GALOIS POINTS ON VARIETIES

Similar documents
April 20, 2006 ALGEBRAIC VARIETIES OVER PAC FIELDS

The Theory of Fields is Complete for Isomorphisms

Density of rational points on Enriques surfaces

MORDELL EXCEPTIONAL LOCUS FOR SUBVARIETIES OF THE ADDITIVE GROUP

RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES RIMS A Note on an Anabelian Open Basis for a Smooth Variety. Yuichiro HOSHI.

R-EQUIVALENCE ON DEL PEZZO SURFACES OF DEGREE 4 AND CUBIC SURFACES. Zhiyu Tian 1. INTRODUCTION

Smooth morphisms. Peter Bruin 21 February 2007

FIELDS OF DEFINITION OF RATIONAL POINTS ON VARIETIES

Permanence criteria for Varieties of Hilbert type

Definable henselian valuation rings

OFER GABBER, QING LIU, AND DINO LORENZINI

Néron models of abelian varieties

Birational p-adic Galois sections in higher dimensions

1 Introduction. 2 Elliptic curves

THE SET OF NONSQUARES IN A NUMBER FIELD IS DIOPHANTINE

CHEAT SHEET: PROPERTIES OF MORPHISMS OF SCHEMES

UNRAMIFIED COVERS OF GALOIS COVERS OF LOW GENUS CURVES

Little survey on large fields Old & New

Rational sections and Serre s conjecture

CHARACTERIZING INTEGERS AMONG RATIONAL NUMBERS WITH A UNIVERSAL-EXISTENTIAL FORMULA

MODULI SPACES OF CURVES

A SHORT PROOF OF ROST NILPOTENCE VIA REFINED CORRESPONDENCES

arxiv:math/ v1 [math.ag] 24 Nov 1998

AN INTRODUCTION TO MODULI SPACES OF CURVES CONTENTS

LARGE NORMAL EXTENSIONS OF HILBERTIAN FIELDS

Geometric motivic integration

Néron Models of Elliptic Curves.

The moduli stack of vector bundles on a curve

Minimal Fields of Definition for Galois Action

CHEVALLEY S THEOREM AND COMPLETE VARIETIES

Quasi-compactness of Néron models, and an application to torsion points

MANIN-MUMFORD AND LATTÉS MAPS

Mod p Galois representations of solvable image. Hyunsuk Moon and Yuichiro Taguchi

DEFORMATIONS VIA DIMENSION THEORY

MODULI OF ALGEBRAIC SL 3 -VECTOR BUNDLES OVER ADJOINT REPRESENTATION

FROBENIUS SUBGROUPS OF FREE PROFINITE PRODUCTS

Another proof of the global F -regularity of Schubert varieties

THE MODULI SPACE OF CURVES

Proof. We omit the proof of the case when f is the reduction of a characteristic zero eigenform (cf. Theorem 4.1 in [DS74]), so assume P (X) has disti

A remark on the arithmetic invariant theory of hyperelliptic curves

AN INTRODUCTION TO AFFINE SCHEMES

APPENDIX 3: AN OVERVIEW OF CHOW GROUPS

1.6.1 What are Néron Models?

A Version of the Grothendieck Conjecture for p-adic Local Fields

LECTURE 6: THE ARTIN-MUMFORD EXAMPLE

A p-adic GEOMETRIC LANGLANDS CORRESPONDENCE FOR GL 1

1.5.4 Every abelian variety is a quotient of a Jacobian

Algebraic Patching by Moshe Jarden, Tel Aviv University

COMPLEX VARIETIES AND THE ANALYTIC TOPOLOGY

SIEVE METHODS FOR VARIETIES OVER FINITE FIELDS AND ARITHMETIC SCHEMES

CHAPTER 0 PRELIMINARY MATERIAL. Paul Vojta. University of California, Berkeley. 18 February 1998

VARIETIES WITHOUT EXTRA AUTOMORPHISMS II: HYPERELLIPTIC CURVES

THE MOTIVE OF THE FANO SURFACE OF LINES. 1. Introduction

The Grothendieck Ring of Varieties

Another way to proceed is to prove that the function field is purely transcendental. Now the coordinate ring is

