Language Information RetrievalÓ j

Similar documents
Utilizing Portion of Patent Families with No Parallel Sentences Extracted in Estimating Translation of Technical Terms

Structure and Complexity of Grammar-Based Machine Translation

Speech Recognition Lecture 5: N-gram Language Models. Eugene Weinstein Google, NYU Courant Institute Slide Credit: Mehryar Mohri

Cross-Lingual Language Modeling for Automatic Speech Recogntion

Automatic Evaluation in Text Summarization

A Syntax-based Statistical Machine Translation Model. Alexander Friedl, Georg Teichtmeister

Triplet Lexicon Models for Statistical Machine Translation

Word-Transliteration Alignment

statistical machine translation

An Algorithm for Fast Calculation of Back-off N-gram Probabilities with Unigram Rescaling

Natural Language Processing (CSEP 517): Machine Translation

N-grams. Motivation. Simple n-grams. Smoothing. Backoff. N-grams L545. Dept. of Linguistics, Indiana University Spring / 24

An Empirical Study on Dimensionality Optimization in Text Mining for Linguistic Knowledge Acquisition

Investigating Connectivity and Consistency Criteria for Phrase Pair Extraction in Statistical Machine Translation

Word Alignment by Thresholded Two-Dimensional Normalization

N-gram N N-gram. N-gram. Detection and Correction for Errors in Hiragana Sequences by a Hiragana Character N-gram.

Learning Features from Co-occurrences: A Theoretical Analysis

The Noisy Channel Model and Markov Models

Multi-Task Word Alignment Triangulation for Low-Resource Languages

ACS Introduction to NLP Lecture 2: Part of Speech (POS) Tagging

Multi-Source Neural Translation

A Systematic Comparison of Training Criteria for Statistical Machine Translation

Computing Optimal Alignments for the IBM-3 Translation Model

Multi-Source Neural Translation

Machine Learning for natural language processing

Phrasetable Smoothing for Statistical Machine Translation

A Recursive Statistical Translation Model

Maximal Lattice Overlap in Example-Based Machine Translation

IBM Model 1 for Machine Translation

Theory of Alignment Generators and Applications to Statistical Machine Translation

Comparison of Log-Linear Models and Weighted Dissimilarity Measures

Natural Language Processing. Statistical Inference: n-grams

Toponym Disambiguation using Ontology-based Semantic Similarity

Out of GIZA Efficient Word Alignment Models for SMT

P R + RQ P Q: Transliteration Mining Using Bridge Language

Tuning as Linear Regression

On Using Selectional Restriction in Language Models for Speech Recognition

Latent Semantic Analysis. Hongning Wang

Natural Language Processing (CSE 490U): Language Models

Language Modelling. Marcello Federico FBK-irst Trento, Italy. MT Marathon, Edinburgh, M. Federico SLM MT Marathon, Edinburgh, 2012

Foundations of Natural Language Processing Lecture 5 More smoothing and the Noisy Channel Model

Statistical Substring Reduction in Linear Time

Decoding Complexity in. Word-Replacement Translation Models. Kevin Knight. University of Southern California

Machine Translation. CL1: Jordan Boyd-Graber. University of Maryland. November 11, 2013

Word Alignment via Quadratic Assignment

Ranked Retrieval (2)

Natural Language Processing (CSEP 517): Machine Translation (Continued), Summarization, & Finale

Exploring Asymmetric Clustering for Statistical Language Modeling

Phrase-Based Statistical Machine Translation with Pivot Languages

SYNTHER A NEW M-GRAM POS TAGGER

Word Alignment via Quadratic Assignment

Latent Semantic Analysis. Hongning Wang

Empirical Methods in Natural Language Processing Lecture 10a More smoothing and the Noisy Channel Model

