Quantum Physics and Atomic Models Chapter Questions. 1. How was it determined that cathode rays possessed a negative charge?

Similar documents
PSI AP Physics How was it determined that cathode rays possessed a negative charge?

AP Physics Study Guide Modern Physics I. Atomic Physics and Quantum Effects 1. Who is generally credited with the discovery of the electron?

1 The Cathode Rays experiment is associated. with: Millikan A B. Thomson. Townsend. Plank Compton

Updating the Atomic Theory

THE NATURE OF THE ATOM. alpha particle source

Atomic Theory. Developing the Nuclear Model of the Atom. Saturday, January 20, 18

Updating the Atomic Theory

Lecture PowerPoints. Chapter 27 Physics: Principles with Applications, 7th edition Giancoli

Chapter 37 Early Quantum Theory and Models of the Atom. Copyright 2009 Pearson Education, Inc.

Early Atomic Theories and the Origins of Quantum Theory. Chapter 3.1

The Development of Atomic Theory

Atomic Structure Discovered. Dalton s Atomic Theory. Discovery of the Electron 10/30/2012

Chapter 37 Early Quantum Theory and Models of the Atom

CHAPTER 27 Quantum Physics

Quantum and Atomic Physics - Multiple Choice

The birth of atomic physics and quantum mechanics. Honors Physics Don Rhine

Explain the term subshell. 5. Explain de-broglie equation (relationship). 6. Discuss the dual nature of electrons

Constants & Atomic Data. The birth of atomic physics and quantum mechanics. debroglie s Wave Equations. Energy Calculations. λ = f = h E.

Preview. Atomic Physics Section 1. Section 1 Quantization of Energy. Section 2 Models of the Atom. Section 3 Quantum Mechanics

Exam 2 Development of Quantum Mechanics

Where are we? Check-In

Planck s Quantum Hypothesis Blackbody Radiation

Chapter 27 Early Quantum Theory and Models of the Atom Discovery and Properties of the electron

Democritus & Leucippus (~400 BC) Greek philosophers: first to propose that matter is made up of particles called atomos, the Greek word for atoms

Early Quantum Theory & Models of the Atom (Ch 27) Discovery of electron. Blackbody Radiation. Blackbody Radiation. J. J. Thomson ( )

Atomic Theory Timeline

Professor K. Atomic structure

Chapter 38 and Chapter 39

Atomic Structure-Notes

SECTION A Quantum Physics and Atom Models

Physics 30 Modern Physics Unit: Atomic Basics

Lecture 6 - Atomic Structure. Chem 103, Section F0F Unit II - Quantum Theory and Atomic Structure Lecture 6. Lecture 6 - Introduction

Historical Background of Quantum Mechanics

Radiation can be defined as the propagation of energy through matter or space. It can be in the form of electromagnetic waves or energetic particles.

Greek Philosophers (cont.)

Models of the Atom. Spencer Clelland & Katelyn Mason

LECTURE 23 SPECTROSCOPY AND ATOMIC MODELS. Instructor: Kazumi Tolich

CHAPTER 3 The Experimental Basis of Quantum Theory

Atomic Theory. Democritus to the Planetary Model

Physics 1C Lecture 29A. Finish off Ch. 28 Start Ch. 29

Chapter 27 Lecture Notes

3. Particle nature of matter

Chapter 7: The Quantum-Mechanical Model of the Atom

WAVES AND PARTICLES. (c)

The Structure of the Atom Review

CHAPTER 3 The Experimental Basis of Quantum

History of the Atomic Model

Lecture 11 Atomic Structure

UNIT TWO TEST HISTORY OF ATOM, STRUCTURE OF ATOM, ATOMIC MASS CARBON-12

Chapter 28. Atomic Physics

Explain how Planck resolved the ultraviolet catastrophe in blackbody radiation. Calculate energy of quanta using Planck s equation.

Radiation - Electromagnetic Waves (EMR): wave consisting of oscillating electric and magnetic fields that move at the speed of light through space.

