Photoelectric Effect

Similar documents
h/e Apparatus h/e Apparatus Accessory Kit

Photoelectric Effect

Photoelectric Effect

Experiment objectives: measure the ratio of Planck s constant to the electron charge h/e using the photoelectric effect.

The Photoelectric Effect and the Quantization of Light

Experiment 2-7. Planck constant measurement. using photoelectric effect

EXPERIMENT 18 THE PHOTOELECTRIC EFFECT

Investigation #9 OBSERVATION OF THE PHOTOELECTRIC EFFECT

Photoelectric Effect

h/e Apparatus h/e Apparatus Accessory Kit

Explain how Planck resolved the ultraviolet catastrophe in blackbody radiation. Calculate energy of quanta using Planck s equation.

203-NYC-05: Waves, Optics & Modern Physics

Physical Structure of Matter

Photoelectric Effect Worksheet

Photoelectric effect

Determination of Planck s constant and work function of metals using photoelectric effect

Physics 307 Laboratory

Chapter 27. Quantum Physics

The temperature of a lava flow can be approximated by merely observing its colour. The result agrees nicely with the measured temperatures of lava

CHAPTER 3 The Experimental Basis of Quantum Theory

The Photoelectric E ect

Lab 1: Measuring Planck s Constant Using LEDs Adapted from a lab procedure written by Martin Hackworth, University of Idaho

Lecture 8. > Blackbody Radiation. > Photoelectric Effect

SPH4U UNIVERSITY PHYSICS

LC-4: Photoelectric Effect

Chapter 9: Quantization of Light

ATOMIC PHYSICS PHOTOELECTRIC EFFECT Practical 2 DETERMINATION OF PLANCK S CONSTANT BY MEANS OF THE STOPPING POTENTIAL

Blackbody Radiation. Rayleigh-Jeans law was an attempt to explain blackbody radiation based on classical ideas:

Quantum Model Einstein s Hypothesis: Photoelectric Effect

Quantum Theory of Light

Planck's "quantum of action" and external photoelectric effect (Item No.: P )

Chapter 38. Photons Light Waves Behaving as Particles

General Physics (PHY 2140)

Experiment 1: Photoelectric current verses light intensity. left/right 3. increases/decreases. 4. YES/NO. Conclusion: Answer: 6.

Chapter 1. Blackbody Radiation. Theory

Heinrich Hertz, a German physicist, achieved the first experimental demonstration of EM waves in 1887.

3. An increase in the intensity of incident light does not change the maximum velocity of the emitted photo electrons. Why?

Photoelectric Effect Experiment

CHAPTER 3 The Experimental Basis of Quantum

Physics 1C. Lecture 27A

The Photoelectric Effect. One weight

Photoelectric Effect & Bohr Atom

Determination of Stefan-Boltzmann Constant.

The Photoelectric Effect

WAVES AND PARTICLES. (c)

The Photoelectric Effect

Stellar Astrophysics: The Interaction of Light and Matter

PHYSICS 3204 PUBLIC EXAM QUESTIONS (Quantum pt.1)

CHAPTER 3 Prelude to Quantum Theory. Observation of X Rays. Thomson s Cathode-Ray Experiment. Röntgen s X-Ray Tube

Class 21. Early Quantum Mechanics and the Wave Nature of Matter. Physics 106. Winter Press CTRL-L to view as a slide show. Class 21.

12.1 Foundations of Quantum Theory

Modern Physics (Lec. 1)

Particle nature of light & Quantization

Exam 2 Development of Quantum Mechanics

PHOTOELECRIC EFFECT BADANIE EFEKTU FOTOELEKTRYCZNEGO ZEWNĘTRZNEGO

Chapter One. The Old Quantum Theory. 1-1 Why Quantum Mechanics.

