Lecture 7: Kinematics: Velocity Kinematics - the Jacobian

Similar documents
Ch. 5: Jacobian. 5.1 Introduction

Differential Kinematics

Kinematics. Basilio Bona. Semester 1, DAUIN Politecnico di Torino. B. Bona (DAUIN) Kinematics Semester 1, / 15

DIFFERENTIAL KINEMATICS. Geometric Jacobian. Analytical Jacobian. Kinematic singularities. Kinematic redundancy. Inverse differential kinematics

Lecture 8: Kinematics: Path and Trajectory Planning

Position and orientation of rigid bodies

Kinematics. Basilio Bona. Semester 1, DAUIN Politecnico di Torino. B. Bona (DAUIN) Kinematics Semester 1, / 15

Robotics I Kinematics, Dynamics and Control of Robotic Manipulators. Velocity Kinematics

Kinematics. Basilio Bona. October DAUIN - Politecnico di Torino. Basilio Bona (DAUIN - Politecnico di Torino) Kinematics October / 15

MEAM 520. More Velocity Kinematics

Artificial Intelligence & Neuro Cognitive Systems Fakultät für Informatik. Robot Dynamics. Dr.-Ing. John Nassour J.

Advanced Robotic Manipulation

Lecture Note 4: General Rigid Body Motion

ECE569 Exam 1 October 28, Name: Score: /100. Please leave fractions as fractions, but simplify them, etc.

Lecture Note 7: Velocity Kinematics and Jacobian

Robotics & Automation. Lecture 06. Serial Kinematic Chain, Forward Kinematics. John T. Wen. September 11, 2008

Lecture Note 7: Velocity Kinematics and Jacobian

(W: 12:05-1:50, 50-N202)

Robotics & Automation. Lecture 17. Manipulability Ellipsoid, Singularities of Serial Arm. John T. Wen. October 14, 2008

ROBOTICS 01PEEQW. Basilio Bona DAUIN Politecnico di Torino

8 Velocity Kinematics

In this section of notes, we look at the calculation of forces and torques for a manipulator in two settings:

Example: RR Robot. Illustrate the column vector of the Jacobian in the space at the end-effector point.

Advanced Robotic Manipulation

Lecture Schedule Week Date Lecture (M: 2:05p-3:50, 50-N202)

, respectively to the inverse and the inverse differential problem. Check the correctness of the obtained results. Exercise 2 y P 2 P 1.

Exercise 1b: Differential Kinematics of the ABB IRB 120

ROBOTICS: ADVANCED CONCEPTS & ANALYSIS

Robotics I. June 6, 2017

Lecture «Robot Dynamics»: Kinematics 2

Minimal representations of orientation

Robotics I. Classroom Test November 21, 2014

Robot Dynamics II: Trajectories & Motion

Trajectory-tracking control of a planar 3-RRR parallel manipulator

Dynamics 12e. Copyright 2010 Pearson Education South Asia Pte Ltd. Chapter 20 3D Kinematics of a Rigid Body

Lecture Note 8: Inverse Kinematics

ME 115(b): Homework #2 Solution. Part (b): Using the Product of Exponentials approach, the structure equations take the form:

Chapter 3 + some notes on counting the number of degrees of freedom

Lecture Note 8: Inverse Kinematics

Robotics I June 11, 2018

The Jacobian. Jesse van den Kieboom

DYNAMICS OF PARALLEL MANIPULATOR

Multibody simulation

Inverse differential kinematics Statics and force transformations

DYNAMICS OF PARALLEL MANIPULATOR

Institute of Geometry, Graz, University of Technology Mobile Robots. Lecture notes of the kinematic part of the lecture

Case Study: The Pelican Prototype Robot

Multi-body Singularity Equations IRI Technical Report

RECURSIVE INVERSE DYNAMICS

Given U, V, x and θ perform the following steps: a) Find the rotation angle, φ, by which u 1 is rotated in relation to x 1

Central force motion/kepler problem. 1 Reducing 2-body motion to effective 1-body, that too with 2 d.o.f and 1st order differential equations

Interpolated Rigid-Body Motions and Robotics

Robot Dynamics Lecture Notes. Robotic Systems Lab, ETH Zurich

Dynamics. Basilio Bona. Semester 1, DAUIN Politecnico di Torino. B. Bona (DAUIN) Dynamics Semester 1, / 18

Generalized Forces. Hamilton Principle. Lagrange s Equations

Lecture Note 5: Velocity of a Rigid Body

The two body problem involves a pair of particles with masses m 1 and m 2 described by a Lagrangian of the form:

Dynamics of Open Chains

13 Path Planning Cubic Path P 2 P 1. θ 2

Single Exponential Motion and Its Kinematic Generators

Robotics, Geometry and Control - Rigid body motion and geometry

Robot Dynamics Instantaneous Kinematiccs and Jacobians

Generalized coordinates and constraints

Algorithms and Numerical Methods for Motion Planning and Motion Control: Dynamic Manipulation Assignments

Advanced Robotic Manipulation

Trajectory Planning from Multibody System Dynamics

Transverse Linearization for Controlled Mechanical Systems with Several Passive Degrees of Freedom (Application to Orbital Stabilization)

Kinematics. Chapter Multi-Body Systems

Classical methods of orbit determination

DYNAMICS OF SERIAL ROBOTIC MANIPULATORS

Robotics I. Test November 29, 2013

Robotics I. Figure 1: Initial placement of a rigid thin rod of length L in an absolute reference frame.

Chapter 2 Coordinate Systems and Transformations

Robotics I. February 6, 2014

Lecture «Robot Dynamics» : Kinematics 3

Chapter 5. . Dynamics. 5.1 Introduction

q 1 F m d p q 2 Figure 1: An automated crane with the relevant kinematic and dynamic definitions.

Lecture Note 12: Dynamics of Open Chains: Lagrangian Formulation

Robotics 1 Inverse kinematics

Ridig Body Motion Homogeneous Transformations

Mechanics Physics 151

Screw Theory and its Applications in Robotics

Lecture 38: Equations of Rigid-Body Motion

Rigid Body Motion. Greg Hager Simon Leonard

Dynamics. 1 Copyright c 2015 Roderic Grupen

16.333: Lecture #3. Frame Rotations. Euler Angles. Quaternions

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

Multibody simulation

Rotational & Rigid-Body Mechanics. Lectures 3+4

Robot Control Basics CS 685

Lecture Notes Multibody Dynamics B, wb1413

Natural and artificial constraints

112 Dynamics. Example 5-3

Vectors in Three Dimensions and Transformations

Introduction to Robotics

Nonholonomic Constraints Examples

AN OPTIMIZATION APPROACH TO SOLVE THE INVERSE KINEMATICS OF REDUNDANT MANIPULATOR

The Dynamics of Fixed Base and Free-Floating Robotic Manipulator

Dynamics modeling of an electro-hydraulically actuated system

Robotics 1 Inverse kinematics

Transcription:

Lecture 7: Kinematics: Velocity Kinematics - the Jacobian Manipulator Jacobian c Anton Shiriaev. 5EL158: Lecture 7 p. 1/??

Lecture 7: Kinematics: Velocity Kinematics - the Jacobian Manipulator Jacobian Analytical Jacobian c Anton Shiriaev. 5EL158: Lecture 7 p. 1/??

Lecture 7: Kinematics: Velocity Kinematics - the Jacobian Manipulator Jacobian Analytical Jacobian Singularities c Anton Shiriaev. 5EL158: Lecture 7 p. 1/??

Lecture 7: Kinematics: Velocity Kinematics - the Jacobian Manipulator Jacobian Analytical Jacobian Singularities Inverse Velocity and Manipulability c Anton Shiriaev. 5EL158: Lecture 7 p. 1/??

Concept of the Manipulator Jacobian Given an n-link manipulator with joint variables q 1,..., q n Let Tn 0 (q) is the homogeneous transformation between the end-effector and base frames [ ] Tn 0 (q) = Rn 0(q) o0 n (q), q = [ ] T q 1,..., q n 0 1 so that p with coordinates p n its coordinates in the base frame are p 0 = R 0 n pn + o 0 n c Anton Shiriaev. 5EL158: Lecture 7 p. 2/??

Concept of the Manipulator Jacobian Given an n-link manipulator with joint variables q 1,..., q n Let Tn 0 (q) is the homogeneous transformation between the end-effector and base frames [ ] Tn 0 (q) = Rn 0(q) o0 n (q), q = [ ] T q 1,..., q n 0 1 so that p with coordinates p n its coordinates in the base frame are p 0 = R 0 n pn + o 0 n As the robot moves, joint variables become functions of time t q(t) = [ q 1 (t),..., q n (t) ] T so that p 0 (t) = R 0 n (q(t)) pn + o 0 n (q(t)) c Anton Shiriaev. 5EL158: Lecture 7 p. 2/??

Concept of the Manipulator Jacobian We have already seen how to compute d dt p0 (t) from p 0 (t) = R 0 n (q(t)) pn + o 0 n (q(t)) c Anton Shiriaev. 5EL158: Lecture 7 p. 3/??