Physics 1302, Exam 4 Review

The Atom. Result for Hydrogen. For example: the emission spectrum of Hydrogen: Screen. light. Hydrogen gas. Diffraction grating (or prism)

Topic III Quest Study Guide

Particle nature of light & Quantization

1) Introduction 2) Photo electric effect 3) Dual nature of matter 4) Bohr s atom model 5) LASERS

1. What is the minimum energy required to excite a mercury atom initially in the ground state? ev ev ev

CHEMISTRY. Chapter 6 Electronic Structure of Atoms

History of the Atom. Scientists and Their Contribution to the Model of an Atom

Introduction to Atomic Structure Multiple Choice HW

Chapter 27. Quantum Physics

Topic 7 &13 Review Atomic, Nuclear, and Quantum Physics

Chapter-11 DUAL NATURE OF MATTER AND RADIATION

Particle Detectors and Quantum Physics (2) Stefan Westerhoff Columbia University NYSPT Summer Institute 2002

Briefly explain your choice.

12/04/2012. Models of the Atom. Quantum Physics versus Classical Physics The Thirty-Year War ( )

Memorial to a Scientist

Exam 2 Development of Quantum Mechanics

2/28/2016 ATOMS) ATOMS. Physics 2D. PHYS 342 Modern Physics Atom I: Rutherford Model and Bohr Model

IB Physics SL Y2 Option B (Quantum and Nuclear Physics) Exam Study Guide Practice Problem Solutions

Glencoe: Chapter 4. The Structure of the Atom

1. Based on Dalton s evidence, circle the drawing that demonstrates Dalton s model.

Chapter 27 Early Quantum Theory and Models of the Atom

THE EDUCARE (SIROHI CLASSES) TEST SERIES 2018

Einstein. Quantum Physics at a glance. Planck s Hypothesis (blackbody radiation) (ultraviolet catastrophe) Quantized Energy

Physics 126 Practice Exam #4 Professor Siegel

Atomic Structure and the Periodic Table

Physics. Light Quanta

2) The energy of a photon of light is proportional to its frequency and proportional to its wavelength.

Unit 1, Lesson 01: Summary of Atomic Structure so far

Energy levels and atomic structures lectures chapter one

Learning Objectives and Worksheet I. Chemistry 1B-AL Fall 2016

Light Study of light by Newton helped lead to the quantum mechanical model. INTRO AND BACKGROUND: Atomic Structure. Electromagne?

Democritus of Abdera. John Dalton. Dalton s Atom. Dalton s Atomic Theory Ancient Greece - 4th century BC. Eaglesfield, England

Get out your diagram from your research paper. Get out a sheet of paper to take some notes on.

Atomic Theories. John Dalton s Atomic Theory: Joseph John (J.J.) Thomson s Atomic Theory: Ernest Rutherford s Atomic Theory:

1. Historical perspective

Chapter 9: Electrons and the Periodic Table

Discovery of the Atomic Nucleus. Conceptual Physics 11 th Edition. Discovery of the Electron. Discovery of the Atomic Nucleus

Atomic Theory. Early models

Electrons! Chapter 5

CHEMISTRY Matter and Change

DEMOCRITUS - A philosopher in the year 400 B.C. - He didn t do experiments and he wondered if atoms kept on being divided, that there would only be

Accelerated Chemistry Study Guide Atomic Structure, Chapter 3

I. Multiple Choice Questions (Type-I)

2 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

Chapter 28. Atomic Physics

Chapter 7. The Quantum- Mechanical Model of the Atom. Chapter 7 Lecture Lecture Presentation. Sherril Soman Grand Valley State University

EMISSION AND ABSORPTION SPECTRUM

Transcription:

Quantum Physics and Atomic Models Chapter Questions 1. How was it determined that cathode rays possessed a negative charge? 2. J. J. Thomson found that cathode rays were really particles, which were subsequently named electrons. What property of electrons did he measure and with what piece of laboratory equipment? 3. Who determined the charge on an electron, and what was the name of the experiment? 4. How are X-rays produced? What is the charge on an X-ray? Who made the discovery? 5. Who discovered spontaneous radiation, and how was it observed? 6. What are the three types of radiation? Summarize their properties. 7. What is the major characteristic of a Blackbody? 8. When a blackbody is heated, what does it emit? 9. What was wrong with the classical physics prediction of Blackbody radiation as the temperature of the object got hotter? What was the nickname of this problem? 10. What assumption did Max Planck make to solve the Blackbody radiation problem? 11. When light is shown on certain metals, what is emitted by the metal? What is this called? 12. What properties of the Photoelectric effect could not be explained by the wave theory of light? 13. How did Albert Einstein explain the Photoelectric effect? Who first postulated that light was made up of particles? 14. Who was the first physicist who used an experimental method to propose what elements were made up of? What properties did he attribute to the atom? 15. Describe the Thomson Plum Pudding model of the atom. 16. What experiment was performed by Ernest Rutherford? How did it change the Thomson model? 17. What comprises most of an atom? 18. What properties of atoms were not explained by the Rutherford model? 19. How did Neils Bohr resolve the problems with the Rutherford model? Quantum Physics and Atomic Models - 1 v 1.1

20. How were the equations for the Hydrogen spectra first created? 21. What are the limitations of the Bohr model? 22. Did the Compton shift support the wave or the particle model of light? What particles were involved in the collision that generated the wavelength shift? 23. Who demonstrated the existence of the neutron? What role does the neutron play in the nucleus? 24. Which physicists described light as a particle? Which physicists described light as a wave? 25. Who was the first to propose that particles (such as electrons) could act as waves? Why do we not see large objects (like other people) as waves? 26. Can the momentum and position of an electron be measured precisely at the same time? What is the principle called? 27. The wave function was developed by Erwin Schrodinger to explain the quantum world if the wave function is known, various quantities, such as mass and momentum can be found. What is the classical physics analogue of the wave function? 28. Is it possible to know exactly where an electron is? What does the Schrodinger wave equation predict? 29. What theory integrated the explanation of electromagnetic force and quantum physics? 30. What theory integrated the explanation of the electromagnetic force and the weak nuclear force? 31. What theory explains the strong nuclear force? 32. What model explains the integration of the electromagnetic, weak nuclear and strong nuclear forces? 33. What theories are trying to explain everything in the universe? 34. How much of the universe can physicists actually observe? Quantum Physics and Atomic Models - 2 v 1.1

Chapter Problems Electrons, X-rays and Radioactivity Class Work 1. In an Oil-drop experiment, a drop of oil with mass 4.1x10-15 kg is held motionless between two parallel plates, 2.0 cm apart, with a Voltage difference of 500.0 V. What is the net charge on the oil drop? 2. By using a Mass Spectrometer, the charge to mass ratio for an electron is found to be approximately 1.8x10 11 C/kg. Given that the charge on an electron is 1.6x10-19 C, what is the mass of the electron found in this experiment? Homework 3. In an Oil-drop experiment, a drop of oil with mass 8.2x10-15 kg is held motionless between two parallel plates, 4.0 cm apart, with a Voltage difference of 500.0 V. What is the net charge on the oil drop? 4. By using a Mass Spectrometer, the charge to mass ratio for an electron is found to be approximately 1.7x10 11 C/kg. Given that the charge on an electron is 1.6x10-19 C, what is the mass of the electron found in this experiment? Blackbody Radiation and the Photoelectric Effect Class Work 5. What is the energy of a photon with a frequency of 5.0x10 5 Hz? 6. What is the energy of a photon with a wavelength of 6.0x10-3 m? 7. What is the frequency of a photon carrying energy of 3.5x10-18 J? 8. What is the wavelength of a photon with energy of 7.3x10-17 J? 9. What wavelength is the maximum contributor to an object s color at a temperature of 3800 K? 10. A photoelectric surface has a work function of 3.7x10-19 J. What is the minimum frequency of photons that will eject electrons from the surface? 11. A photoelectric surface has a work function of 3.7x10-19 J. What is the maximum wavelength of photons that will eject electrons from the surface? Quantum Physics and Atomic Models - 3 v 1.1