Prenominal Modifier Ordering via MSA. Alignment

cmp-lg/ Aug 1996

Midterm sample questions

Word Alignment via Submodular Maximization over Matroids

The OntoNL Semantic Relatedness Measure for OWL Ontologies

Probabilistic Language Modeling

DT2118 Speech and Speaker Recognition

Graphical models for part of speech tagging

Natural Language Processing SoSe Language Modelling. (based on the slides of Dr. Saeedeh Momtazi)

Theory of Alignment Generators and Applications to Statistical Machine Translation

Bayesian Learning of Non-compositional Phrases with Synchronous Parsing

Statistical NLP Spring Corpus-Based MT

Corpus-Based MT. Statistical NLP Spring Unsupervised Word Alignment. Alignment Error Rate. IBM Models 1/2. Problems with Model 1

arxiv: v1 [cs.cl] 21 May 2017

Using Conservative Estimation for Conditional Probability instead of Ignoring Infrequent Case

Lecture 13: More uses of Language Models

A Study for Evaluating the Importance of Various Parts of Speech (POS) for Information Retrieval (IR)

Learning to translate with neural networks. Michael Auli

PROBABILISTIC LATENT SEMANTIC ANALYSIS

COMS 4705 (Fall 2011) Machine Translation Part II

Machine Translation: Examples. Statistical NLP Spring Levels of Transfer. Corpus-Based MT. World-Level MT: Examples

Hidden Markov Modelling

Automatic Speech Recognition and Statistical Machine Translation under Uncertainty

HMM Expanded to Multiple Interleaved Chains as a Model for Word Sense Disambiguation

Generalized Stack Decoding Algorithms for Statistical Machine Translation

Variational Decoding for Statistical Machine Translation

N-gram Language Modeling Tutorial

Automatic Evaluation of Machine Translation Quality Using Longest Common Subsequence and Skip-Bigram Statistics

Determining Word Sense Dominance Using a Thesaurus

TALP Phrase-Based System and TALP System Combination for the IWSLT 2006 IWSLT 2006, Kyoto

Language Models, Smoothing, and IDF Weighting

Word Alignment. Chris Dyer, Carnegie Mellon University

Lecture 12: Algorithms for HMMs

Statistical NLP Spring HW2: PNP Classification

HW2: PNP Classification. Statistical NLP Spring Levels of Transfer. Phrasal / Syntactic MT: Examples. Lecture 16: Word Alignment

This kind of reordering is beyond the power of finite transducers, but a synchronous CFG can do this.

Topic Models and Applications to Short Documents

Advanced Natural Language Processing Syntactic Parsing

Automatically Evaluating Text Coherence using Anaphora and Coreference Resolution

Language Models. Hongning Wang

Improved Decipherment of Homophonic Ciphers

Statistical Machine Translation of Natural Languages

Name: Matriculation Number: Tutorial Group: A B C D E

Annotation tasks and solutions in CLARIN-PL

Domain Adaptation for Word Sense Disambiguation under the Problem of Covariate Shift

Exploitation of Machine Learning Techniques in Modelling Phrase Movements for Machine Translation

ORANGE: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation

Transcription:

± i jschang@cs.nthu.edu.tw o ± k j ± j z ± wyw j ± j ÒCross Language Information RetrievalÓ j h ±ÒQuery TranslationÓ ± k h ± ± ± k ± h ± j ± ± ± 1. ± j y k j ± j z ± y p wywj ± 1

j ÒCross-Language Information RetrievalÓ q z ± ± j ä ±åòdocument translationó ä hi ±åòquery translationó ÒMcCarley 1999Ó h ± NTCIR-2 i ÒKando et al. 2001Ó h h Assembly Parade Law Parade and Demonstration Constitution Freedom of speech Indemnification Communism Country separation Council of Grand Justices Legislation Amendments h ± dg ÒWord Sense DisambiguationÓ ÒIde and Veronis 1998, Chen and Chang 1998Ó ±ÒPhrase TranslationÓ ± ± ÒText CollectionÓ ± d g ± ÒLexical ChoiceÓ demonstration ± ä å ± ä å 2