14. Rational maps It is often the case that we are given a variety X and a morphism defined on an open subset U of X. As open sets in the Zariski

arxiv:math/ v3 [math.ag] 27 Jan 2004

On the Irreducibility of the Commuting Variety of the Symmetric Pair so p+2, so p so 2

ANNIHILATING POLYNOMIALS, TRACE FORMS AND THE GALOIS NUMBER. Seán McGarraghy

Proof of the Shafarevich conjecture

SEPARABLE RATIONAL CONNECTEDNESS AND STABILITY

INDRANIL BISWAS AND GEORG HEIN

On the distribution of rational points on certain Kummer surfaces

Dynamics and Canonical Heights on K3 Surfaces with Noncommuting Involutions Joseph H. Silverman

ON THE KERNELS OF THE PRO-l OUTER GALOIS REPRESENTATIONS ASSOCIATED TO HYPERBOLIC CURVES OVER NUMBER FIELDS

A Note on Dormant Opers of Rank p 1 in Characteristic p

THE ABSOLUTE MORDELL-LANG CONJECTURE IN POSITIVE CHARACTERISTIC. 1. Introduction

Geometric representation in the theory of pseudo-finite fields

DE FRANCHIS CONTRIBUTIONS TO THE THEORY OF ALGEBRAIC CURVES. Edoardo Sernesi

Finiteness of the Moderate Rational Points of Once-punctured Elliptic Curves. Yuichiro Hoshi

Varieties over a finite field with trivial Chow group of 0-cycles have a rational point

HILBERT l-class FIELD TOWERS OF. Hwanyup Jung

arxiv: v1 [math.nt] 27 Dec 2018

Model Theory of Differential Fields

On a conjecture of Vorst

ALGORITHMS FOR ALGEBRAIC CURVES

Non-uniruledness results for spaces of rational curves in hypersurfaces

Modularity of Abelian Varieties

1. Algebraic vector bundles. Affine Varieties

ORBITAL INTEGRALS ARE MOTIVIC. 1. Introduction

Section V.7. Cyclic Extensions

LEFSCHETZ THEOREMS FOR TAMELY RAMIFIED COVERINGS

ON THE FUNDAMENTAL GROUPS OF LOG CONFIGURATION SCHEMES

A reduction of the Batyrev-Manin Conjecture for Kummer Surfaces

AN EXPOSITION OF THE RIEMANN ROCH THEOREM FOR CURVES

SHIMURA VARIETIES AND TAF

Characteristic classes in the Chow ring

where m is the maximal ideal of O X,p. Note that m/m 2 is a vector space. Suppose that we are given a morphism

arxiv: v3 [math.nt] 16 Jul 2009

ALGEBRAIC GROUPS JEROEN SIJSLING

SEMINAR: DERIVED CATEGORIES AND VARIATION OF GEOMETRIC INVARIANT THEORY QUOTIENTS

Tunisian Journal of Mathematics an international publication organized by the Tunisian Mathematical Society

Introduction to Arithmetic Geometry Fall 2013 Lecture #17 11/05/2013

ALGEBRAIC CYCLES ON THE FANO VARIETY OF LINES OF A CUBIC FOURFOLD arxiv: v2 [math.ag] 18 Apr INTRODUCTION

A finite basis theorem for product varieties of groups

An abelian surface with constrained 3-power torsion

Lecture 1. Toric Varieties: Basics

Generating the Pfaffian closure with total Pfaffian functions

RATIONALITY CRITERIA FOR MOTIVIC ZETA FUNCTIONS

About Hrushovski and Loeser s work on the homotopy type of Berkovich spaces

Transcription:

GALOIS POINTS ON VARIETIES MOSHE JARDEN AND BJORN POONEN Abstract. A field K is ample if for every geometrically integral K-variety V with a smooth K-point, V (K) is Zariski dense in V. A field K is Galois-potent if every geometrically integral K-variety has a closed point whose residue field is Galois over K. We prove that every ample field is Galois-potent. But we construct also non-ample Galois-potent fields; in fact, every field has a regular extension with these properties. 1. Introduction Definition 1.1. Let X be a variety over a field K. By a Galois point on X, we mean a closed point whose residue field is Galois over K. We say that K is Galois-potent if every geometrically integral K-variety has a Galois point. Question 1.2. Is every field Galois-potent? We do not even know if Q is Galois-potent. On the other hand, we have the following definition of Florian Pop: Definition 1.3 (cf. [Pop96, p. 2] and [Jar11, Chapter 5]). A field K is called ample (or large or anti-mordellic) if for every geometrically integral K-variety V with a smooth K-point, V (K) is Zariski dense in V. Pseudo-algebraically closed (PAC) fields and Henselian fields (e.g., Q p ) are ample; see [Jar11, Chapter 5] for these and many more examples. Our first main theorem is the following: Theorem 1.4. Ample fields are Galois-potent. Some non-ample fields too are Galois-potent. For example, finite fields are non-ample, but have abelian absolute Galois group and hence trivially are Galois-potent. Less trivially, we can also construct infinite non-ample fields that are Galois-potent: in Section 5 we will prove the following. Theorem 1.5. Every field admits a regular extension that is Galois-potent but not ample. Bary-Soroker and Fehm in [BSF13, Section 2.2] write that all infinite non-ample fields appearing in the literature are Hilbertian. The non-ample fields we construct in the proof of Theorem 1.5 turn out to be Hilbertian too (Remark 5.4), and in particular they have non-abelian absolute Galois group. Date: November 26, 2015. 2010 Mathematics Subject Classification. Primary 12E30; Secondary 11G35, 14G99. The first author was supported by the Minkowski Center for Geometry at Tel Aviv University, established by the Minerva Foundation. The second author was supported in part by National Science Foundation grant DMS-1069236 and a grant from the Simons Foundation (#340694 to Bjorn Poonen). This article has been published in J. Ramanujan Math. Soc. 31 (2016), no. 2, 189 194. 1

Question 1.6. Are there also infinite non-ample fields with abelian absolute Galois group? If the answer to Question 1.6 were yes, it would immediately yield another example of a non-ample Galois-potent field. But there are several questions and conjectures in the literature that each imply a negative answer to Question 1.6, as we now explain. Let G K be the absolute Galois group of K. Is every infinite non-ample field Hilbertian? (Cf. [BSF13, Section 2.2] again.) A Hilbertian field K cannot have an abelian G K. Is every infinite field K with topologically finitely generated G K ample? (See the paragraph before Theorem 5.5 of [JK10], or see [BSF13, 4.2, Question III].) By [Koe01], if G K is abelian, either K is henselian and hence ample, or G K is procyclic and in particular topologically finitely generated, and hence ample if the question at the start of this bulleted item has a positive answer. Is every infinite field with prosolvable G K ample? (See [BSF13, 4.1, Question II].) If so, then every infinite field with abelian G K is ample too. 2. Notation Let K be a field. Let K be an algebraic closure of K. By a K-variety we mean a separated scheme of finite type over K. Given a K-variety X and a finite extension L K, let X L be the L-variety X K L; similarly, if φ is a K-morphism, let φ L be its base change. If X is an integral K-variety, let K(X) denote its function field. By a K-curve, we mean a smooth geometrically integral K-variety of dimension 1. By the absolute genus g X of a K-curve X, we mean the genus of the smooth projective model of X K. Given a curve X and n 1, let X (n) denote the n th symmetric power, defined as the (variety) quotient of X n by the symmetric group S n. 3. Restriction of scalars Let K L be a finite extension of fields. For any quasi-projective L-variety X, the functor sending each K-scheme S to the set X(S L ) is representable by a K-variety Res L/K X called the restriction of scalars (cf. [BLR90, 7.6, Theorem 4]). If, in addition, L is separable over K, then Res L/K X after base field extension becomes isomorphic to a product of [L : K] conjugates of X; in particular, if X is geometrically integral and smooth of dimension d over L, then Res L/K X is geometrically integral and smooth of dimension [L : K]d over K. In this section we prove Theorem 1.4. 4. Ample fields are Galois-potent Proposition 4.1. Let K be an ample field. Let X be a geometrically integral K-variety. Let N be a finite separable extension of K. If X has a smooth N-point, then X has a point with residue field N. Proof. Replacing X by a Zariski-open subvariety, we may assume that X is smooth and affine. For each finite separable extension L of K, define X L := Res L/K (X L ). Thus X L (S) = X L (S L ) = X(S L ) for any K-scheme S, and in particular, X L (K) = X(L). If L L are two such extensions, the natural map X(S L ) X(S L ) can be rewritten as X L (S) X L (S), and it is functorial in S, so Yoneda s lemma yields a K-morphism X L X L. 2