Concept of the Manipulator Jacobian We have already seen how to compute d dt p0 (t) from It is p 0 (t) = R 0 n (q(t)) pn + o 0 n (q(t)) d dt p0 (t) = d dt [ R 0 n (q(t)) ] p n + d dt [ o 0 n (q(t)) ] = S(ω 0 0,n (t))r0 n (q(t))pn + v 0 n (t) = ω0 0,n (t) r(t) + v0 n (t) with r(t) = p o n (t) c Anton Shiriaev. 5EL158: Lecture 7 p. 3/??

Concept of the Manipulator Jacobian We have already seen how to compute d dt p0 (t) from It is p 0 (t) = R 0 n (q(t)) pn + o 0 n (q(t)) d dt p0 (t) = d dt [ R 0 n (q(t)) ] p n + d dt [ o 0 n (q(t)) ] = S(ω 0 0,n (t))r0 n (q(t))pn + v 0 n (t) = ω0 0,n (t) r(t) + v0 n (t) with r(t) = p o n (t) Therefore, to compute velocity of any point in the end-effector frame, it suffices to know an angular velocity ω0,n 0 (t) of the end-effector frame a linear velocity vn 0 (t) of the the end-effector frame origin c Anton Shiriaev. 5EL158: Lecture 7 p. 3/??

Concept of the Manipulator Jacobian Given an n-link manipulator with joint variables q 1,..., q n its particular motion q(t) = [ q 1 (t),..., q n (t) ] T What do the functions ω0,n 0 (t) and v0 n (t) depend on? c Anton Shiriaev. 5EL158: Lecture 7 p. 4/??

Concept of the Manipulator Jacobian Given an n-link manipulator with joint variables q 1,..., q n its particular motion q(t) = [ q 1 (t),..., q n (t) ] T What do the functions ω0,n 0 (t) and v0 n (t) depend on? It is suggested to search them as v 0 n (t) = J v(q(t)) d dt q(t) ω0 0,n (t) = J ω(q(t)) d dt q(t) c Anton Shiriaev. 5EL158: Lecture 7 p. 4/??

Concept of the Manipulator Jacobian Given an n-link manipulator with joint variables q 1,..., q n its particular motion q(t) = [ q 1 (t),..., q n (t) ] T What do the functions ω0,n 0 (t) and v0 n (t) depend on? It is suggested to search them as v 0 n (t) = J v(q(t)) d dt q(t) ω0 0,n (t) = J ω(q(t)) d dt q(t) The 6 n-matrix function J( ) defined by ξ(t) = v0 n (t) ω0,n 0 (t) = J(q(t)) d dt q(t) = J v(q(t)) J ω (q(t)) d dt q(t) is the manipulator Jacobian; ξ(t) is a vector of body velocities c Anton Shiriaev. 5EL158: Lecture 7 p. 4/??

Angular Velocity Given n-moving frames with the same origins as for fixed one R 0 n (t) = R0 1 (t)r1 2 (t) Rn 1 n (t) d dt R0 n (t) = S(ω0 0,n (t))r0 n (t) ω 0 0,n (t) = ω0 0,1 (t) + ω0 1,2 (t) + ω0 2,3 (t) + + ω0 n 1,n (t) = ω 0 0,1 + R0 1 ω1 1,2 + R0 2 ω2 2,3 + + R0 n 1 ωn 1 n 1,n c Anton Shiriaev. 5EL158: Lecture 7 p. 5/??

Angular Velocity Given n-moving frames with the same origins as for fixed one R 0 n (t) = R0 1 (t)r1 2 (t) Rn 1 n (t) d dt R0 n (t) = S(ω0 0,n (t))r0 n (t) ω 0 0,n (t) = ω0 0,1 (t) + ω0 1,2 (t) + ω0 2,3 (t) + + ω0 n 1,n (t) = ω 0 0,1 + R0 1 ω1 1,2 + R0 2 ω2 2,3 + + R0 n 1 ωn 1 n 1,n If i th -joint is revolute (ρ i = 1), then axis of rotation coincides with z i ; angular velocity is ω i 1 i 1,i = q i(t) k c Anton Shiriaev. 5EL158: Lecture 7 p. 5/??

Angular Velocity Given n-moving frames with the same origins as for fixed one R 0 n (t) = R0 1 (t)r1 2 (t) Rn 1 n (t) d dt R0 n (t) = S(ω0 0,n (t))r0 n (t) ω 0 0,n (t) = ω0 0,1 (t) + ω0 1,2 (t) + ω0 2,3 (t) + + ω0 n 1,n (t) = ω 0 0,1 + R0 1 ω1 1,2 + R0 2 ω2 2,3 + + R0 n 1 ωn 1 n 1,n If i th -joint is revolute (ρ i = 1), then axis of rotation coincides with z i ; angular velocity is ω i 1 i 1,i = q i(t) k If i th -joint is prismatic (ρ i = 0), then angular velocity ω i 1 i 1,i = 0 c Anton Shiriaev. 5EL158: Lecture 7 p. 5/??