j u 1. ± ÒGey and Chen 1997, Kwok 2001Ó 2. ÒOard 1999, Kwok 2001Ó u ± ± Kwok ± Michael Jordan ±ä å j ± Chen Ò1999Ó Òoccurrence statisticsó ± µ ± j ± ÒKnight and Graehl 1997, Chang et al. 2001Ó j j p j h ± ± ± ÒExample-based ApproachÓ ± ji Òdata-drivenÓ j i ± IBM Watson Brown Ò1988, 1990, 1993Ó ± j p j k u ± ÒStatistical Alignment and Machine TranslationÓ h ± j h ± j g u ± ÒAlignment ProbabilityÓ 3

± 2. ± ± ± ÒDirect ApproachÓ r ÒTransfer ApproachÓ 1980 j ÒEmpirical ApproachÓ ± ± Brown p Brown S ± T ± ÒTranslation ProbabilityÓ Pr( T S ) g (a) ± ÒLexical Translation ProbabilityÓ Pr( S i T j ) (b) ÒFertility ProbabilityÓ Pr( a b ) (c) ÒDistortion ProbabilityÓ Pr(i j, k, m ) S i S i T j T j a S i b T j k S m T Brown ± k ä å ä åqv ÒExpectation and Maximization 4

AlgorithmÓ ä å º ± ä å º ± k EM qv ± ± k ÒNoisy Channel ModelÓ ± N-gram ÒLanguage ModelÓ qv ÒBeam SearchÓ ± 3. ± Brown ± ± ÒalignmentÓ y ± ± S i, i i T j S i j 1 Pr(j i, k, m) 1 Pr(j i, k, m) =0,i i k ± ± A* S 1 S 2 S 3 ± S 1 {T 1, T 2 } S 2 {T 3, T 4 } S 3 {T 5 } A* = (0, 12, 34, 5)Ò 0 Ó k =3 m =5 ± A* 35% A* ÒMaximum Likelihood EstimationÓ 5

Pr MLE ( A* )=0.35 Pr( A* )=P(1 1,3,5) P(2 1,3,5) P(3 2,3,5) P(4 2,3,5) P(5 3,3,5) j Ò0.6Ó P(j i,3,5) k Pr( A* ) < (0.6) 5 = 0.046656 << 0.35 Pr(A*)<<Pr MLE ( A* ) w ± ± ± ÒAlignment ProbabilityÓ ± ± S ± T ± PrÒT SÓ g (a) ± ÒLexical Translation ProbabilityÓ Pr( T(A i ) S i ) (b) ± ÒAlignment ProbabilityÓ Pr ( A k, m )=Pr ( A 0, A 1, A 2,,A k k, m ) S i S i T(A i ) T S i A 0 T S f A i T S i f, i>0 k S m T S i T 6

B(A, i) E(A, i) k S i T(A i )={T B(A,i), T B(A,i)+1, T E(A,i) } A i ={B(A,i), B(A,i)+1,, E(A,i) } 4. ± k g 1. ± j 2. ± u ± k kn 3. ± j k 4. ± j 4.1 BDCr ÒBDC 1992Ó 3 ± ± i i k 96,156 ± ÒP n, Q n Ó,n=1,N h EM qv ª ± ± Och Ò2000Ó 7

IBM 1. Brown EM qv ± 2. ± j jv Pr(j i, k, m )=1/m j 0.5 i 0.5 3I ( i j, k, m) = 1 [1] m k i = k = j = m = S T i k j M Pr( j i,k,m) flight 1 2 1 4 0.875 flight 1 2 2 4 0.875 flight 1 2 3 4 0.625 flight 1 2 4 4 0.375 eight 2 2 1 4 0.375 eight 2 2 2 4 0.625 eight 2 2 3 4 0.875 eight 2 2 4 4 0.875 1 ± 2 ± 4 8 1 Pr( j i,k,m) Òflight eight, Ó 1 v 1 8