We have X N (K) = X(N), which is nonempty by assumption. Also, K is ample, and X N is smooth and geometrically integral, so X N (K) is Zariski-dense in X N. There are only finitely many fields L with K L N, and for each such L, we have dim X L < dim X N. Thus X N has a K-point outside the image of every morphism X L X N. In other words, X(N) has a element outside X(L) for every L. For this element, the image of Spec N X is a closed point with residue field N. Proof of Theorem 1.4. Let K be an ample field, and let X be any geometrically integral K-variety. Choose a finite separable extension N of K such that X(N). Enlarge N to assume that N is Galois over K. By Proposition 4.1, X has a closed point with residue field N. 5. Infinite Galois-potent fields that are not ample In this section we prove Theorem 1.5. Lemma 5.1. Let K be an algebraically closed field. Let X, Y, C be K-curves with g C > 1. Any rational map X Y C factors through one of the projections to X or Y. Proof. A rational map φ: X Y C may be viewed as an algebraic family of rational maps X C parametrized by (an open subvariety of) Y. But the de Franchis Severi theorem [Sam66, Théorème 1] implies that there are no nonconstant algebraic families of nonconstant rational maps X C. Thus either the rational maps in the family are all the same, in which case φ factors through the first projection, or each rational map in the family is constant, in which case φ factors through the second projection. Lemma 5.2. Let X be a curve over a field K. Let F = K(X (2) ). Then X has a point over a quadratic extension of F, and C(F ) = C(K) for every K-curve C of absolute genus > 1. Proof. Either projection X X X gives a point of X over the quadratic extension K(X X) of K(X (2) ) = F. Let c C(F ). Then c corresponds to a rational map X (2) C. Composing X X X (2) with such a rational map yields a rational map φ: X X C. By Lemma 5.1, φ K is constant on all vertical copies of X K or constant on all horizontal copies of X K. Since φ K is S 2 -invariant, it is constant on all vertical and horizontal copies of X K. Thus φ K is constant. Hence φ is constant. Equivalently, c C(K). Lemma 5.3. Every field K admits a regular extension K such that (i) Every K-curve X has a point over an at most quadratic extension of K (possibly depending on X). (ii) For every K-curve C of absolute genus > 1, we have C(K ) = C(K). Proof. Let (X α ) α<τ be a well-ordering of the set of K-curves up to isomorphism, indexed by an ordinal τ. For α τ, define K α by transfinite induction as follows: Let K 0 := K. For each α < τ, define K α+1 := K α (X α (2) ); If α is a limit ordinal, define K α := lim K β. β<α Let K := K τ. Then K is regular over K by [FJ08, Corollary 2.6.5(d)], whose proof remains valid when the cardinal m is replaced by an ordinal τ. 3

