Solenoid valves Type EVR 2 g 40 NC/ NO New EVR 6 with Steel cover design

Similar documents
Solenoid valve Types EVR 2 - EVR 40

Solenoid valve Types CSV 2 - CSV 22 (NC) and solenoid coil

Solenoid valves Type EVUL

Direct-operated 2/2-way compact solenoid valves Type EV210A

Solenoid valves 2/2-way direct-operated type EV210A

Direct-operated 2/2-way solenoid valves Type EV210B

Thermostatic expansion valves TUA/TUAE

4 Way Reversing Valve

MAKING MODERN LIVING POSSIBLE. Thermostatic expansion valve Type TUB/TUBE and TUC/TUCE REFRIGERATION AND AIR CONDITIONING.

Thermostatic expansion valves TUB/TUBE and TUC/TUCE

/2 way valves (solenoid actuated diaphragm with forced lifting) 1/4... 2

IBV Series C Carbon Steel Inverted Bucket Vertical Steam Trap

IBV Series Z Alloy Steel Inverted Bucket Vertical Steam Trap

AIR CONDITIONING COMMERCIAL REFRIGERATION HEAT PUMP STANDARD PRODUCT CATALOGUE

Transmitters for basic requirements SITRANS P MPS (submersible sensor) Transmitter for hydrostatic level

Pressure independent balancing and control valve AB QM DN

Pressure independent balancing and control valve AB QM DN

Serie B2.1. Flanged ductile iron ball valve. made in. Application fields. Shut-off valves E U R O P E. 18

Eliminator Liquid line filter driers, Type DCL and DML

AIR CONDITIONING STANDARD COMMERCIAL REFRIGERATION HEAT PUMP PRODUCT CATALOGUE

Pressure independent balancing and control valve AB QM DN

A wide selection of pipe and orifice sizes is offered. Valves are available with threaded ports in brass and stainless steel.

VD1 CLC. Small Valves DIN-range with a higher k v -value

Normally Closed (N.C.), Normally Open (N.O.), Common (C.O.)

Its modular concept allows to build up a ball valve for any degree of automation and any kind of application

2.9. Namur Valves 2.9. page 175. Namur 1/4 also called Namur 1 in accordance to VDI / VDE Namur 1/2 also called Namur 2.

AIR COOLED CONDENSING UNIT

Pressure transmitters for industrial applications MBS 32 and MBS 33

Pilot operated 2 port solenoid valve (general purpose valve) Standard specifications NC (normally closed) type C C. 2 /s) Starting

Thermal-Magnetic Circuit Breaker 2210-S2..

5/2-5/3 SPOOL VALVES MULTIFUNCTION air operated or solenoid air operated with subbase ISO 5599/1 sizes 1, 2 and 3

Thermal-Magnetic Circuit Breaker 2210-S2..

I nllk 08018/18 I nllk I nllk 08036/36 I nllk I I nllk 08058/58 I

Pressure Measurement. Transmitters for basic requirements SITRANS P MPS (submersible sensor) Transmitter for hydrostatic level 2/27

Thermal-Magnetic Circuit Breaker 2210-S2...

Thermal-Magnetic Circuit Breaker 2210-S2...

Thermal-Magnetic Circuit Breaker 2210-S2..

Surface-mounting Thermostats ATH Type Series

CMA - B - C - D - CMR

P303 Pressure Regulator

SINGLE IMPELLER CENTRIFUGAL ELECTRIC PUMPS in cast iron

PARTS LIST GAS BOILERS MODELS: CG320 (E) CG325 (E) CG330 (E)

5SJ4...-.HG Circuit Breakers to IEC and UL 489

Cooling Water Flow Regulator

ø6, ø10, ø15, ø20, ø25, ø32, ø40, ø50, ø63 How to Order Switch rail Nil Standard stroke Refer to page 12 for standard stroke.

AIR PREPARATION. ELECTRONICALLY CONTROLLED PRESSURE REGULATING VALVE (PROPORTIONAL PRESSURE REGULATING VALVE) SERIES control

maintenance-free in continuous duty low-noise space-saving extremely tough Suction capacity in m 3 /h m 3 /h 2500 Suction capacity 30,000 10,000

PARTS LIST GAS BOILERS MODELS:

Surface-mounting thermostats Series ATH

EX-EMERGENCY LIGHT FITTINGS

CS Series. Capacitance Type. Type. Proximity Sensor. Features

VOLUMEC. Valve Position Indicator 5

Sales: Malux Finland Oy, P.O.Box 69, FI Porvoo, Phone , Fax ,

Series P0 Electronic Metering Pump. Specification Sheet and Assembly Details Manual No : 1934, 1843 Rev. : C, D Rev. Date : 6/01, 10/2015

ED 701 General Industry Pressure Transmitter

Accumulators Virginia KMP Suction Line Accumulators

Pressure Measurement Single-range transmitters for general applications

Thermal-Magnetic Circuit Breaker 2210-T2...

6.0 EC-SERIES CUBERS EC200-EC300-EC400-EC500-EC606 AIR, WATER AND REMOTE

SITRANS F flowmeters. SITRANS F US System information SITRANS F US Ultrasonic flowmeters 4/181

Made in Italy HOSE REELS CATALOGUE TECHNOLOGY FOR FLUIDYNAMICS. No. E14/A1

Spare parts list UC-S

VDN2.. VEN2.. VUN2.. Radiator valves. Building Technologies HVAC Products ACVATIX TM. NF norm, for 2-pipe heating systems

AIR COOLED CONDENSING UNIT

COMMON BLACK IRON & BLADE PARTS

Metal oil filler and air breather filler caps. Bayonet connection. Reservoir holes. TA46 B (Materials)

GRUNDFOS DATA BOOKLET MAGNA, UPE. Series 2000 circulator pumps

4.2. Ex-Ceiling light fittings AB 80 / AB 05 LED / AB 05 / AB 12 NAV 70. (Zone 1, 2, 21, 22)

PARTS LIST E Qty. Description Alternative Price Q.ty per pck.

Standardized Chemical Pumps. Fields of Application. Designation. Design. Operating Data. Type Series Booklet /7-10 G2 CPK-H

compact ejector, Series ECS with release valve with silencer with non-return valve, With filter vacuum switch: electronic 1x PNP and 1x analog

98 Series Backpressure Regulators and Relief Valves

PR CYCLONE SECONDARY SHUTOFF

MR medium rating busbar

AC axial compact fan

TYPE EMC. Thermostatic Expansion Valve

GRUNDFOS DATA BOOKLET MAGNA, UPE. Series 2000 circulator pumps

Multifunctional Thermostatic Circulation Valve MTCV

Contents. Identification LHC. Horizontal split case pumps. Type key. Identification Type key

KM-70 Panel-mounting Thermostat

DOMESTIC HOT WATER PUMPS WITH FIXED-SPEED MOTOR, 3x400V AP-, AKP- and AEP- series, threaded G1/2 G1 ¼ LOREM IPSUM JE ZULT MAAR 60 HZ.