12. A metal has a work function of 3.7x10-19 J. What is the maximum kinetic energy of photoelectrons if the incident light has a frequency of 9.4x10 14 Hz? 13. In a photoelectric experiment the threshold frequency is 5.3x10 14 Hz. a. What is the work function? The surface is exposed to light with a frequency of 6.6x10 14 Hz. b. What is the maximum kinetic energy of photoelectrons? Homework 14. What is the energy of a photon with a frequency of 4.0x10 18 Hz? 15. What is the energy of a photon with a wavelength of 9.0x10-9 m? 16. What is the frequency of a photon carrying energy of 8.6x10-20 J? 17. What wavelength is the maximum contributor to an object s color at a temperature of 4200 K? 18. A photoelectric surface has a work function of 3.4x10-19 J. What is the minimum frequency of photons that will eject electrons from the surface? 19. A photoelectric surface has a work function of 7.5x10-19 J. What is the maximum wavelength of photons that will eject electrons from the surface? 20. A metal has a work function of 8.3x10-19 J. What is the maximum kinetic energy of photoelectrons if the incident light has a frequency of 3.4x10 15 Hz? 21. In a photoelectric experiment the threshold frequency is 6.2x10 14 Hz. a. What is the work function? The surface is exposed to a frequency of 7.5x10 14 Hz. b. What is the maximum kinetic energy of photoelectrons? 22. What is the wavelength of a photon with energy of 5.1x10-16 J? Quantum Physics and Atomic Models - 4 v 1.1

Atomic Models Class Work 23. In the hydrogen atom an electron is excited to an energy level n = 4 then it falls down to the level n = 2. a. What is the wavelength of the emitted photon? b. What type of electromagnetic radiation is this photon associated with? c. What is the next possible transition? d. What is the wavelength associated with this transition? 24. The electron in a hydrogen atom has an energy of -13.6 ev on the ground level. a. Calculate the first five energy levels (n=1 to n=5). b. Draw the energy diagram including the ground level. c. The electron is on the n=4 level; draw all possible transitions. Homework 25. In the hydrogen atom an electron is excited to an energy level n = 5 then it falls down to the level n = 3. a. What is the wavelength of the emitted photon? b. What type of electromagnetic radiation is this photon associated with? c. What are the next possible transitions? d. What are the wavelengths associated with these transitions? 26. The electron in a helium atom has an energy of -54.4 ev on the ground level. a. Calculate the first five energy levels (n=1 to n=5). b. Draw the energy diagram including ground level. c. The electron is on the n=3 level; draw all possible transitions. Waves and Particles Class Work 27. A bowling ball of mass 6.0 kg is moving with a speed of 10.0 m/s. What is the wavelength of the matter associated with the ball? 28. An electron travels at speed of 6.0x10 7 m/s. What is the de Broglie wavelength? Homework 29. An asteroid of mass 5.4x10 3 kg is moving with a speed of 7.0 km/s. What is the wavelength of the matter associated with the asteroid? 30. A proton travels at speed of 4.8x10 7 m/s. What is the de Broglie wavelength? Quantum Mechanics Class Work 31. An electron s momentum is measured with an uncertainty of 3.0x10-32 kg m/s. How precisely can its position be determined at the same time? Quantum Physics and Atomic Models - 5 v 1.1

32. A car is traveling down the road with a momentum of 2.8x10 4 kg m/s (equivalent to a compact car moving at 50 mph). How precisely can its position be determined at the same time? Homework 33. An electron s momentum is measured with an uncertainty of 2.5x10-32 kg m/s. How precisely can its position be determined at the same time? 34. A pickup truck is traveling down the road with a momentum of 5.1x10 4 kg m/s (the pickup truck is moving at 50 mph). How precisely can its position be determined at the same time? Quantum Physics and Atomic Models - 6 v 1.1

General Problems 1. A mass spectrometer was used in the discovery of the electron. In the velocity selector, the electric and magnetic fields are set to only allow electrons with a specific velocity to exit the fields. The electrons then enter an area with only a magnetic field, where the electron beam is deflected in a circular shape with a radius of 8.0 mm. In the velocity selector, E = 400.0 V/m and B = 4.7 x 10-4 T. The same value of B exists in the area where the electron beam is deflected. a. What is the speed of the electrons as they exit the velocity selector? b. What is the value of e/m of the electron? c. What is the accelerating voltage in the tube? d. How does the electron radius change if the accelerating voltage is doubled? 2. In an oil-drop experiment a negatively charged oil drop has a mass of 3.0 x 10-15 kg and is held at rest between two parallel plates separated by a distance of 2.0 cm. The potential difference between the plates is 460 V. a. On the diagram below, show all the applied forces on the drop. Do not include the buoyant force of the air on the oil drop. b. What is the strength of the electric field between the plates? c. What is the net electric charge on the drop? d. How many excess electrons are on the drop? e. The potential difference between the plates is increased to 470 V; what happens to the oil drop? Quantum Physics and Atomic Models - 7 v 1.1