E C ± Pr (C E) Pr( C E) N k m n= 1 i= 1 j= 1 = N δ ( E, P ( i)) δ ( C, Q ( j)) Pr( j i, k, m) k m n= 1 i= 1 j= 1 n δ ( E, P ( i)) Pr( j i, k, m) P n (i) P n i Q n (j) Q n j k = P n m = Q n δ(x, y) =1 x = y, δ(x, y) =0 x y n n [2] S i T j i k j m Pr(j i,k,m) Pr(T j S i ) Pr(T j S i ) Pr(j i,k,m) flight 1 2 1 4 0.875 0.00797 0.00697 flight 1 2 2 4 0.875 0.00797 0.00697 flight 1 2 3 4 0.625 0.25770 0.16106 flight 1 2 4 4 0.375 0.16901 0.06338 eight 2 2 1 4 0.375 0.02903 0.01089 eight 2 2 2 4 0.625 0.04839 0.03024 eight 2 2 3 4 0.875 0.06774 0.05927 eight 2 2 4 4 0.875 0.06774 0.05927 2 ± 2 E C E Pr (C E) 0 1 2 2 1 ± 9

4.2 EM qv v EM qv º ÒGreedy MethodÓ ÒP n, Q n Ó 0 ± Ò 2Ó º (threshold) 0 1 0 k y ¼ 0.008 flight eight 2 3 Ò0, 34, 12Ó S i T i i j k m Pr(j i,k,m) Pr(T j S i ) Pr(T j S i ) Pr(j i,k,m) flight 1 3 2 4 0.625 0.25770 0.16106 flight 1 4 2 4 0.375 0.16901 0.06338 eight 2 1 2 4 0.375 0.02903 0.01089 eight 2 2 2 4 0.625 0.04839 0.03024 3Òflight eight, Ó Ò0, 34, 12Ó v - ± k 10

± k m u A count( A ( S, T) ) Pr( A k, m) = [3] count( k = S, m = T ) 4 k m A A 0 A 1 A 2 Pr(A k,m) 2 4 0 12 34 0.572025052 2 4 0 123 4 0.121317560 2 4 0 1 234 0.085479007 2 4 0 1234 0 0.078056136 2 4 0 0 1234 0.065066110 2 4 0 124 3 0.020992809 2 4 0 2 134 0.016585479 2 4 0 3 124 0.007886801 2 4 0 34 12 0.005915101 2 4 0 13 24 0.004059383 2 4 0 134 2 0.003363489 2 4 0 23 14 0.002551612 2 4 0 4 123 0.002319647 2 4 1 0 234 0.002087683 2 4 0 234 1 0.001855718 ± 15 EM qv 601 u 38 u 4 15 4 ¼ 11

1. ± ± ± 2 2. 90% 3. 5 2 4 5 y S T T(A 0 ) S 1 T(A 1 ) S 2 T(A 2 ) T-shaped antenna ƒ T-shaped antenna ƒ X-ray examination X-ray examination irresistible force irresistible force Unwritten law unwritten law Central Asia Central Asia mutual non-interference mutual non-interference undesirable element undesirable element unalterable truth unalterable truth come soon come soon a desperado a desperado 5 5 u v ± 4.2 ± g 12

Òbound morphemeó $empty$ i Òdata sparsenessó $any$ Good-Turing Òsmoothing methodó $any$ ± E C PrÒC EÓ flight 0.6480231012 flight 0.1411528654 flight 0.0602616768 flight $empty$ 0.0296114718 flight 0.0296114718 flight 0.0041786956 flight 0.0041786956 flight 0.0041786956 flight 0.0041786956 flight 0.0041786956 flight 0.0041786956 flight 0.0041786956 flight d 0.0041786956 6 flight $any$ 0.0000009248 flight ± 6 flight ± $empty$ $any$ flight $empty$ 0.0296114718 k ± 4 Ò0,0,1234Ó 13