Universal type Port size: M5, Rc1/8, Rc1/4. Max. working. pressure

Tap Changer Type MHF III Specification, Assembly and Materials

Spare parts list UC-M, UC-L, UC-XL

Switches in conformity with ATEX directive

GRUNDFOS DATA BOOKLET MAGNA, UPE. Series 2000 circulator pumps

SECTION 1 - WHAT IS A BTU METER? BTU's = Flow x ΔT Any ISTEC BTU Meter System consists of the following main components:

Pneumatic Universal. Actuator MOTORIZED VALVES USE TECHNICAL FEATURES OF THE ACTUATOR. Data sheet

DOG-1/-3. Oscillation Flowmeter. for gases. Measuring ranges: m 3 /h air : 120 C. p max. : PN 40; t max

15.0 UNDERCOUNTER CUBERS EUC150B2 EUC200B3-EUC200-UC20B-UC20 AIR AND WATER COOLED

Deionized Water. Latest technology, highest quality, environmentally friendly. Water Technologies

Oscillation Flow Meter for Gases

The FLUX F 430 with mechanical seal

CALEFFI. Modulating digital controller for heating and cooling. 161 series 01122/08 GB. replaces dp 01122/05

Sight Glass and Moisture Indicator Virginia KMP Series LDE

CDS. high density spring connection

ISO mm ISO mm. Nl/min. Nl/min. Nl/min. Nl/min. ISO /2 Distributors. ISO Interface. OVERSIZED interface (UNIVER original)

Magnetic and Hydraulic-Magnetic Circuit Breaker 8340-T...

barmesapumps.com SELF-PRIMING CENTRIFUGAL TRASH PUMP SPECIFICATIONS Series: SH8-U Suction: 8" Discharge: 8" Spherical solids handling: 3"

G 1/8 - G 3/8 G 1/2 - G 1 1/2. Poppet valves for compressed air 3/2

Transcription:

MAKING MODERN LIVING POSSIBLE Technical brochure Solenoid valves EVR 2 g 40 NC/ NO New with Steel cover design EVR is a direct or servo operated solenoid valve for liquid, suction, and hot gas lines with fluorinated refrigerants. EVR valves are supplied complete or as separate components, i.e. valve body, coil and flanges, if required, can be ordered separately. Features Complete range of solenoid valves for refrigeration, freezing and air conditioning plant Supplied both normally closed (NC) and normally open (NO) with de-energized coil Wide choice of coils for a.c. and d.c. Suitable for all fluorinated refrigerants Designed for media temperatures up to 0 C MOPD up to 2 bar with 2 W coil Flare connections up to /8 in. Solder connections up to 2 /8 in. Extended ends for soldering make installation easy. It is not necessary to dismantle the valve when soldering in. EVR are also available with flange connections Approvals DnV, Det norske Veritas, Norge Pressure Equipment Directive (PED) 9/2/EC The Low Voltage Directive (LVD) /2/EC with amendments EN 600-2-8 Polski Rejestr Statków, Polen MRS, Maritime Register of Shipping, Russia Versions with UL approval can be supplied to order. DKRCC.PD.BB0.B2.02 / 20H9

Technical data Refrigerants CFC, HCFC, HFC Temperature of medium 40 +0 C with 0 W or 2 W coil. Max. 0 C during defrosting. Ambient temperature and enclosure for coil. See Coils for solenoid valves, DKRCC.PD.BS0.A.02 Min. Opening differential pressure with standard coil p bar Max. (= MOPD) liquid 2 ) 0 W a. c. 2 W a. c. 20 W d. c. Temperature of medium C Max. working pressure PB bar k v value ) EVR 2 0.0 2 8 40 0 4.2 6 EVR 0.0 2 2 8 40 0 4.2 0.0 2 2 8 40 0 4.2 NO 0.0 2 2 2 40 0 4.2 EVR 0 0.0 2 2 8 40 0.9 EVR 0 NO 0.0 2 2 2 40 0.9 EVR 0.0 2 2 8 40 0 2 2.6 EVR NO 0.0 2 2 2 40 0 2 2.6 (a.c.) 0.0 2 2 40 0 2.0 (d.c.) 0.0 6 40 0 2.0 NO 0.0 9 9 9 40 0 2.0 0.0 2 2 40 0 2 6.0 NO 0.0 9 9 9 40 0 2 6.0 ) 0 2 2 8 40 0 2 0.0 ) 0 2 2 8 40 0 2 6.0 ) 0 2 2 8 40 0 2 2.0 ) The k v value is the water flow in m /h at a pressure drop across valve of bar, ρ = 000 kg/m. 2 ) MOPD for media in gas form is approx. bar greater. ) Min. diff. pressure 0.0 bar is needed to stay open. m /h Rated capacity kw Liquid Suction vapour Hot gas R22 R4a R404A/R0 R40C R22 R4a R404A/R 0 R40C R22 R4a R404A/R0 R40C EVR 2.20 2.90 2.20.0.0.20.20.46 EVR.40.00.80.08 2.0 2.00 2.00 2.4 6.0 4.80.20..80.0 0 6.40.90 6.00.8 EVR 0 8.20.0 26.0.9 4.0.0.90.96.0.90 4.0 6.98 EVR 2.0 48.0 6.0 49.6.90 4.20.0.4 24.00 9.00 9.60 2.28 0.00 92.80 0.0 94.94.40 8.0 0 9 46.20 6.60.0 44.8 2.00.00 84.0.4.0 9.0 2.20 2.60.40 4.90 4.20.4 20.00 86.00 4.00 88.94 22.80 6.0 20 20.98 92.0.20.0 89. 22.00 29.00 22.00 02.68 6.0 26.0 2.60.8 48.00.00 20.00 4.6 0.00 464.00.00 42.82.00 40.00 2.44 2.00 8.00 88.00 224.0 Rated liquid and suction vapour capacity is based on evaporating temperature t e = -0 C, liquid temperature ahead of valve t l = C, pressure drop in valve p = bar. Rated hot gas capacity is based on condensing temperature t c = +40 C, pressure drop across valve p = bar, hot gas temperature t h = +6 C, and subcooling of refrigerant t sub = 4 K. 2 DKRCC.PD.BB0.B2.02 / 20H9

Ordering Complete valves Normally closed (NC) with a.c. coil ) Connection Code no. Valve body + 0 W a. c. coil with m cable Flare 2 ) Solder ODF in. mm in./mm in. mm EVR / 4 6 02F809 02F2042 02F202 / 8 0 02F80 02F2082 02F2092 EVR 0 / 2 2 02F809 02F222 02F22 EVR / 8 6 02F802 02F292 02F292 Connection Code no. Valve body + 0 W a. c. coil with terminal box Flare 2 ) Solder ODF in. mm in./mm in. mm EVR / 4 6 02F80 02F204 02F20 / 8 0 02F804 02F208 02F209 EVR 0 / 2 2 02F8092 02F22 02F2 EVR / 8 6 02F80 02F29 02F29 / 8 22 02F224 02F224 ) Please specify code no., voltage and frequency. Voltage and frequency can also be given in the form of an appendix number, see table "Appendix numbers". 2 ) Supplied without flare nuts. Separate flare nuts: / 4 in. or 6 mm, code no. 0L0 / 8 in. or 0 mm, code no. 0L / 2 in. or 2 mm, code no. 0L0 / 8 in. or 6 mm, code no. 0L6 ) Can only be used with DIN plug DKRCC.PD.BB0.B2.02 / 20H9