3. A group of physics students perform a Photoelectric effect experiment. They use a light source with varying frequency. In the experiment they found the photocell is sensitive to light with a frequency greater than 6.0 x 10 14 Hz. a. What is the threshold frequency for this photocell? b. What is the work function of the metal? The frequency of the incident light is changed to 7.5 10 14 Hz. c. What is the maximum kinetic energy of the photoelectrons emitted by the cell? 4. An experiment is conducted to investigate the photoelectric effect with a Barium plate. When the wavelength of the incident light is less than 500.0 nm the plate starts emitting electrons. a. What is the threshold frequency of the Barium plate? b. What is the work function of Barium? The wavelength of the incident light is changed to 300.0 nm. c. What is the kinetic energy of the photoelectrons? 5. In an X-ray tube, above, an accelerating voltage of 7.0 x 10 4 V is applied to accelerate electrons to high energies. (e = 1.6 x 10-19 C, me = 9.1 x 10-31 kg). a. What is the maximum kinetic energy of the accelerated electrons? b. What is the maximum speed of the accelerated electrons? c. What is the maximum energy of the emitted X-ray photons? d. What is the frequency of the emitted X-ray photons? e. What is the wavelength of the emitted X-ray photons? Quantum Physics and Atomic Models - 8 v 1.1

6. The atomic energy levels can be determined by the following formula En = Z 2 E1/n 2 where Z = atomic number; E1 = -13.6eV (ground state of the hydrogen atom, n=1). a. What are the energy levels, for n=1, 2, 3 and 4 of the hydrogen atom? b. What is the frequency of the emitted photon if an electron makes a transition from the n = 3 level to the n = 2 level? c. What is the wavelength of the photon for the same transition? d. Would the emitted photon be visible? 7. The atomic energy levels can be determined by the following formula En = Z 2 E1/n 2 where Z = atomic number; E1 = -13.6eV (ground state of the hydrogen atom, n=1). a. What are the energy levels, for n=1, 2, 3 and 4 of the singly ionized (only one electron present) helium atom (Z=2)? b. What is the frequency of the emitted photon if an electron makes a transition from the n = 4 level to the n = 2 level? c. What is the wavelength of the photon for the same transition? d. Would the emitted photon be visible? Quantum Physics and Atomic Models - 9 v 1.1

Chapter Questions 1. They were deflected by a magnetic field in the direction that a moving negative charge would move. 2. Charge/Mass ratio. Mass Spectrometer. 3. Robert Millikan and Harvey Fletcher. Oil-drop experiment. 4. Electrons striking a metal target. Neutral. Roentgen. 5. H. Becquerel, M. Curie, P. Curie. Uranium salts exposed photographic paper. 6. Alpha particles (Helium nucleus, +2e), Gamma Rays (EM radiation, neutral), Beta Particles (electrons from the nucleus, -e). 7. They absorb all incident radiation so the radiated energy is just from the body s temperature. 8. Electromagnetic radiation in the form of a temperature dependent spectrum. 9. As the object got hotter, the intensity of the emitted radiation approached infinity according to classical physics calculations. Ultraviolet Explosion. 10. Energy emitted by the blackbody radiators could only be emitted in discrete packets of energy- quanta. 11. Electrons. The Photoelectric effect. 12. No electrons emitted below a certain cutoff frequency of the light. Number of electrons proportional to light intensity, but electron energy was independent of intensity. Electrons appeared instantly when illuminated with the proper light frequency. 13. A single photon struck and transferred all its energy to the electron which was then emitted if the light had sufficient energy (frequency). Sir Isaac Newton. 14. John Dalton. All elements were made up of specific indivisible atoms. 15. Electrons were spread out within a mass of positive charge. 16. Gold Foil Experiment. A small percentage of Alpha particles that struck the gold foil were deflected showing the existence of a small, positively charged nucleus. 17. Empty space. A void. 18. Why the electrons didn t spiral into the nucleus and optical spectra. 19. Electrons were only allowed in specific orbits, and did not emit EM radiation in those orbits. Spectra resulted from electrons moving between the quantized orbits. 20. By creating equations to fit the measured spectra no theory, just fitting the equations to the data. 21. Only applicable to Hydrogen like atoms (single electron), based on accelerating electrons not emitting EM radiation and did not predict intensities of emitted photons during electron energy level transitions. 22. Particle. X-ray photons struck electrons, giving up energy, and increasing the wavelengths of the X-rays. 23. James Chadwick. It provides the additional strong nuclear force to balance the electromagnetic repulsive force between the protons. 24. Newton, Planck, Einstein and Compton. Young, Maxwell. 25. de Broglie. Because the wavelengths of large objects are vanishingly small. 26. No. Heisenberg Uncertainty Principle. Quantum Physics and Atomic Models - 10v 1.1

