Scypha) Asconoid sponge Grantia longitudinal section; water flow shown by arrows 20

Amphiblastula larva apopyle 21

prosopyles Grantia cross section; water flow shown by arrows. 22

Grantia Details of radial canal Structure and organization of a leuconoid sponge 23

24

Leuconoid Body Plan Most common and most complex type of sponge body Water: flows in through pores into inhalant canals. It then enters choanocyte lined chambers and finally travels the excurrent canals to the osculum. Detailed organization of the leuconoid sponge Apopyle Prosopyle 25

Hexactinellida 26

Hexactinellida Hexactinellida Live in deep water Habitat favored possibly because body structures are so fragile. 27

Hexactinellida Glass sponge community in Antarctica's eastern Weddell Sea, in an area not covered by ice shelves Syncitia Hexactinellid sponges No pinacoderm covering body wall and lining aquiliferous system Instead the tissue is arranged in threedimensional cobweb-like strands called a trabecular syncitium or network No choanoderm, have a choanosyncitium instead Collar bodies (no nucleus) rise of the surface of the choanosyncitium. Each group of collar bodies occupies a syconoidlike pocket supported by the trabecular network. Each group of collar bodies comes from out growths of stem cell - choanoblast Choanosyncitium Trabecular Syncitium Major components of the body are the trabecular syncytium and Choanosyncitium. Flagellated cells lack nuclei, and are called collar bodies. Produced by nucleated choanoblasts. 28

Trabecular Syncytium Is the largest example of a syncytium known in the animal kingdom. Comes from fusion of early embryonic cells. Embryos are cellular until gastrulation SO - Hexactinellid sponges may have evolved from cellular sponges Choanosyncitium Trabecular syncitium Syncytium Is Cytoplasmic Lacks cell walls Possesses multiple nuclei Is bilayered Extends through the entire body of the sponge. Syncytium Connects through cytoplasmic bridges to various cells in the sponge, such as choanoblasts and archaeocytes. 29

Trabecular Syncytium Choanosyncitium encloses and supports the collar bodies and the choanoblasts Trabecular syncitium branches from the primary reticulum and forms a kind of barrier around the collars of the collar bodies. Nuclei are scattered within the two reticula. Water is drawn through openings, or prosopyles, and moves through the microvilli of the collar bodies then through the excurrent canals to the outside through apopyles. Some water passes directly through the prosopyles into the flagellated chamber 30

prosopopyle Collar body Syncytia Cytoplasm within the syncytium flows bidirectionally. Food products may be distributed through the sponge via the syncytium and not via cellular transport as in other sponges. 31

32