Ordering (continued) Components Flare and solder connections Separate valve bodies, normally closed (NC) Required coil type Connection Flare ) in. mm in./mm in. mm Code no. Valve body without coil EVR 2 a.c. / 4 6 02F806 02F20 02F202 EVR EVR 0 EVR a.c./d.c. a.c. d.c. / 4 6 02F80 02F206 02F20 / 8 0 02F86 02F204 02F208 / 8 0 02F802 02F22 02F2 / 2 2 02F809 02F209 02F26 / 2 2 02F809 02F2 02F28 / 8 6 02F8098 02F24 02F24 / 8 6 02F80 02F228 02F228 Solder ODF With manual operation / 8 6 02F800 2 ) 02F22 / 8 22 02F22 02F22 / 8 22 02F240 02F240 / 8 22 02F24 / 8 28 02F244 02F24 / 8 22 02F264 02F264 / 8 22 02F24 a.c. / 8 02F26 02F26 a.c./d.c. Without manual operation / 8 02F2200 02F220 28 02F220 02F2206 / 8 02F220 02F2208 / 8 042H0 042H06 / 8 042H0 042H04 42 042H0 042H08 / 8 042H09 042H0 42 042H 042H4 2 / 8 4 042H 042H2 Separate valve bodies, normally open (NO) ) Required coil type Connection ) Valve bodies are supplied without flare nuts. Separate flare nuts: / 4 in. or 6 mm, code no. 0L0 / 8 in. or 0 mm, code no. 0L / 2 in. or 2 mm, code no. 0L0 / 8 in. or 6 mm, code no. 0L6 2 ) With manual operation. ) The normal range of coils can be used for the NO valves, with the exception of the double frequency versions of 0 V, 0/60 Hz and 220 V, 0/60 Hz. Coils See "Coils for solenoid valves", DKRCC.PD.BS0.A.02 Flare ) Code no. Valve body without coil ) Solder ODF in. mm in. mm in. mm / 8 0 02F808 02F808 02F290 02F29 EVR 0 / 2 2 02F8090 02F8090 02F29 02F296 EVR a.c./d.c. / 8 6 02F8099 02F8099 02F299 02F299 / 8 22 02F20 02F20 / 8 22 02F260 02F260 / 8 28 02F269 02F29 a.c. / 8 02F268 02F268 4 DKRCC.PD.BB0.B2.02 / 20H9

Ordering (continued) Components Flare and solder connections Separate valve bodies, normally closed (NC) EVR Require coil type Connection a.c./d.c. Code no. Valve body + gaskets +bolts; without coil and flanges Without manual operation 02F24 Without manual operation 02F224 a.c. Flanges 02F2 02F24 d.c. 02F2 02F26 Coils See "Coils for solenoid valves", RD.J.E2.02. Flange sets Valve type EVR Connection Solder Code no. Weid in. mm in. mm in. / 2 02N / 8 6 02L 02L6 / 4 02N20 / 8 22 02L2 02L22 / 4 02N220 / 8 22 02L22 02L222 02N22 / 8 28 02L229 02L228 Example EVR without manual operation, code no. 02F224 + /2 in. weld flange set, code no. 02N + coil with termfnal box, 220 V, 0 Hz, code no. 08F60 (See "Coils for solenoid valves", DKRCC.PD.BS0.A.02 Accessories Description Mounting bracket for EVR 2,, 6 and 0 Strainer FA for direct mounting Code no. 02F09 See "FA" DKRCC.PD.BB0.B2.02 / 20H9

Capacity Liquid capacity Q e kw Liquid capacity Q e kw at pressure drop across valve p bar 0. 0. EVR 2 2.6. 4.6..9 EVR 4. 6.. 8.9 9.9. 8.6 22.8 26. 29.4 EVR 0.4 44. 4.2 62. 69.9 EVR 42. 60. 4. 8. 9. 82.2 6.0 4.0 6.0 84.0 99.0 9.0.0 9.0 220.0 6.0 22.0 28.0 29.0 68.0 26.0 2.0 4.0 26.0 88.0 4.0 8.0 2.0 822.0 99.0 R22 Liquid capacity Q e kw Capacities are based on liquid temperature t l = C ahead of valve, evaporating temperature t e = 0 C, superheat 0 K. Liquid capacity Q e kw at pressure drop across valve p bar R4a 0. 0. EVR 2 2.4.4 4.2 4.9.4 EVR 4..8. 8.2 9. 2..2 2.0 24. 2. EVR 0 28.8 40. 49.9.6 64.4 EVR 9.4. 68. 8.8 88..8 0.0.0 2.0 0.0 90.9 29.0 8.0 82.0 20.0 2.0 24.0 26.0 0.0 9.0 24.0 4.0 420.0 48.0 42.0 9.0 6.0 66.0 8.0 84.0 Liquid capacity Q e kw Liquid capacity Q e kw at pressure drop across valve p bar R404A/R0 0. 0. EVR 2.8 2.6.2. 4. EVR. 4.4.4 6.2 6.9 9.2.0.9 8.4 20. EVR 0 2.8.8 4.6 48.8 EVR 29.8 42.2. 9.6 66.8.4 8. 99.4.0 28.0 68.9 9.4 9.0 8.0 69.0.0 62.0 99.0 20.0 2.0 84.0 260.0 8.0 6.0 4.0 28.0 406.0 49.0 4.0 642.0 Correction factors When sizing valves, the plant capacity must be multiplied by a correction factor depending on liquid temperature t l ahead of valve/evaporator. When the corrected capacity is known, the selection can be made from the table. Correction factors for liquid temperature t l t l C 0 0 0 20 2 0 40 4 0 R22 0.6 2 8 0.92 0.96.0.0.0.6.22.0 R4a 0. 0.9 6 0.90 0.9.0.06.2.9.2. R404A/R0 0.6 0.2 6 0.9.0.09.20...4 6 DKRCC.PD.BB0.B2.02 / 20H9