Ò1,0,234Ó $any$ EM qv $empty$ r 4.3 EM qv v jv 1 ± S T A 0 A 1 A 2 T(A 0 ) T(A 1 ) T(A 2 ) Pr(T S,A) flight eight 0 34 12 0.0000788100 flight eight 0 3 124 0.0000000051 flight eight 12 34 0 $empty$ 0.0000000007 flight eight 12 3 4 0.0000000003 flight eight 2 3 14 0.0000000001 7 Pr( flight eight) 5 jv ÒS, TÓ A v ± Pr(T S, A) A Pr(T S, A) A A (S i, T(A i )) Pr( T S) = max Pr( T S, A) = max Pr( A k, m) A A* A k i= 1 Pr( T ( A ) S ) i i 14

A * = arg max Pr( T S, A) A = arg max Pr( A k, m) A k i= 1 Pr( T( A ) S ) i i [4] k = S, m = T (S, T) =Òflight eight, Ó A ± v A = (0, 12, 34) Pr(T S,A) =Pr(0,12,34 2,4) Pr( flight) Pr( eight) A = (0, 34, 12) Pr(T S,A) =Pr(0,34,12 2,4) Pr( flight) Pr( eight) A = (0, 3, 124) Pr(T S,A) =Pr(0, 3, 124 2,4) Pr( flight) Pr( eight) A = (2, 34, 1) Pr(T S,A) =Pr(2, 34, 1 2,4) Pr( flight) Pr( eight) A = (12, 34, 0) Pr(T S,A) =Pr(12, 34, 0 2,4) Pr( flight) Pr($empty$ eight) 7 Òflight eight, Ó ± 7 A* = (0, 34, 12) 5. ± ± k 10 i EM qv j j 15

S T T(A 0 ) T(A 1 ) T(A 2 ) T(A 0 ) T(A 1 ) T(A 2 ) association football delay flip-flop I demodulator fg fg f g Disgraceful act disregard to secret ballot bearer stock false retrieval used car infix operation jv jv jv 8 jv ± ¼ ± j j 1. j n ± association ± ä å ä å association football ± ± äa å 2. ± ± Òlight verbó make take to 3. ± Òflight eight, Ó ¼ u j Brown u 16

8 Och (2000) 100 ( 2 3 50 ) 2 u S (sure) P (possible) S P S P j (recall) (precision) (error rate) A Ι S recall = S 185 = = 212 0.873 A Ι P precision = A 226 = = 273 0.828 A Ι S + AΙ P 185+ 226 AER( S, P; A) = 1 = 1 = 0.153 A + S 273+ 212 6 ± 6.1 ± ± i k i Òflight attendant Ó Òflight, Ó Òflight attendant Ó flight $any$ $any$ j 17

j œ~ d d œ~ Òflight, Ó ±Òflight, Ó Òflight, Ó ± Òflight, Ó 0 Òattendant, Ó ±Òattendant, Ó Òattendant, Ó Òattendant, Ó Òattendant, $any$ó ± j Òpreservation, Ó Òpreservation, Ó Òpreservation, Ó ± Òflight attendant Ó ± Pr($any$ flight) Pr($any$ eight) m ± Pr(A 2,3) u Ò0, 12, 3Ó Òflight, Ó Òattendant, Ó ± Òflight, Ó Òattendant, Ó j j Òflight, Ó Òattendant, Ó 18

LTP º k LTP j 6.2 ± ± ±j ± ± v 6.2.1 j j h ± ± ± h ± u 1. ± Òdocument frequencyó ± ± 2. k k ± N-gram qv ± ± ª ± ± h S ± T* Pr( T S) = max Pr( T S, A) A 19