12.1 The Interaction of Matter & Radiation 1 Photons & Photoelectric Effect.notebook March 25, The Interaction of Matter & Radiation

Analytical Chemistry II

1 Electrons are emitted from a metal surface when it is illuminated with suitable electromagnetic radiation. ...[1]

Quantum and Atomic Physics - Multiple Choice

RED. BLUE Light. Light-Matter

Revision Guide. Chapter 7 Quantum Behaviour

The Photoelectric Effect

Radiation - Electromagnetic Waves (EMR): wave consisting of oscillating electric and magnetic fields that move at the speed of light through space.

Assignment #3- Lay Article

JURONG JUNIOR COLLEGE J2 H1 Physics (2011) 1 Light of wavelength 436 nm is used to illuminate the surface of a piece of clean sodium metal in vacuum.

Chemistry Instrumental Analysis Lecture 2. Chem 4631

B. Sc. Physics (H.R.K) Chapter 49: Light and Quantum Physics LIGHT AND QUANTUM PHYSICS

E n = n h ν. The oscillators must absorb or emit energy in discrete multiples of the fundamental quantum of energy given by.

Downloaded from

Planck s Quantum Hypothesis Blackbody Radiation

Chapters 28 and 29: Quantum Physics and Atoms Solutions

EXPERIMENT NO. 4. Thermal Radiation: the Stefan-Boltzmann Law

Explain how line spectra are produced. In your answer you should describe:

CHAPTER 12 TEST REVIEW

Downloaded from

The term "black body" was introduced by Gustav Kirchhoff in The light emitted by a black body is called black-body radiation.

Introduction. 6.1 Summary Notes The Quantum. D Notes: ! is wavelength (m) c is the speed of light (m/s)

We also find the development of famous Schrodinger equation to describe the quantization of energy levels of atoms.

Black Body any object that is a perfect emitter and a perfect absorber of radiation >> object does not have to appear "black"

13.1 Photoelectric Effect.notebook March 11, 2015

Physics 2D Lecture Slides. Oct 15. UCSD Physics. Vivek Sharma

Show that the threshold frequency for the surface is approximately Hz.

Early Quantum Theory and Models of the Atom

Photoelectric Effect

Chapter 27. Quantum Physics

Lesson Plan: Introduction to Quantum Mechanics via Wave Theory and the Photoelectric Effect

Basic physics Questions

ATOMIC WORLD P.1. ejected photoelectrons. current amplifier. photomultiplier tube (PMT)

Dual Nature of Radiation and Matter GLIMPSES 1. Electron. It is an elementary particle having a negative charge of 1.6x C and mass 9.1x kg

THE EDUCARE (SIROHI CLASSES) TEST SERIES 2018

Practical 1P4 Energy Levels and Band Gaps

N(v) We then have a the distribution of velocities N(v) or the number of molecules at each velocity in the cavity.

Quantum Mechanics (made fun and easy)

FI 3103 Quantum Physics

Physics 2D Lecture Slides Lecture 11: Jan 27 th 2004

QM all started with - - The Spectrum of Blackbody Radiation

X-RAY SPECTRA. Theory:

General Physics (PHY 2140) Lecture 14

Name the region of the electromagnetic radiation emitted by the laser. ...

Transcription:

PC1144 Physics IV Photoelectric Effect 1 Purpose Demonstrate the different predictions of the classical wave and quantum model of light with respect to the photoelectric effect. Determine an experimental value of Planck s constant. 2 Equipment Photocell with housing Mercury spectral lamp with power supply Digital multimeter (DMM) Interference filters Variable transmission filter 3 Theory 3.1 Introduction The emission and absorption of light was an early subject for investigation by Max Planck. As Planck attempted to formulate a theory to explain the spectral distribution of emitted light based on a classical wave model, he ran into considerable difficulty. Classical theory (Rayleigh-Jeans law) predicted that the amount of light emitted from a blackbody would increase dramatically as the wavelength decreased, whereas experiment showed that it approached zero. This discrepancy became known as the ultraviolet catastrophe. Experimental data for the radiation of light by a hot, glowing body showed that the maximum intensity of emitted light also departed dramatically from the classically predicted values (Wein s Law). In order to reconcile theory with experimental results, Planck was forced to develop a new model for light called the quantum model. In this model, light is emitted in small, discrete bundles or quanta. Page 1 of 6