Capacity (continued) Liquid capacity Q e kw Liquid capacity Q e kw at pressure drop across valve p bar 0. 0. R40C EVR 2 2.4.4 4..0. EVR 4.2.9.2 8.4 9. 2.. 2.4 24. 2.6 EVR 0 29. 4. 0.9 8. 6. EVR 4 6. 69. 8 90.0.0 09.0 4.0.0 2.0 9. 0.0 6.0 8.2 20.0.0 28.0 268.0 09.0 46.0 24.0 0.0 428.0 494.0.0 86.0 46.0 669.0.0 864.0 Capacities are based on liquid temperature t l = C ahead of valve, evaporating temperature t e = 0 C, and superheat 0 K. Correction factors When sizing valves, the plant capacity must be multiplied by a correction factor depending on liquid temperature t l ahead of valve/evaporator. When the corrected capacity is known, the selection can be made from the table. Correction factors based on liquid temperature t l t l C 0 0 0 20 2 0 40 4 0 R40C 0. 0.8 9 0.94.0.06.4.2..46 Capacities are based on liquid temperature t l = C ahead of evaporator. The table values refer to the evaporator capacity and are given as a function of evaporating temperature t e and pressure drop p across valve. Capacities are based on dry, saturated vapour ahead of valve. During operation with superheated vapour ahead of valve, the capacities are reduced by 4% for each 0 K superheat. Suction vapour capacity Q e EVR 0 EVR Pressure drop p bar Suction vapour capacity Q e kw at evaporating temperature t e C 40 0 20 0 0 +0 0. 0.98. 2. 2. 2. 2.8.2 4.6.4 6.. 6.. 9. 0.9 2.2 4.6.4 9.6 22.8 2.2 0. 0.94.. 2.2 2.... 4.2.9. 8.. 8. 9..8 4.2 6. 8.9 22. 2. 29..4 4.2.4 2.9.4.9 4.0 4...6 9. 0. 9. 0. 2..2.9 2 24. 28.8 2.6 8. 4.0.0..8 2.0. 4. 4.8 4.8.9 6.6 9..4 2..2..2 8.6 22.8 2. 29.8 6. 40. 46..0 6..8 2.2 2. 4..2 6.0.8. 8.2.2.9.9.4 6.4 9.0 22.4 2.4..8 4.8 0. 6.0 68.6 9.2 R22 2. 2.6.0. 6.2. 6.9 8. 9.8. 6. 8.8 6.0 20.0 22.6 26.6 2.6.6 42.6 2.2 6 66. 8. 94.0 Correction factors When sizing valves, the evaporator capacity must be multiplied by a correction factor depending on liquid temperature t l ahead of expansion valve. When the corrected capacity is known, the selection can be made from the table. Correction factors for liquid temperature t l t l C 0 0 0 20 2 0 40 4 0 R22 0.6 2 8 0.92 0.96.0.0.0.6.22.0 DKRCC.PD.BB0.B2.02 / 20H9

Capacity (continued) Capacities are based on liquid temperature t l = C ahead of evaporator. The table values refer to the evaporator capacity and are given as a function of evaporating temperature t e and pressure drop p across valve. Capacities are based on dry, saturated vapour ahead of valve. During operation with superheated vapour ahead of valve, the capacities are reduced by 4% for each 0 K superheat. Suction vapour capacity Q e EVR 0 EVR Pressure drop across valve p bar Suction vapour capacity Q e kw EVR 0 EVR Pressure drop across valve p bar Suction vapour capacity Q e kw at evaporating temperature t e C R4a 40 0 20 0 0 +0 6 0. 0.8...4...9 2.9...4 4.0 4.4.8 6.6. 9. 0.6. 4. 6. 8. 0. 0.98. 2. 2. 2. 2.8.2 4.6.4 6.. 6.. 9. 0.9 2.2 4.6.4 9.6 22.8 2.2 0. 4.0. 2.0 2.4 2. 2.... 6.. 6.. 8. 0. 2. 4. 6.8 20.0 22.6 26...... 2.6...6 4.2 4.8.0 8. 9. 8. 9...9 6. 8. 22.2 26. 29.6 4.8 4 46..4..9. 4.0 4. 4.. 6. 8.6 0.6. 0. 2. 4.0.2 2. 2.4 2..8.4 4. 2.8 8.. 2.0 2.4 4.0 4.9.. 6..8 0.6.0.0 2...9 2. 2.9 29.9.8 4.4 4.4 2.8 64.8 4.8 R404A/R0 Suction vapour capacity Q e kw at evaporating temperature t e C 40 0 20 0 0 +0 0.62 0. 2.. 2.0 2.0 2.4 2..9 4.6.2 4.6. 6.2. 9. 0. 2. 4.6 6. 9. 22.8 2.8 0.9..9 2. 2.6 2.6.2.6.0 6. 6.9 6.0. 8. 2..8 6.2 9.4 22.0 2. 0. 4....4 2..0.4. 4. 4. 6..9 9.0 8.0 9...8 8.0 2. 2. 28.8. 9. 4.0..8.2.9 4. 4...9 8..4 0.0 2.2.6 6.6 2 22. 26.6 2.6 6. 4..0 6.8 2.0 2..9 4.8.. 6.. 2. 4.4 2.2.0. 2 2.0 28.8 2.6 40.0 46..0 62. 2. 2.0 2.4 2.8 4..8 6. 6.4.9 9. 2..2. 4.8 8.2 2.0 24.6 0..0 9.4 48. 6.0 6..6 8. Correction factors When sizing valves, the plant capacity must be multiplied by a correction factor depending on liquid temperature t l ahead of valve/evaporator. When the corrected capacity is known, the selection can be made from the table. Correction factors based on liquid temperature t l t l C 0 0 0 20 2 0 40 4 0 R4a 0. 0.9 6 0.90 0.9.0.06.2.9.2. R404A/R0 0.6 0.2 6 0.9.0.09.20...4 8 DKRCC.PD.BB0.B2.02 / 20H9

Capacity (continued) Capacities are based on liquid temperature t l = C ahead of evaporator. The table values refer to the evaporator capacity and are given as a function of evaporating temperature t e and pressure drop p across valve. Capacities are based on dry, saturated vapour ahead of valve. During operation with superheated vapour ahead of valve, the capacities are reduced by 4% for each 0 K superheat. EVR 0 EVR Pressure drop across valve p bar Suction vapour capacity Q e kw at evaporating temperature t e C R40C 40 0 20 0 0 +0 0.6 0.2.4..9.9 2. 2..8 4.. 4.6.4 6..6 9. 2. 4.4 6. 8.9 22.6 2. 0.9..9 2. 2. 2..2.6. 6..0 6.. 8. 2.2.9 6. 9. 22. 2.4 4.6...4 2.6.0..6 4.2 4. 6.8 8. 9.2 8. 9..0..9 8.2 2 2.6 29.0.9 4 4.4.4..8.2 4.0 4.4 4.4.4 6. 8.6 0.. 0. 2.6 4.0. 2.0 2. 2.4.6. 42.8 2.4 8.2. 2. 2.4 4.0 4.9.6. 6.. 0.. 4.9 2.6.4.9 2. 2.8 29.8. 4.2 4. 2.6 64. 4.4 2.0 2. 2.9 4.9 6.0 6.9 6. 8.2 9. 2.9 6.2 8.2. 9.4 2.9 2.8 6. 4. 0.6 8.4 64. 9. 9.2 Correction factors When sizing valves, the evaporator capacity must be multiplied by a correction factor depending on liquid temperature t l ahead of expansion valve. When the corrected capacity is known, the selection can be made from the table. Correction factors based on liquid temperature t l t l C 0 0 0 20 2 0 40 4 0 R40C 0. 0.8 9 0.94.0.06.4.2..46 Hot gas defrosting With hot gas defrosting it is not normally possible to select a valve from condensing temperature t c and evaporating temperature t e. This is because the pressure in the evaporator as a rule quickly rises to a value near that of the condensing pressure. It remains at this value until the defrosting is finished. In most cases therefore, the valve will be selected from condensing temperature t c and pressure drop p across the valve, as shown in the example for heat recovery. Heat recovery The following is given: Refrigerant = R22 Evaporating temperature t e = 0 C Condensing temperature t c = + 40 C Hot gas temperature ahead of valve t h = + 8 C Heat recovery condenser yield Q h = 8 kw The capacity table for 22 with t c = + 40 C gives the the capacity for an EVR 0 as 8.9 kw, when pressure drop p is bar. The correction factor for t e = 0 C is given in the table as 0.94. The correction for hot gas temperature t h = + 8 C has been calculated as 4% which corresponds to a factor of.04. Q h must be corrected with factors found: With p = bar is Q h = 8.9 x 0.94 x.04 = 8. kw. With p = bar, Q h becomes only 6. x 0.94 x.04 = 6.2 kw. An would also be able to give the required capacity, but with p at approx. bar. The is therefore too small. The EVR is so large that it is doubtful whether the necessary p of apprx. bar could be obtained. An EVR would therefore be too large. Result: An EVR 0 is the correct valve for the given conditions. DKRCC.PD.BB0.B2.02 / 20H9 9