T * = arg max Pr( T S) Pr( T ) T = arg max max Pr( T S, A) Pr( T ) T = arg max max Pr( A k, m) T A A k i= 1 Pr( T ( A ) S ) Pr( T ) Pr(T) = ± T k = S m = T Pr(A k, m) Pr(T S) v qv ÒBranch and Bound AlgorithmÓ T* Pr(A k, *) Pr(* S i ) gòsolutionó Òupper boundó Pr(* S i ) Pr(T) N-gram k r g œ 6.2.2 ± ƒ ± ÒKupiec 1993Ó ± k º P v ± A ± T j+1, j+m i i arg max Pr( A n( i), m) Pr( T A, j, m k= 1 j+ 1, j+ m = arg max Pr( A n( i), m) Pr( T A, j, m n( i ) = arg max Pr( A n( i), m) Pr( T A, j, m j+ 1, j+ m P, A) S b, e, A) j+ B( A, K ), j+ E( A, k ) 20 S b+ k 1 A n m )

Pr( A n, m) A S b+k-1 P k T j+b(a,k),j+e(a,k) P k ± A ± qv S T k (P 1, Q 1 ), (P 2, Q 2 ),,(P k, Q k ) (1). ÒPart of speech taggeró S ÒlemmaÓ (2). Òshallow parsingó Òbasic phraseó P 1, P 2,,P k P I = S b(i), e(i), P b =n(i) (3). P I v ± A ± T j ð (i) 1, j m*(i) ÒBranch and Bound AlgorithmÓ A*(i), j*(i), m*(i) argmax Pr( A n( i), m) A, j, m n( i) k = 1 Pr( T j+ B( A, k ), j+ E ( A, k ) S b+ k 1 ) (4). P I (P I, T j ð (i) 1, j m*(i) ) 7. ± ± h ± j 21

Brown v ±ª ƒ ± ± ± j h 1. ± 2. dg h œ ± 3. d Wordnet ± dg ƒf 892420H007001 g ~ ± 1. BDC 1992 The BDC Chinese-English electronic dictionary (version 2.0), Behavior Design Corporation, Taiwan. 2. Brown, P. F., Cocke J., Della Pietra S. A., Della Pietra V. J., Jelinek F., Mercer R. L., and Roosin P. S. 1988 A Statistical Approach to Language Translation, In Proceedings of the 12th International Conference on Computational Linguistics, Budapest, Hungary, pp. 71-76. 22

3. Brown, P. F., Cocke J., Della Pietra S. A., Della Pietra V. J., Jelinek F., Lafferty J. D., Mercer R. L., and Roosin P. S. 1990 A Statistical Approach to Machine Translation, Computational Linguistics, 16/2, pp. 79-85. 4. Brown, P. F., Della Pietra S. A., Della Pietra V. J., and Mercer R. L. 1993 The Mathematics of Statistical Machine Translation: Parameter Estimation, Computational Linguistics, 19/2, pp. 263-311. 5. Chang, J. S. et al. 2001. Nathu IR System at NTCIR-2. In Proceedings of the Second NTCIR Workshop Meeting on Evaluation of Chinese and Japanese Text Retrieval and Text Summarization, pp. (5) 49-52, National Institute of Informatics, Japan. 6. Chang, J. S., Ker S. J., and Chen M. H. 1998 Taxonomy and Lexical Semantics From the Perspective of Machine Readable Dictionary, In Proceedings of the third Conference of the Association for Machine Translation in the Americas (AMTA), pp. 199-212. 7. Chen, H.H., G.W. Bian and W.C. Lin. 1999. Resolving Translation Ambiguity and Target Polysemy in Cross-Language Information Retrieval. In Proceedings of the 37 th Annual Meeting of the Association for Computation Linguistics, pp 215-222. 8. Dagan, I., Church K. W. and Gale W. A. 1993 Robust Bilingual Word Alignment or Machine Aided Translation, In Proceedings of the Workshop on Very Large Corpora Academic and Industrial Perspectives, pp. 1-8. 9. Fung, P. and McKeown K. 1994 Aligning Noisy Parallel Corpora across Language Groups: Word Pair Feature Matching by Dynamic Time Warping, In Proceedings of the First Conference of the Association for Machine Translation in the Americas (AMTA), pp. 81-88, Columbia, Maryland, USA. 10. Gale, W. A. and Church K. W. 1991 Identifying Word Correspondences in Parallel Texts, In Proceedings of the Fourth DARPA Speech and Natural Language Workshop, pp. 152-157. 11. Gey, F C and A. Chen. 1997. Phrase Discovery for English and Cross-Language Retrieval at TREC-6. In Proceedings of the 6 th Text Retrieval Evaluation Conference, pp 637-648. 23