Photoelectric Effect Page 2 of 6 3.2 Planck s quantum theory In 1901, Planck published his law of radiation. In it, he stated that an oscillator, or any similar physical system, has a discrete set of possible energy values or levels; energies between these values never occur. Planck went on to state that the emission and absorption of radiation is associated with transitions or jumps between two energy levels. The energy lost or gained by the oscillator is emitted or absorbed as a quantum of radiant energy, the magnitude of which is expressed by the equation: E = hf (1) where E equals the radiant energy, f is the frequency of the radiation and h is a fundamental constant of nature. The constant, h, became known as Planck s constant. 3.3 The photoelectric effect In photoelectric emission, light strikes a material, causing electrons to be emitted. The classical wave model predicted that as the intensity of incident light was increased, the amplitude and thus the energy of the wave would increase. This would then cause more energetic photoelectrons to be emitted. The new quantum model, however, predicted that higher frequency light would produce photoelectrons with higher energy, independent of intensity, while increased intensity would only increase the number of electrons emitted (or photoelectric current). In the early 1900s, several investigators found that the kinetic energy of the photoelectrons was dependent on the wavelength, or frequency, and independent of intensity, while the magnitude of the photoelectric current, or number of electrons was dependent on the intensity as predicted by the quantum model. Einstein applied Planck s theory and explained the photoelectric effect in terms of the quantum model using his famous equation: E = hf = K max + φ (2) where K max is the maximum kinetic energy of the emitted photoelectrons and φ is the energy needed to remove them from the surface of the material (the work function). E is the energy supplied by the quantum of light known as a photon. 3.4 The h/e experiment If light impinges on the photocathode, photoelectrons are emitted due to the exterior photoelectric effect, under the condition that the energy of the light quanta is higher than that required for electrons to exit the photocathode (work function φ). The kinetic energy of photoelectrons K increases with the energy hf of the light quanta: K = hf φ (3)

Photoelectric Effect Page 3 of 6 The photoelectrons reach the anode and load the latter negatively. The difference of potential increases up to a limit V, which is reached when the complete kinetic energy K of the photoelectrons is required to overcome the difference of potential V which has built up: where e is the electron charge equals to 1.602 10 19 C. From equations (3) and (4), one obtains K = ev (4) ev = hf φ (5) If V is measured at least for two wavelengths, the two unknown factors h and K can be determined from equation (5). Normally, however, more than two measurements are made and V is plotted as a function of f. After equation (5) is modified to V = hf e φ e (6) it becomes apparent that this is a straight line with slope h/e. The work function may be assessed from the negative ordinate section. However, for PbS cathodes, this value does not have the significance of a physical constant, as it is significantly influenced by the manufacturing technology of the photocathode. Once h has been determined, φ can be calculated from the intersection of the compensating straight line with the abscissa, the so-called limit frequency f min (the long wave limit wavelength λ max = c/f min is more usual), for which V = 0. In this case, φ = hf min. 4 Experimental Procedure Part I: The relationship between energy, wavelength and frequency According to the quantum model of light, the energy of light is directly proportional to its frequency. Thus, the higher the frequency, the more energy it has. With careful experimentation, the constant of proportionality, Planck s constant, can be determined. P1. The experimental setup is shown as in Figure 1. The spectral lamp which is connected to the ballast coil should be switched on about 15 minutes before the first measurement is carried out. P2. The amplifier input is shorted by pressing button 0 when the light entry of the photocell is closed. Whilst the button 0 is depressed, the read-out on the measurement amplifier is set to zero by means of the 0 setting knob. P3. Slide the five different colours interference filters carefully one after another towards the square hole which face the opening of the photocell.