Capacity (continued) An increase in hot gas temperature t h of 0 K, based on t h = t c C, reduces valve capacity approx. 2% and vice versa. A change in evaporating temperature t e changes valve capacity; see correction factor table below. Hot gas capacity Q h kw EVR 2 EVR EVR 0 EVR Pressure drop across valve p bar Hot gas capacity Q h kw Evaporating temp. t e =-0 C. Hot gas temp. t h =t c C. Subcooling t sub =4 K Condensing temperature t c C +20 +0 +40 +0 +60 0.6 0.96.2.8 0.4 2.2. 2.4.4 4.8 6.6 9..6 8.0.4. 22.2..0. 2. 0. 4.8 2. 0.0 4. 8..8 2. 6. 49. 0.0 29.6 42. 6 82..0 4.4 6.4 96. 2.0 8.0 4.0 0.0.0 206.0 29.0 0.0 0..02..99.20.2 2.. 2..6. 6.8 9.9 6.0 8. 2. 6.2 2.6 8.2 6.6 22.2 2.. 22..9 42. 62. 8.8 26.8 8..2 4..4 44.6 6.8 8.9 24.0.4 02.0 40.0 99.0 8. 2.0 9.0 222.0 0.0 0. 0..0.48 2.08 9.26.80 2.49.2 2.6...4 6. 8.9 2.. 24.8 8.6 2.. 24.0.9 6. 2.4. 46.2 6.2 9. 28.0 40.0.4 8.2 2.9 46. 66.6 92. 0.0 2.6 4. 0.0 48.0 209.0 82..0 6.0 2.0 26.0 0.4 0..0. 2.6 0.92.0.8 2.6.64 2..4..9 6. 9.2.0 8. 2.6 8.8 2..8 2..0.0 24. 4. 49. 6.4 2 28.9 4.2 8.9 8 4.0 48.2 68.6 98.2.0 4.4. 0.0.0 26.0 8.0 2.0 2.0 246.0.0 R22 0. 0.8..9 2.9 0.9.2.8 2.68.69 2.8.9.6.9 0.9 6. 9..2 8.9 26.0 8.9 2. 8.0 2.9..2 24.4 4. 49.6 68.4 20.6 29. 4 9. 82.0 4.4 48.8 69.4 99.2.0.0 8..0 9.0 29.0 86.0 22.0 4.0 248.0 42.0 Correction factors When sizing valves, the table value must be multiplied by a correction factor depending on evaporating temperature t e. Correction factors for evaporating temperature t e t e C 40 0 20 0 0 +0 R22 0.90 0.94 0.9.0.0.0 0 DKRCC.PD.BB0.B2.02 / 20H9

Capacity (continued) An increase in hot gas temperature t h of 0 K, based on t h = t c C, reduces valve capacity approx. 2% and vice versa. A change in evaporating temperature t e changes valve capacity; see correction factor table below. Hot gas capacity Q h kw EVR 2 EVR EVR 0 EVR Pressure drop across valve p bar Hot gas capacity Q h kw R4a Evaporating temp. t e =-0 C. Hot gas temp. t h =t c C. Subcooling t sub =4 Kv Condensing temperature t c C +20 +0 +40 +0 +60 0.8 0.4 0.4.06.0 0.64 0.9.26.9 2..88 2.69..29.6 4. 6.4 8.9 2.6 8. 6. 8. 2..2 24.8.8 6.8 2.4. 4.6 4. 2 28.0 9.. 2.6.6 46.6 66.2 9.2.6.8 4. 06.0 2.0 8.8 84..0 66.0 28.0 0 0. 2. 0.6 0.96.8.90 2.2.99 2.84 4.08.62 8.0 4. 6.8 9.. 9. 6. 9.2. 8. 26.2 2..8 2.. 0..0 2. 0.6 42.2 6 24.9..0 0.0 9.8 6.8 8 2.0 6.0 62. 88.8 2.0 6.0 22.0 0.9 4. 0.0 0.99.42.98 2.82 2.0 2.9 4.22.86 8. 4.9.0 0.0.9 9.9 6. 9.6. 9.0 2.2.0 8.4 26.4 6.6 2.. 22. 4.9 62.8 2.9 6.8 2..2 0.0 4.4 8.9 84..0 6.0 64. 92. 2.0 8.0 262.0 2 0.60 6.2.0 0..0.44 2.08 2.88 2..00 4.28 6.6 8.2.0. 4.6 2 6. 9..9 20.0 2..2 8. 26. 8...8 22.6 2. 46.2 6.9 26.4.4.4.0 0.0 42. 9.8 8.4 2.0 0.0 6.8 9. 4.0 92.0 266.0 2 0.9.22 9 0..00.4 2.0 2.86 2.09 2.9 4.2 6.08 8.46.0. 4.4 2 6.8 9..8 9.8 2.. 8.6 26. 8.0 2.9. 22.. 4.6 6. 26.2. 2.9 6.0 06.0 4.8 9.4 84.6 22.0 69.0 6. 92.8 2.0 90.0 26.0 Correction factors When sizing valves, the table value must be multiplied by a correction factor depending on evaporating temperature t e. Correction factors for evaporating temperature t e t e C 40 0 20 0 0 +0 R4A 8 0.92 0.98.0.04.08 DKRCC.PD.BB0.B2.02 / 20H9

