Temperatures of Marco Polo Mission Targets

Similar documents
New insights on thermal properties of asteroids using IR interferometry

Spitzer Observations of Spacecraft Target (1999 JU 3 )

Thermal inertia of near-earth asteroids and. implications for the magnitude of the Yarkovsky effect

Thermal inertia of near-earth asteroids and implications for the magnitude of the Yarkovsky effect

arxiv: v1 [astro-ph.ep] 6 Aug 2009

The Yarkovsky effect on near-earth asteroids with Gaia

Rapid temperature changes and the early activity on comet 67P/Churyumov-Gerasimenko

Spitzer Observations of ARM Targets 2009 BD and 2011 MD

Open Research Online The Open University s repository of research publications and other research outputs

arxiv: v1 [astro-ph.ep] 21 Jan 2014

Heating of near-earth objects and meteoroids due to close approaches to the Sun

Thermal inertia of main belt asteroids smaller than 100 km from IRAS data

Chapter 22 Exam Study Guide

arxiv: v1 [astro-ph.ep] 29 Jul 2009

The Main Points. Asteroids. Lecture #22: Asteroids 3/14/2008

M-Type asteroids: primitive, metallic, or both?

arxiv: v1 [astro-ph.ep] 21 Oct 2015

PHOOTPRINT. An ESA mission study. previously: MMSR (Martian Moon Sample Return)

TNOs are Cool: A Survey of the Transneptunian Region. (39 members, 19 institutes, 9 countries)

Chapter 29. The Solar System. The Solar System. Section 29.1 Models of the Solar System notes Models of the Solar System

AIDA: Asteroid Impact & Deflection Assessment A Joint ESA-NASA Mission

Basics of Kepler and Newton. Orbits of the planets, moons,

Kepler, Newton, and laws of motion

Uncertainties: Limitations of Martian Granular Material Remote Sensing

Post eclipse thermal response of Uranian satellites with SINFONI: a status report

EVOLUTIONS OF SMALL BODIES IN OUR SOLAR SYSTEM

Lecture 19: The Moon & Mercury. The Moon & Mercury. The Moon & Mercury

A Survey of the Planets Earth Mercury Moon Venus

Outline. Pluto s Surface. Last Homework before Exam (HW#4) is due Friday at 11:50am. Nighttime observing has 4 more nights. Check the webpage.

SOLAR SYSTEM EXAMPLE EXAM B DIVISION

Pluto, the Kuiper Belt, and Trans- Neptunian Objects

Astronomy, PART 2. Vocabulary. A. Universe - Our Milky Way Galaxy is one of of galaxies in an expanding universe.

Investigation of systematic bias in radiometric diameter determination of near-earth asteroids: the night emission simulated thermal model (NESTM)

The Main Point. Basic Properties of Mars. Observations. Lecture #19: Mars

Lecture 24: Saturn. The Solar System. Saturn s Rings. First we focus on solar distance, average density, and mass: (where we have used Earth units)

The Planet Pluto. & Kuiper Belt. The Search for PLANET X Pluto Discovered. Note how Pluto Moved in 6 days. Pluto (Hades): King of the Underworld

Hayabusa at Itokawa: first visit to a rubble pile asteroid, or

Asteroid Impact Mission (AIM)

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

OSIRIS-REx Asteroid Sample Return Mission. Lucy F. Lim Assistant Project Scientist

Asteroids. Titius-Bode Law (1766) updated May 16, Orbit of 1 Ceres. Ceres Discovered Structure of Ceres. Ceres (Hubble Space Telescope)

GAIA: SOLAR SYSTEM ASTROMETRY IN DR2

Name Period Date Earth and Space Science. Solar System Review

Astronomy 111 Practice Final Exam

Exercise 1: Earth s Moon

Sol o ar a r S yste t m e F o F r o m r at a i t on o The Ne N b e u b l u a a Hypothesis

Science Return from Hayabusa

Thermal, Thermophysical, and Compositional Properties of the Moon Revealed by the Diviner Lunar Radiometer

Dynamics of the Didymos asteroid binary

Schiaparelli and his legacy. Alberto Cellino Milano, October 20, INAF --Osservatorio Astronomico di Torino

A collective effort of many people active in the CU4 of the GAIA DPAC

What is there in thee, moon, That thou shouldst move My heart so potently? By John Keats

Astronomy 111 Practice Midterm #1

This asteroid was visited by the NEAR Shoemaker probe, which orbited it, taking extensive photographs of its

The Surface Roughness of (433) Eros as Measured by Thermal-Infrared Beaming

Analogue Mission Simulations

Linking NEAs to their main-belt source regions

TNO Modelling Aspects and First Radiometric Results from the TNOs are Cool! Project

Lecture 13. Gravity in the Solar System

radar astronomy The basics:

Dynamical evolution of asteroid fragments originating near the ν 6 resonance

Space Administration. Don Yeomans/JPL. Jet Propulsion Laboratory California Institute of Technology Pasadena, California

Chapter 16 The Solar System

The Sun and Planets Lecture Notes 5. The Moon

The determination of asteroid physical properties from Gaia observations

Spin-off Rosetta Lander for Marco Polo

Investigation de la dynamique des astéroïdes avec Gaia

Mercury. Mercury 9/13/2017 PROBLEM SET 2 IS DUE TUESDAY AT THE BEGINNING OF LECTURE

Deep Impact/EPOXI Status and Plans

NEO Sample Return Mission

SOLAR SYSTEM 2019 SAMPLE EXAM

Transneptunian objects. Minor bodies in the outer Solar System. Transneptunian objects

MarcoPolo- R. NASA Contribu-on Andrew Cheng European Science Leads: Antonella Barucci and Patrick Michel 1/8/2014 1

arxiv: v1 [astro-ph.ep] 27 Aug 2009

Comparative Planetology I: Our Solar System. Chapter Seven

Status report of the Solar System Working Group

MARCOPOLO-R: ESA SAMPLE RETURN MISSION TO THE POTENTIALLY HAZARDOUS ASTEROID 2008 EV5

Team Name: Team Number: Score: SOLAR SYSTEM SCIENCE OLYMPIAD ROCKFORD INVITATIONAL 12 JANUARY 2019

GOALS: Resource Utilization

Chapter. Origin of Modern Astronomy

d. Galileo Galilei i. Heard about lenses being used to magnify objects 1. created his own telescopes to 30 power not the inventor! 2. looked

Solar System Debris. Asteroids 11/28/2010. Large rocky debris orbiting the Sun. Ceres, the largest asteroid. Discovering Asteroids

What is a Satellite? A satellite is an object that orbits another object. Ex. Radio satellite, moons, planets

Neap Tide. Spring Tide. Maximum Tidal Bulge

*The content of this talk represents the viewpoint of the author and not NASA.

Impact Mission (AIM) ESA s NEO Exploration Precursor. Ian Carnelli, Andrés Gàlvez Future Preparation and Strategic Studies Office ESA HQ

Cohesive forces preventing rotational breakup of rubble pile asteroid (29075) 1950 DA

Interplanetary Trajectory design for Rosetta and Solar Orbiter

The Moon. Tidal Coupling Surface Features Impact Cratering Moon Rocks History and Origin of the Moon

ASTRONOMY. S6E1 a, b, c, d, e, f S6E2 a, b, c,

Chapter 3 The Cycles of the Moon

Today in Astronomy 111: Mercury

ASTEROID INVESTIGATION MISSION: THE EUROPEAN CONTRIBUTION TO THE AIDA EU-US COOPERATION

The Population of Mars-Crossers: Classification and Dynamical Evolution

Mercury and Venus 3/20/07

Universe Now. 5. Minor planets and other small bodies in the Solar System

Part 1: the terrestrial planets

arxiv: v1 [astro-ph.ep] 23 Aug 2015

Moon and Mercury 3/8/07

The Earth's Moon. The Earth's Moon, in many ways, is prototypical of a substantial fraction of the objects in the Solar System.

Transcription:

Temperatures of Marco Polo Mission Targets Marco Delbo, Patrick Michel June 5, 2008 Observatoire de la Côte d Azur; Laboratoire Cassiopée with contributions from: A. Barucci, D. Koschny Marco Delbo, Patrick Michel () Temperatures of Marco Polo Mission Targets June 5, 2008 1 / 24

Table of contents Temperature of Marco Polo s targets: Outline 1 Parameters that influence surface temperatures 2 Thermophysical parameters geology of the surface 3 How do we derive/calculate temperatures: thermophysical models 4 Surface and sub surface (regolith) temperature (surface operations, sample extraction) 5 Thermal evolution (orbital evolution) 6 Discussion, future observations and instruments needs Marco Delbo, Patrick Michel () Temperatures of Marco Polo Mission Targets June 5, 2008 2 / 24

Parameters that influence asteroid surface temperatures Parameters that influence asteroid surface temperature Heliocentric distance (r) Bolometric Albedo (A) Rotation period (T) Direction of rotation axis (λ P,β P ) Thermal inertia (Γ = ρκc) heat diffusion in the regolith Surface roughness (e.g. craters) small scale multiple scattering Gross shape (shadows) Marco Delbo, Patrick Michel () Temperatures of Marco Polo Mission Targets June 5, 2008 3 / 24

Parameters that influence asteroid surface temperatures Asteroid surface temperature vs. heliocentric distance 1400 Low thermal inertia High thermal inertia 1200 1000 Temperature (K) 800 600 400 200 0 0.1 1 10 Heliocentric distance (AU) Marco Delbo, Patrick Michel () Temperatures of Marco Polo Mission Targets June 5, 2008 4 / 24