Photoelectric Effect Page 4 of 6 Figure 1: Experimental setup. P4. Open the sliding shutter and record the indicated stopping potential V by using the DMM and record that measurement in Data Table 1. P5. Close the sliding shutter, change to another filter and repeat until the measurements have been carried out with all filters.

Photoelectric Effect Page 5 of 6 Part II: Classical wave model versus quantum model of light According to the photon theory of light, the maximum kinetic energy, K max, of photoelectrons depends only on the frequency of the incident light, and is independent of the intensity. Thus the higher the frequency of the light, the greater its energy. In contrast, the classical wave model of light predicted that K max would depend on light intensity. In other words, the brighter the light, the greater its energy. This experiment investigates both of these assertions. Part A selects two spectral lines from a mercury light source and investigates the maximum energy of the photoelectrons as a function of the intensity. Part B selects different spectral lines with two different intensities and investigates the maximum energy of the photoelectrons as a function of the colour of the light. Part IIA: Electron maximum kinetic energy versus light intensity P1. Close the sliding shutter of the photocell and discharge the measuring amplifier via the zero button. P2. Slide the interference filters so that only one of them (580 nm) falls upon the opening of the photocell. P3. Place the variable transmission sheet in front of the interference filter. Open the sliding shutter so that the light passes through the transmission sheet and reaches the photocell. Record the stopping potential as given by the DMM voltage reading in Data Table 2. P4. Repeat step P1 and change to another variable transmission sheet and record the new DMM reading in Data Table 1. P5. Repeat step P4 until you have tested all the transmission sheets. P6. Repeat steps P1 P5 using a second colour (546 nm) from the interference filter. Part IIB: Electron maximum kinetic energy versus light frequency P1. Close the sliding shutter of the photocell and discharge the measuring amplifier via the zero button. P2. Slide the interference filters so that only one of them falls upon the opening of the photocell. P3. Place the variable transmission sheet (100%) in front of the interference filter. Open the sliding shutter so that the light passes through the transmission sheet and reaches the photocell. Record the stopping potential as given by the DMM voltage reading in Data Table 3.

Photoelectric Effect Page 6 of 6 P4. Repeat steps P1 P3 until you have tested all the four colour filters. P5. Repeat steps P1 P4 using a different variable transmission sheet (66%). 5 Data Processing D1. Perform a suitable linear least squares fit to the data in Data Table 1. Determine the slope and intercept with the corresponding uncertainties of the least squares fit to the data. D2. Plot a suitable graph as well as the best fitted line obtained above. D3. Determine your best experimental value for Planck s constant with the corresponding uncertainties. Use percentage discrepancy to compare your experimental value for the Planck s constant with the accepted value, h = 6.626 10 34 J s. Hint: The percentage discrepancy is defined as Percentage discrepancy = Experimental value Accepted value Accepted value 100% D4. Determine the amount of energy is required to eject an electron from the metal surface inside the h/e apparatus s photodiode with the corresponding uncertainty. D5. Determine the minimum frequency, f min, of the light such that it will eject an electron from the photodiode inside the h/e apparatus with the corresponding uncertainty. D6. Determine either the wavelength or frequency of the unknown filter with the corresponding uncertainty. 6 Questions Q1. Based on your data in Data Table 2, what is the nature of the relationship between the stopping potential and the intensity of light? Describe qualitatively the effect that passing different amounts of the same coloured light through the variable transmission filter has on the stopping potential and thus the maximum kinetic energy of the ejected photoelectrons. Q2. Based on your data in Data Table 3, deduce the nature of the relationship between the stopping potential and the frequency of the light. Describe qualitatively the effect that different colours of light (frequency) had on the stopping potential and thus the maximum kinetic energy of the ejected photoelectrons. Q3. State and explain whether this experiment (part II) supports a wave or a quantum model of light based on your experimental results.