Capacity (continued) An increase in hot gas temperature t h of 0 K, based on t h = t c C, reduces valve capacity approx. 2% and vice versa. A change in evaporating temperature t e changes valve capacity; see correction factor table below. Hot gas capacity Q h kw EVR 2 EVR EVR 0 EVR Pressure drop across valve p bar Hot gas capacity Q h kw R404A/R0 Evaporating temp. t e =-0 C. Hot gas temp. t h =t c C. Subcooling t sub =4 K Condensing temperature t c C +20 +0 +40 +0 +60 0.6.9 8 0..0.46 2.0 2.8 2.6.0 4.4.94 8...2 0. 4. 9.9.0 9.9 4. 9. 2.2.4 8.9 2.. 2.4 6. 22. 2. 44. 62.8 26.8.9 4.2 4.2 0.0 4.0 60.6 86. 9.0 6.0 6.0 94.8 6.0 86.0 262.0 4 0.62.2.0 0.4.04.48 2.04 2.8 2.8.08 4.8 6.0 8.2.2. 4.4 20.. 0.0 4. 9. 2.. 9.2 2.4.8. 6.4 2. 2.9 4.4 64.0 2.4 8.4 4.9.6 0.0 4.8 6.4 8.8 2.0.0 68. 96.0.0 89.0 266.0 0.6.2 9 0..0.4 2.0 2.84 2..0 4. 6.02 8.4.. 0. 4. 20.0.0 9.9 4.2 9.6 2.6. 9. 2.2. 2.6 6. 22.9 2. 4.2 6.2 26.9 8.2 4.. 0.0 4.0 6. 8.2 20.0 68.0 6. 9. 6.0 88.0 26.0 0 0.8 2.9 2 0.69 0.98.9 2.00 2.4 2.0 2.90 4..92 8.0 4.9 6.9 9.8 4. 9.2 6. 9.4.4 9.2 26. 2.8 8.2 2.8.0 0.6.4 2.8.0 44.4 6 2.6 6.. 4.0 0.0 40.9 8. 82. 8.0 62.0 64.0 9 29.0 8.0 2.0 0. 0. 0..0.48 0.6 9.2.8 2.0.86 2.64.6..40 4.4 6. 8.9 2.8.6 6. 8.6 2.2. 24. 6. 2..6 46.2 4.0 9.8 28.2 40.. 2..0 4.0 6.2 92.. 2.8.2 0.0 48.0 8. 82..0 68.0 2.0 Correction factors When sizing valves, the table value must be multiplied by a correction factor depending on evaporating temperature t e. Correction factors for evaporating temperature t e t e C 40 0 20 0 0 +0 R440A/R0 6 8 0.9.0.0.0 2 DKRCC.PD.BB0.B2.02 / 20H9

Capacity (continued) An increase in hot gas temperature t h of 0 K, based on t h = t c C, reduces valve capacity approx. 2% and vice versa. A change in evaporating temperature t e changes valve capacity; see correction factor table below. Hot gas capacity Q h kw EVR 2 EVR EVR 0 EVR Pressure drop across valve p bar Hot gas capacity Q h kw R40C Evaporating temp. t e =-0 C. Hot gas temp. t h =t c C. Subcooling t sub =4 K Condensing temperature t c C +20 +0 +40 +0 +60 0. 0..08.48 2.09 0.9.28.8 2.0. 2..8.4.4 6. 9.0 2.8.6 24.9 8.6 2..6 24..9 6.6 2.6.6 46. 6. 9.9 28. 4.4 8.4.2 4.2 6.4 92.4.0.. 0.9 4.8 209.4 82.9.6 69. 20. 2.9 0. 0.8.2. 2.9 0.94.2.89 2.4.69 2.8 4.0.6. 0.9 6.6 9.4..8 26.0 9.0 2.8 8. 24.4.. 24.. 4 68. 20. 29. 42. 6. 82.0 4. 49. 96. 6.4.2 8. 2.2 4.0 28.9 86.4 2.2 4.9 244.2 4.0 0. 0.4.8 2.2 0.9..9 2.66. 2.8 4.0..9. 6. 9..6 8. 26. 9.2 2.9 8. 2. 6.. 2.0.6 49.4 69.8 2. 0.0 42.8 9. 8..2 0.0. 98.8 9. 6. 9.9 4. 8.4 22.6 88. 2.2 8. 24.2 48.8 0.6 0.4 2.2 0.96..92 2.6.9 2.8.. 8.2.2 6.8 9.6. 9.4 26.6 9.2 8. 26. 6.4. 2... 2.2 42.8 6. 84.4. 02. 4 6.6 8 4.4 6. 224.6 88.4 2.8 8.9 2.8 0. 0.4 0.6.09.6 2. 0.9.29.8 2.6.62 2..8.. 0. 6.4 9. 2.9 8. 2. 8. 2.4.6 2.4 4.8 6.9 2.9 4.0 48.6 6.0 2 28. 4 8. 8. 4.8 68.0 9.2 4..9 6. 08.8.8 24.6 84. 9.6 0. 24.0.2 Correction factors When sizing valves, the table value must be multiplied by a correction factor depending on evaporating temperature t e. Correction factors for evaporating temperature t e t e C 40 0 20 0 0 +0 R40C 0.90 0.94 0.9.0.0.0 DKRCC.PD.BB0.B2.02 / 20H9

Capacity (continued) Hot gas capacity G h kg/s EVR 2 EVR EVR 0 EVR Hot gas temperature t h C +90 Condensing temperature t c C Hot gas capacity G h kg/s at pressure drop across valve p bar 0. 2 4 6 8 0.00 0.006 0.00 0.009 0.0 0.0 0.0 0.064 0.04 0.084 0.084 0.09 69 94 2 0 9 64 0. 0.8 0.9 0.69 0.04 4 0.968. 0.00 0.009 0.0 0.04 0.06 0.0 0.04 0.049 0.088 02 6 6 4 6 0.0 0.2 0.66 0.24 0.98 0.9 6 0.98..8.28 0.0 0.0 0.0 0.06 0.09 2 0.049 0.0 0.066 6 8 8 08 0.0 0.9 0.66 98 0.99 0.04 4 0.96..29.2.98 2.08 0.0 0.0 0.06 0.09 2 6 0.0 0.06 0.08 8 8 08 44 0.46 6 88 99 0.86 0.6 6 0.96.06..62.28 2.08 2.44 0.04 0.0 4 9 0.08 0.086 9 2 0 82 26 69 0.6 2 0.9 8 0.42 0.64 0. 86.06.68.446.2.82 2.26 2.69 0.0 0.08 0.0 0.09 0.0 0.092 4 9 8 84 6 8 0.68 2 0.4 42 0.66 0.689 0.22 0.92.2.9.09.8.84 2.8 2.8 0.0 0.09 6 0.09 0.0 0.09 4 82 2 84 9 98 0.68 8 0.9 42 0.4 0.6 0.22 0.98.69 0.0 0.09 6 0.0 0.09 0.0 0.09 4 82 84 9 0.04 0.68 8 0.608 42 0.4 0.22 0.22 0.98.92 R 22 0.0 6 0.0 0.09 0.0 0.098 4 82 2 84 9 0.0 0.68 8 0.6 42 0.4 0. 0.22 0.98.9..909.94.9 2.9 2.98.04.0 R4a Hot gas temperature t h C Condensing temperature t c C Hot gas capacity G h kg/s at pressure drop across valve p bar 0. 2 4 6 8 EVR 2 0.00 0.006 0.00 0.00 0.008 0.009 0.008 0.0 0.008 0.0 0.04 0.008 0.0 0.0 0.0 0.0 0.0 EVR 0.008 0.009 0.0 0.0 0.0 0.06 0.0 0.06 0.04 0.08 0.04 0.08 0.08 0.08 4 8 0.08 0.04 0.04 0.049 0.09 0.04 0.0 0.068 0.04 0.06 0.06 0.0 0.06 0.0 0.0 0.0 EVR 0 0.0 0.066 0.06 0.0 0.09 0 0.094 4 0.098 6 0.098 2 2 2 2 2 2 2 EVR +60 0.04 0.08 49 4 9 4 99 8 8 24 4 8 4 0.0 0. 29 2 8 0.4 2 29 6 2 8 0.4 4 6 2 0.4 2 6 2 2 2 0.4 2 2 2 9 09 4 9 86 0.6 96 0.68 44 0. 09 0.08 0. 6 0.6 6 0.42 6 0.42 0.42 0.42 92 0.4 0.9 0.9 6 0.49 86 0.602 0.2 0.06 0.668 0.06 0.69 6 0.69 8 0.69 8 8 8 8 0.6 0.64 0.68 0.6 9 0.9 0.994.9 26.09.4 26.08.42.08.446.08.446.446.446 An increase in hot gas temperature t h of 0 K reduces valve capacity approx. 2% and vice versa. 0.4.002 0.998.92.402.24..8.29.04 2..29. 2.2. 2.29. 2.29 2.29 4 DKRCC.PD.BB0.B2.02 / 20H9