Surface temperature of Marco Polo s targets Surface temperature of 1999 JU 3 for different values of Γ Effect of thermal inertia and asteroid rotation 400 350 TI=0 TI=50 TI=300 TI=2500 300 Surface Temperature (K) 250 200 150 100 Thermal Inertia 50: Moon soil 300: km-sized NEAs 2500: Basalt 50 0 0 0.2 0.4 0.6 0.8 1 Rotation phase Marco Delbo, Patrick Michel () Temperatures of Marco Polo Mission Targets June 5, 2008 5 / 24

Thermal inertia and regolith Thermal inertia (Γ) and asteroid surface nature Thermal inertia gives information about the presence (or absence), depth and thickness of regolith, and the presence of exposed rocks on the surface of atmosphere less bodies (Γ in SI units: Jm 2 s 0.5 K 1 ). 25143 Itokawa 433 Eros The moon 1 Ceres Γ = 600 Γ = 150 Γ = 50 Γ = 10 Coarse regolith Finer and thicker Mature and Very fine and boulders regolith fine regolith regolith?? Marco Delbo, Patrick Michel () Temperatures of Marco Polo Mission Targets June 5, 2008 6 / 24

Thermal inertia and regolith Close up of asteroids regolith: Itokawa Marco Delbo, Patrick Michel () Temperatures of Marco Polo Mission Targets June 5, 2008 7 / 24

Thermal inertia and regolith Close up of asteroids regolith: Itokawa Marco Delbo, Patrick Michel () Temperatures of Marco Polo Mission Targets June 5, 2008 8 / 24

Thermal inertia and regolith Close up of asteroids regolith: (433) Eros Marco Delbo, Patrick Michel () Temperatures of Marco Polo Mission Targets June 5, 2008 9 / 24

Thermal inertia and regolith Close up of asteroids regolith: (433) Eros Marco Delbo, Patrick Michel () Temperatures of Marco Polo Mission Targets June 5, 2008 10 / 24

Thermophysical Models Thermophysical Models 1 Thermophysical Model ( 96-07) Lagerros 1996; Delbo 2004; Mueller 2007 2 ρc T(r i,t) t k 2 T(r i,t) r 2 i = 0 3 Parameters: size, albedo, thermal inertia (Γ), surface roughness (θ). 4 Required: shape, spin state. Marco Delbo, Patrick Michel () Temperatures of Marco Polo Mission Targets June 5, 2008 11 / 24

Thermophysical Models How thermal inertia is derived: thermophysical modeling Models parameters are: 1 object size 2 surface roughness 3 thermal inertia Chi squared 70 60 50 40 30 no roughness low roughness medium roughness high roughness They are adjusted to yield the best fit to the IR data. 20 10 10 100 1000 Thermal Inertia (SI units) Delbo and Tanga, 2008; Mueller, 2007 (Ph.D. thesis) Marco Delbo, Patrick Michel () Temperatures of Marco Polo Mission Targets June 5, 2008 12 / 24

Thermophysical Models Surface temperature of 1989 UQ 500 (65679) 1989 UQ 400 Temperature (K) 300 200 Perihelion Aphelion 100 Midday 0 0.0 0.2 0.4 0.6 0.8 1.0 Rotational phase Marco Delbo, Patrick Michel () Temperatures of Marco Polo Mission Targets June 5, 2008 13 / 24

Sub soil temperature Subsoil temperature (1999 JU 3 ): Γ = 300Jm 2 s 0.5 K 1 380 360 Regolith temperature of 1999JU3 (Gamma=300 S.I.; r=0.96 AU; T=7.5h) Midday Midnight 340 Temperature (K) 320 300 280 260 240 220 0 0.05 0.1 0.15 0.2 0.25 0.3 Regolith depth (m) Marco Delbo, Patrick Michel () Temperatures of Marco Polo Mission Targets June 5, 2008 14 / 24

Orbital evolution of Marco Polo targets 2001 SG 286 Variation of the orbital elements with time (1 clone). 2.5 Semimajor axis (AU) 2.5 1 Semimajor axis (AU) 1 2 2 0.8 0.8 Semimajor axis (AU) 1.5 1.5 Orbital eccentricity (e) 0.6 0.4 0.6 0.4 1 1 0.2 0.2 0.5 0.5 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 Time (years) 0 0 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 Time (years) Marco Delbo, Patrick Michel () Temperatures of Marco Polo Mission Targets June 5, 2008 15 / 24

Thermal evolution of Marco Polo targets 2001 SG 286 600 Temperature Perihelion distance 2.5 500 2 Max surface Temperature (K) 400 300 1.5 1 Perihelion distance (AU) 200 0.5 100 0 1e+06 2e+06 3e+06 4e+06 5e+06 6e+06 0 Time (years) Marco Delbo, Patrick Michel () Temperatures of Marco Polo Mission Targets June 5, 2008 16 / 24