12. Ide, N. and J Veronis. 1998. Special Issue on Word Sense Disambiguation, editors, Computational Linguistics, 24/1. 13. Isabelle, P. 1987 Machine Translation at the TAUM Group, In M. King, editor, Machine Translation Today: The State of the Art, Proceedings of the Third Lugano Tutorial, pp. 247-277. 14. Kando, Noriko, Kenro Aihara, Koji Eguchi and Hiroyuki Kato. 2001. Proceedings of the Second NTCIR Workshop Meeting on Evaluation of Chinese and Japanese Text Retrieval and Text Summarization, National Institute of Informatics, Japan. 15. Kay, M. and Röscheisen M. 1988 Text-Translation Alignment, Technical Report P90-00143, Xerox Palo Alto Research Center. 16. Ker, S. J. and Chang J. S. 1997 A Class-base Approach to Word Alignment, Computational Linguistics, 23/2, pp. 313-343. 17. Knight, K. and J Graehl. 1997. Machine Transliteration, In Proceedings of the 35 th Annual Meeting of the Association for Computational Linguistics and 8 th Conference of ACL European Chapter, pp. 128-135. 18. Kupiec, Julian. 1993 An Algorithm for finding noun phrase correspondence in bilingual corpus, In ACL 31, 23/2, pp. 17-22. 19. Kwok, K L. 2001. NTCIR-2 Chinese, Cross-Language Retrieval Experiments Using PIRCS. In Proceedings of the Second NTCIR Workshop Meeting on Evaluation of Chinese and Japanese Text Retrieval and Text Summarization, pp. (5) 14-20, National Institute of Informatics, Japan. 20. Longman Group 1992 Longman English-Chinese Dictionary of Contemporary English, Published by Longman Group (Far East) Ltd., Hong Kong. 21. McCarley, J. Scott. 1999. Should we Translate the Documents or the Queries in Cross-Language Information Retrieval? In Proceedings of the 37 th Annual Meeting of the Association for Computation Linguistics, pp 208-214. 22. Melamed, I. D. 1996 Automatic Construction of Clean Broad-Coverage Translation Lexicons, In Proceedings of the second Conference of the Association for Machine Translation in the Americas (AMTA), pp. 125-134. 23. Nagao, M. 1986 Machine Translation: How Far Can it Go? Oxford University Press, Oxford. 24

24. Oard, D W and J. Wang. 1999. Effect of Term Segmentation on Chinese/English Cross-Language Information Retrieval. In Proceedings of the Symposium on String and Processing and Information Retrieval. http://www.glue.umd.edu/~oard/research.html. 25. Och, Franz Josef and Hermann Ney. 2000. Improved Statistical Alignment Models. In Proceedings of the 38 th Annual Meeting of the Association for Computation Linguistics. 26. Pirkola, A. 1998. The Effect of Query Structure and Dictionary Setups in Dictionary-based Cross-Language Retrieval. In Proceedings of the 21 st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp 55-63. 27. Smadja, F., McKeown K., and Hatzivassiloglou V. 1996 Translating Collocations for Bilingual Lexicons: A Statistical Approach, Computational Linguistics, 22/1, pp. 1-38. 28. Utsuro, T., Ikeda H., Yamane M., Matsumoto M., and Nagao M. 1994 Bilingual Text Matching Using Bilingual Dictionary and Statistics, In Proceedings of the 15th International Conference on Computational Linguistics, pp. 1076-1082. 29. Wu, D. and Xia X. 1994 Learning an English-Chinese Lexicon from a Parallel Corpus, In Proceedings of the first Conference of the Association for Machine Translation in the Americas (AMTA), pp. 206-213. 25