Capacity (continued) Hot gas capacity G h kg/s EVR 2 EVR EVR 0 EVR Hot gas temperature t h C +60 Condensing temperature t c C Hot gas capacity G h kg/s at pressure drop across valve p bar 0. 2 4 6 8 0.00 0.008 0.009 0.0 0.0 0.0 0.04 0.08 0.04 0.08 0.09 02 0 2 9 2 8 0.24 68 0.29 0.62 0.6 62.0.9.48 0.009 0.0 0.06 0.08 0.04 0.04 0.06 2 4 46 6 89 9 0. 0. 0.48 0. 0.6 0.4 0.9.069.98.44.8 0.04 0.06 4 8 0.062 0.082 48 94 9 24 2 0.9 0. 68 0.4 0.62 0.6 8.0.24.46 2.946 2.24 2. 0.04 0.0 0.09 4 9 0.08 0.09 24 0.0 48 0.26 0.606 0.8 0.6 0.2 8.02.88.42 86.99 2.28 2.6.0 0.06 0.09 6 0.0 0.0 0.0 0.09 08 8 2 4 89 0.9 8 0.8 0.6 0.6 0.696 2 0.942.6.26.9.84 2.6 2.406 2.89.84 0.06 4 6 0.0 0.09 0.09 0.098 6 88 4 0.0 0.6 9 0.64 0.29 0.94 0. 0.969.20.4.8.964 2.4 2.4.068.6 R404A/R0 0.06 0.0 0.04 0.08 0 22 9 4 88 49 0.6 0.8 0. 0.62 0.6 0.6 0.8 0.92 0.98.29.49.8 2.022 2.4 2.4.6.80 0.06 0.0 0.04 0.08 0 26 9 4 0. 49 0. 0.9 0. 0.6 0.8 0.6 0.6 0.942 0.98.24.9.8 2.02 2. 2.4.66.926 0.06 0.0 0.04 0.08 02 28 9 4 0.0 49 0.2 0.99 0. 0.69 0.99 0.6 0.6 0.99 0.98.2.66.8 2.02 2. 2.4.66.99 An increase in hot gas temperature t h of 0 K reduces valve capacity approx. 2% and vice versa. EVR 2 EVR EVR 0 EVR Hot gas temperature t h C +90 Condensing temperature t c C Hot gas capacity G h kg/s at pressure drop across valve p bar 0. 2 4 6 8 0.004 0.006 0.006 0.00 0.0 0.0 9 0.0 0.08 0.069 0.08 0.09 0.09 0 9 8 8 9 0.0 8 0. 6 0.82 0.669 0.6 0.9.04.88 0.006 0.009 0.008 0.0 0.0 0.0 0.040 0.046 0.0 0.09 2 2 4 6 49 88 0.29 99 0.46 0.9 89 0.66 0.646 0.98 0.924.06.24.44 0.008 0.08 0.040 0.0 4 0.0 0.062 0.0 2 48 6 94 2 0.29 0.88 48 0.9 6 0.8 0.64 0.6 9.04.242.4 4.942 2.244 0.08 0.040 0.0 4 8 0.06 0.0 0.08 4 2 02 89 2 66 0. 0.2 2 0.44 0.69 0.8 89.042.206.4.0.884 2.26 2.66 0.00 0.0 0.084 2 6 0.06 0.08 0.094 2 8 2 98 46 9 0.98 9 0.88 0.9 0.0 0.9 0.966..2.6.88.989 2.46 2.9 0.06 0.098 2 8 0.04 0.06 0.08 0 4 9 4 02 6 0.6 0 0.9 0.6 86 0.62 0.8 0.94.08.28.29 6 2.02 2.02 2.94. 0.06 09 2 9 0.06 0.06 0.08 0 02 2 04 6 0. 08 0. 0.66 9 0.6 0.9 0.04.298 R40C 0.06 09 2 9 0.0 0.06 0.08 08 02 6 04 6 0. 08 0. 0.6 9 0.6 0 0.04.2 0.06 2 2 9 0.0 0.06 0.08 09 02 8 04 6 0.9 08 0. 0.68 9 0.6 4 0.04.29 99 2.9 2.6 2. 2.66..8.9 DKRCC.PD.BB0.B2.02 / 20H9

Design / Function Danfoss 2F2. EVR 2 (NC) EVR 0 (NC) EVR 0 (NO) Danfoss 2F8.6.2 Danfoss 2F268. 40 6 20 Pg. (NC) and 40 (NC) 4. Coil 6. Armature 8. Valve plate / Pilot valve plate 20. Earth terminal 24. Connection for flexible steel hose 28. Gasket 29. Pilot orifice 0. O-ring. Piston ring 6. DIN plug. DIN socket (to DIN 460) 40. Protective cap/terminal box 4. Valve cover 44. O-ring 4. Valve cover gasket 49. Valve body 0. Gasket. Threaded plug. Manual operation spindle. Equalization hole 4. Main channel. Pilot channel 6. Compression spring 80. Diaphragm/Servo piston 8. Valve seat 84. Main valve plate 90. Mounting hole 6 EVR solenoid valves are designed on two different principles:. Direct operation 2. Servo operation. Direct operation EVR 2 and are direct operated. The valves open direct for full flow when the armature (6) moves up into the magnetic field of the coil. This means that the valves operate with a min. differential pressure of 0 bar. The teflon valve plate (8) is fitted direct on the armature (6). Inlet pressure acts from above on the armature and the valve plate. Thus, inlet pressure, spring force and the weight of the armature act to close the valve when the coil is currentless. 2. Servo operation 22 are servo operated with a "floating" diaphragm (80). The pilot orifice (29) of stainless steel is placed in the centre of the diaphragm. The teflon pilot valve plate (8) is fitted direct to the armature (6). When the coil is currentless, the main orifice and pilot orifice are closed. The pilot orifice and main orifice are held closed by the weight of the armature, the armature spring force and the differential pressure between inlet and outlet sides. When current is applied to the coil the armature is drawn up into the magnetic field and opens the pilot orifice. This relieves the pressure above the diaphragm, i.e. the space above the diaphragm becomes connected to the outlet side of the valve. The differential pressure between inlet and outlet sides then presses the diaphragm away from the main orifice and opens it for full flow. Therefore a certain minimum differential pressure is necessary to open the valve and keep it open. For EVR 6 22 valves this differential pressure is 0.0 bar. When current is switched off, the pilot orifice closes. Via the equalization holes () in the diaphragm, the pressure above the diaphragm then rises to the same value as the inlet pressure and the diaphragm closes the main orifice., 2 and 40 are servo operated piston valves. The valves are closed with currentless coil. The servo piston (80) with main valve plate (84) closes against the valve seat (8) by means of the differential pressure between inlet and outlet side of the valve, the force of the compression spring (6) and possibly the piston weight. When current to the coil is switched on, the pilot orifice (29) opens. This relieves the pressure on the piston spring side of the valve. The differential pressure will then open the valve. The minimum differential pressure needed for full opening of the valves is bar. EVR (NO) has the opposite function to EVR (NC), i.e. it is open with de-energised coil. EVR (NO) is available with servo operation only. DKRCC.PD.BB0.B2.02 / 20H9