Thermal evolution of Marco Polo targets 2001 SK 162 600 Temperature Perihelion distance 1.3 1.2 500 1.1 Max surface Temperature (K) 400 300 1 0.9 0.8 0.7 0.6 Perihelion distance (AU) 200 0.5 0.4 100 0.3 0 2e+06 4e+06 6e+06 8e+06 1e+07 1.2e+07 1.4e+07 1.6e+07 1.8e+07 Time (years) Marco Delbo, Patrick Michel () Temperatures of Marco Polo Mission Targets June 5, 2008 17 / 24

Thermal evolution of Marco Polo targets 2001 SK 162 600 Temperature Perihelion distance 5 500 4 Max surface Temperature (K) 400 300 3 2 Perihelion distance (AU) 200 1 100 0 0 100000 200000 300000 400000 500000 600000 700000 800000 900000 Time (years) Marco Delbo, Patrick Michel () Temperatures of Marco Polo Mission Targets June 5, 2008 18 / 24

Conclusion Concluding remarks 1 Knowledge of target temperature is important for surface operation: landing, sample collection... 2 Information about physical (e.g. spin state) and thermophysical parameters (e.g. thermal inertia) are required for accurate thermophysical modeling. Marco Delbo, Patrick Michel () Temperatures of Marco Polo Mission Targets June 5, 2008 19 / 24

Conclusion Concluding remarks 1 Knowledge of target temperature is important for surface operation: landing, sample collection... 2 Information about physical (e.g. spin state) and thermophysical parameters (e.g. thermal inertia) are required for accurate thermophysical modeling. Follow up observations important! Marco Delbo, Patrick Michel () Temperatures of Marco Polo Mission Targets June 5, 2008 19 / 24

Conclusion Concluding remarks 1 Knowledge of target temperature is important for surface operation: landing, sample collection... 2 Information about physical (e.g. spin state) and thermophysical parameters (e.g. thermal inertia) are required for accurate thermophysical modeling. Follow up observations important! On board thermal IR photometer/spectrometer! see O. Groussin s tomorrow talk! Marco Delbo, Patrick Michel () Temperatures of Marco Polo Mission Targets June 5, 2008 19 / 24

Conclusion Concluding remarks 1 Knowledge of target temperature is important for surface operation: landing, sample collection... 2 Information about physical (e.g. spin state) and thermophysical parameters (e.g. thermal inertia) are required for accurate thermophysical modeling. Follow up observations important! On board thermal IR photometer/spectrometer! see O. Groussin s tomorrow talk! Marco Delbo, Patrick Michel () Temperatures of Marco Polo Mission Targets June 5, 2008 19 / 24

Back up slides Backup slides Marco Delbo, Patrick Michel () Temperatures of Marco Polo Mission Targets June 5, 2008 20 / 24

Asteroids thermal inertia The thermal inertia of asteroids Marco Delbo, Patrick Michel () Temperatures of Marco Polo Mission Targets June 5, 2008 21 / 24

Asteroids thermal inertia Subsoil temperature (1999 JU 3 ): Γ = 300, 1000Jm 2 s 0.5 K 1 380 360 Regolith temperature of 1999JU3 (Gamma=300 and 1000 S.I.; r=0.96 AU; T=7.5h) Midday (Gamma=300) Midnight (Gamma=300) Midday (Gamma=1000) Midnight (Gamma=1000) 340 Temperature (K) 320 300 280 260 240 220 0 0.1 0.2 0.3 0.4 0.5 Regolith depth (m) Marco Delbo, Patrick Michel () Temperatures of Marco Polo Mission Targets June 5, 2008 22 / 24

Asteroids thermal inertia Subsoil temperature (1989 UQ): low thermal inertia 330 320 310 Low TI; Perihelion; 3.0cm Low TI; Perihelion; 5.0cm Low TI; Aphelion; 3.0cm Low TI; Aphelion; 5.0cm Sub-Soil Temperature (K) 300 290 280 270 260 250 240 0 5 10 15 20 25 Time (hours) Marco Delbo, Patrick Michel () Temperatures of Marco Polo Mission Targets June 5, 2008 23 / 24

Asteroids thermal inertia Subsoil temperature (1989 UQ): high thermal inertia 400 380 High TI; Perihelion; 3.2cm High TI; Perihelion; 5.4cm High TI; Aphelion; 3.2cm High TI; Aphelion; 5.4cm Sub-Soil Temperature (K) 360 340 320 300 280 260 0 5 10 15 20 25 Time (hours) Marco Delbo, Patrick Michel () Temperatures of Marco Polo Mission Targets June 5, 2008 24 / 24