27. The net force on an object. 28. No. Only the probability of an electron at a certain position can be determined. 29. Quantum Electrodynamics. 30. Electroweak Theory. 31. Quantum Chromodynamics. 32. The Standard Model. 33. Grand Unified Theory; String Theory. 34. 5%. Chapter Problems 1. 1.6x10-18 C 2. 8.9x10-31 kg 3. 6.4x10-18 C 4. 9.4x10-31 kg 5. 3.3x10-28 J 6. 3.3x10-23 J 7. 5.3 x10 15 Hz 8. 2.7x10-9 m 9. 760 nm 10. 5.6x10 14 Hz 11. 540 nm 12. 2.5x10-19 J 13. 3.5x10-19 J, 8.8x10-20 J 14. 2.7x10-15 J 15. 2.2x10-15 J 16. 1.3x10 14 Hz 17. 690 nm 18. 5.1x10 14 Hz 19. 270 nm 20. 1.4x10-18 J 21. 4.1x10-19 J, 8.8x10-20 J 22. 3.9x10-10 m 23. a) 488 nm b) Visible light-green c) 2 1 d) 122 nm 24. a) 1 st -13.6 ev 2 nd -3.4 ev 3 rd -1.51 ev 4 th -0.85 ev 5 th -0.54 ev b) c) 25. a) 1.29x10-6 m b) Infrared radiation c) 3 2, 3 1, 2 1 d) 3 2: 661 nm 3 1: 103 nm 2 1: 122 nm 26. a) 1 st -54.4 ev 2 nd -13.6 ev 3 rd -6.04 ev 4 th -3.40 ev 5 th -2.18 ev b) E 1 = -54.4 ev Quantum Physics and Atomic Models - 11v 1.1

n=1 c) 27. 1.1x10-35 m 28. 1.2x10-11 m 29. 1.8x10-41 m 30. 8.3x10-15 m 31. 2.2x10-2 m 32. 5.5x10-34 m 33. 2.7x10-2 m 34. 2.6x10-34 m General Problems 1. a) 8.5 10 5 m/s b) 2.3 10 11 C/kg c) 1.6 V d) doubles 2. a) n=3 n=2 b) 2.3x10 4 V/m c) 1.3 10 18 C d) 8 electrons e) It will accelerate upwards. 3. a) 6.0 10 14 Hz b) 4.0 10 19 J c) 9.7 10 20 J 4. a) 6 10 14 Hz b) 4.0 10 19 J c) 2.6 10 19 J 5. a) 1.1 10 14 J b) 1.6 10 8 m/s c) 1.1 10 14 J d) 1.7 10 19 Hz e) 1.8 10 11 m 6. a) 13.6eV, 3.40eV, 1.51eV, 0.85eV b) 4.56 10 14 Hz c) 658nm d) Yes red light 7. a) 54.4eV, 13.6eV, 6.04eV, 3.40eV b) 2.46 10 15 Hz c) 1.22 10 7 m d) No Ultraviolet Quantum Physics and Atomic Models - 12v 1.1