Material specifications EVR 2 to 2 8 2 Danfoss 2F66.0 Solenoid valves Standard No. Description Material Analysis Mat.no. W.no. DIN EN Valve body EVR 2 to 2 Brass CuZn40Pb2 CW6N 2.0402 62-26 EVR 2 to 6 Stainless steel X CrNi8-0.40 0088 2 Cover EVR 0 to 22 Brass CuZn40Pb2 CW6N 2.0402 62-26 Cast iron EN-GJS-400-8-LT EN-JS02 6 Armature tube EVR 2 to 2 Stainless steel X2 CrNi9-.406 0088 4 Armature tube nut Stainless steel X8 CrNiS 8-9.40 0088 Gasket EVR 2 to 2 Rubber Cr 6 Gasket Al. gasket Al 99..02 020 Solder tube Copper SF-Cu CW024A 2.0090 8 2449 8 Screws EVR 2 to 2 Stainless steel A2-0 06 9 Spindle for man. operat. Stainless steel X8 CrNiS 8-9.40 0088 0 Gasket Rubber Cr to 40 Solenoid valves Standard No. Description Material Analysis Mat.no. W.no. DIN EN Valve body /40 Cast Iron EN-GJS-400-8-LT EN-JS02 6 2 Cover /40 Brass CuZn40Pb2 CW6N 2.0402 26 Armature tube /40 Stainless steel X2 CrNi9-.406 0088 4 Armature tube nut /40 Stainless steel X8 CrNiS 8-9.40 0088 Gasket /40 Rubber Cr 6 Gasket /40 Al. gasket Al 99..02 020 Solder tube /40 Copper SF.Cu CW024A 2.0090 8 2449 8 Screws /40 Stainless steel A2-0 06 9 Spindle for. man. operation /40 Stainless steel X8 CrNiS 8-9.40 0088 DKRCC.PD.BB0.B2.02 / 20H9

Dimensions and weights EVR (NC) 2 and (NO), flare connection Weight of coil 0 W: approx. 0. kg 2 and 20 W: approx. 0. kg NV With cable connection coil With DIN plugs coil With terminal box coil Connection Flare H H 2 H H 4 L L 2 L L 4 NV L max. 0 W 2/20 W in. mm mm mm mm mm mm mm mm mm mm mm mm mm mm kg EVR 2 / 4 6 4 9 4 4 8 68 0. EVR EVR 0 / 4 6 4 9 4 4 8 68 0. / 8 0 4 9 4 4 8 68 0. / 8 0 4 8 0 82 4 4 4 8 68 0.6 / 2 2 4 8 0 88 4 4 4 8 68 0.6 / 2 2 6 9 0 4 4 6 8 46 68 / 8 6 6 9 0 4 4 6 8 46 68 EVR / 8 6 9 86 49 4 4 24 8 6 68.0 B B max. Weight with coil 8 DKRCC.PD.BB0.B2.02 / 20H9

Dimensions and weights (continued) EVR (NC) 2 22 and 22 (NO), solder connection Weight of coil 0 W: approx. 0. kg 2 and 20 W: approx. 0. kg With cable connection coil With DIN plugs coil With terminal box coil Connection Solder H H 2 H H 4 L L 2 L L 4 L max. 0 W 2/20 W in. mm mm mm mm mm mm mm mm mm mm mm mm mm kg EVR 2 / 4 6 4 9 02 4 4 8 68 0. EVR EVR 0 EVR / 4 6 4 9 02 4 4 8 68 0.6 / 8 0 4 9 9 4 4 8 68 0.6 / 8 0 4 8 0 9 4 4 8 68 0.6 / 2 2 4 8 0 2 0 4 4 8 68 0.6 / 2 2 6 9 2 0 4 4 8 46 68 0. / 8 6 6 9 60 2 4 4 8 46 68 0. / 8 6 9 86 49 6 2 4 4 8 6 68.0 / 8 22 9 86 6 4 4 8 6 68.0 / 8 22 20 90 9 4 4 8 2 68. / 8 28 20 90 24 22 4 4 8 2 68. / 8 20 90 28 2 4 4 8 2 68. B B max. Weight with coil DKRCC.PD.BB0.B2.02 / 20H9 9

Dimensions and weights (continued) EVR (NC) 2, 2 og 40, solder connection and 40 terminal box and 40 with terminal box coil Weight of coil 0 W: approx. 0. kg 2 and 20 W: approx. 0. kg Coil with cable Coil with DIN plugs Connection Solder L 2 H H 2 H H 4 L cable connection Coil with L Coil with DIN connection L 4 Coil with terminal box L max. 0 W 2/20 W in. mm mm mm mm mm mm mm mm mm mm mm mm mm kg / 8 28 8 8 2 26 22 4 4 8 9 68.0 / 8 8 8 2 28 2 4 4 8 9 68. / 8 4 28 2 4 4 8 80 68 4. / 8 42 4 28 29 4 4 8 80 68 4.6 / 8 42 4 28 29 4 4 8 80 68 4.6 2 / 8 4 4 28 4 4 4 8 80 68 4.6 B B max. Weight with coil EVR (NC) and 20, flange connection Coil with cable Coil with DIN plugs Weight of coil 0 W: approx. 0. kg 2 and 20 W: approx. 0. kg With terminal box coil Weight of flange set For EVR : 0.6 kg For : 0.9 kg H H 2 H H 4 L L L 2 connection Coil with cable L Coil with DIN connection L 4 Coil with terminal box L max. B B max. 0 W 2/20 W mm mm mm mm mm mm mm mm mm mm mm mm mm kg EVR 9 86 9 49 2 68 4 4 8 80 68.2 20 90 2 8 4 4 8 96 68. Weight with coil excl. flanges 20 DKRCC.PD.BB0.B2.02 / 20H9