(i) Any K-curve X is X α for some α < τ. Lemma 5.2 shows that X has a point over a quadratic extension of K α+1, and hence also a point over an at most quadratic extension of K. (ii) Let C be a K-curve of absolute genus > 1. By Lemma 5.2 and induction, C(K α ) = C(K) for all α τ. In particular, C(K ) = C(K). Proof of Theorem 1.5. Let K be the given field. Construct a sequence of fields L 0, L 1,... inductively as follows: let L 0 := K(t) with t transcendental over K, and let L i+1 be the regular extension of L i given by Lemma 5.3. Let L := lim L i. Let X be an L -curve. Then X is definable over some L i. The conditions in Lemma 5.3 imply that X has a point over an at most quadratic extension of L i+1, and hence a point over an at most quadratic extension of L. Every geometrically integral L -variety other than a point contains an L -curve, so L is Galois-potent. Choose a non-isotrivial curve C of absolute genus > 1 over L 0 = K(t) such that C has a smooth L 0 -point; then C(L 0 ) is finite [Sam66, Théorème 4]. The conditions in Lemma 5.3 imply that C(L 0 ) = C(L 1 ) =, so C(L ) = C(L 0 ), which is finite. Thus L is not ample. Remark 5.4. The field L constructed in the proof of Theorem 1.5 is Hilbertian, because of the following two facts: (a) Any finitely generated transcendental extension of a field is Hilbertian [FJ08, Theorem 13.4.2]. (b) If (K α ) α τ is an ascending tower of fields indexed by an ordinal τ, and K α is Hilbertian for each α < τ, and K α+1 is a regular extension of K α for each α < τ, and K α = lim K β β<α for each limit ordinal α τ, then K τ is Hilbertian. (Fact (b) appears as [FJ08, Chapter 12, Exercise 2], but the hypothesis K α = lim β<α K β is missing there.) Proof of (b). Given irreducible polynomials f i ( t, x) over K τ for i = 1,..., r, each separable in x, we must find infinitely many a over K τ such that the specializations f i ( a, x) for i = 1,..., r are irreducible over K τ. There exists α < τ such that all the f i are defined over K α. Since K α is Hilbertian, there exist infinitely many a over K α such that f i ( a, x) for each i is irreducible over K α. These specializations are irreducible over K τ as well, since K τ is a regular extension of K α by [FJ08, Corollary 2.6.5(d)]. Remark 5.5. Padmavathi Srinivasan has constructed a field K with stronger properties than the L in the proof of Theorem 1.5, namely that C(K) is finite for every K-curve C of absolute genus > 1, while there is a degree 2 field extension L K that is ample [Sri15]. Acknowledgements We thank the referee for many insightful comments and corrections. References [BSF13] Lior Bary-Soroker and Arno Fehm, Open problems in the theory of ample fields, Geometric and differential Galois theories, Sémin. Congr., vol. 27, Soc. Math. France, Paris, 2013, pp. 1 11 (English, with English and French summaries). MR3203546 4

[BLR90] Siegfried Bosch, Werner Lütkebohmert, and Michel Raynaud, Néron models, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 21, Springer- Verlag, Berlin, 1990. MR1045822 (91i:14034) [FJ08] Michael D. Fried and Moshe Jarden, Field arithmetic, 3rd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 11, Springer-Verlag, Berlin, 2008. Revised by Jarden. MR2445111 (2009j:12007) [Jar11] Moshe Jarden, Algebraic patching, Springer Monographs in Mathematics, Springer, Heidelberg, 2011. MR2768285 (2012e:12007) [JK10] Markus Junker and Jochen Koenigsmann, Schlanke Körper (slim fields), J. Symbolic Logic 75 (2010), no. 2, 481 500, DOI 10.2178/jsl/1268917491. MR2648152 (2011f:03047) [Koe01] Jochen Koenigsmann, Solvable absolute Galois groups are metabelian, Invent. Math. 144 (2001), no. 1, 1 22, DOI 10.1007/s002220000117. MR1821143 (2002a:12006) [Pop96] Florian Pop, Embedding problems over large fields, Ann. of Math. (2) 144 (1996), no. 1, 1 34. MR1405941 (97h:12013) [Sam66] Pierre Samuel, Compléments à un article de Hans Grauert sur la conjecture de Mordell, Inst. Hautes Études Sci. Publ. Math. 29 (1966), 55 62 (French). MR0204430 (34 #4272) [Sri15] Padmavathi Srinivasan, A virtually ample field that is not ample, December 31, 2015. Preprint, available at http://math.mit.edu/~padma_sk/virtually_ample.pdf. School of Mathematics, Tel Aviv University, Ramat Aviv, Tel Aviv 6139001, Israel E-mail address: jarden@post.tau.ac.il Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA E-mail address: poonen@math.mit.edu URL: http://math.mit.edu/~poonen/ 5