Angular Velocity Given n-moving frames with the same origins as for fixed one R 0 n (t) = R0 1 (t)r1 2 (t) Rn 1 n (t) d dt R0 n (t) = S(ω0 0,n (t))r0 n (t) ω 0 0,n (t) = ω0 0,1 (t) + ω0 1,2 (t) + ω0 2,3 (t) + + ω0 n 1,n (t) = ω 0 0,1 + R0 1 ω1 1,2 + R0 2 ω2 2,3 + + R0 n 1 ωn 1 n 1,n If i th -joint is revolute (ρ i = 1), then axis of rotation coincides with z i ; angular velocity is ω i 1 i 1,i = q i(t) k If i th -joint is prismatic (ρ i = 0), then angular velocity ω i 1 i 1,i = 0 Therefore ω 0 0,n (t) = ω0 0,1 + R0 1 ω1 1,2 + R0 2 ω2 2,3 + + R0 n 1 ωn 1 n 1,n = ρ 1 q 1 k + ρ 2 R 0 1 q 2 k + + ρ n R 0 n 1 q n k c Anton Shiriaev. 5EL158: Lecture 7 p. 5/??

Angular Velocity Given n-moving frames with the same origins as for fixed one R 0 n (t) = R0 1 (t)r1 2 (t) Rn 1 n (t) d dt R0 n (t) = S(ω0 0,n (t))r0 n (t) ω 0 0,n (t) = ω0 0,1 (t) + ω0 1,2 (t) + ω0 2,3 (t) + + ω0 n 1,n (t) = ω 0 0,1 + R0 1 ω1 1,2 + R0 2 ω2 2,3 + + R0 n 1 ωn 1 n 1,n If i th -joint is revolute (ρ i = 1), then axis of rotation coincides with z i ; angular velocity is ω i 1 i 1,i = q i(t) k If i th -joint is prismatic (ρ i = 0), then angular velocity ω i 1 i 1,i = 0 Therefore ω0,n 0 (t) = ρ 1 q 1 k + ρ2 R1 0 q 2 k + + ρ n Rn 1 0 q n k n = ρ i q i zi 1 0, z0 i 1 = R0 i 1k i=1 c Anton Shiriaev. 5EL158: Lecture 7 p. 5/??

Angular Velocity Given n-moving frames with the same origins as for fixed one R 0 n (t) = R0 1 (t)r1 2 (t) Rn 1 n (t) d dt R0 n (t) = S(ω0 0,n (t))r0 n (t) ω 0 0,n (t) = ω0 0,1 (t) + ω0 1,2 (t) + ω0 2,3 (t) + + ω0 n 1,n (t) = ω 0 0,1 + R0 1 ω1 1,2 + R0 2 ω2 2,3 + + R0 n 1 ωn 1 n 1,n If i th -joint is revolute (ρ i = 1), then axis of rotation coincides with z i ; angular velocity is ω i 1 i 1,i = q i(t) k If i th -joint is prismatic (ρ i = 0), then angular velocity ω i 1 i 1,i = 0 Therefore ω 0 0,n (t) = n ρ i q i z 0 i 1 = [ρ 1 z 0 0, ρ 2z 0 1,..., ρ nz 0 n 1 ] q 1. i=1 q n c Anton Shiriaev. 5EL158: Lecture 7 p. 5/??

Angular Velocity Given n-moving frames with the same origins as for fixed one R 0 n (t) = R0 1 (t)r1 2 (t) Rn 1 n (t) d dt R0 n (t) = S(ω0 0,n (t))r0 n (t) ω 0 0,n (t) = ω0 0,1 (t) + ω0 1,2 (t) + ω0 2,3 (t) + + ω0 n 1,n (t) = ω 0 0,1 + R0 1 ω1 1,2 + R0 2 ω2 2,3 + + R0 n 1 ωn 1 n 1,n If i th -joint is revolute (ρ i = 1), then axis of rotation coincides with z i ; angular velocity is ω i 1 i 1,i = q i(t) k If i th -joint is prismatic (ρ i = 0), then angular velocity ω i 1 i 1,i = 0 Therefore ω 0 0,n (t) = n i=1 ] ρ i q i zi 1 [ρ 0 = 1 z0 0, ρ 2z1 0,..., ρ nzn 1 0 }{{} = J ω q 1. q n c Anton Shiriaev. 5EL158: Lecture 7 p. 5/??

Linear Velocity The linear velocity vn 0 (t) of the end-effector is the time-derivative of o 0 n (t) and v0 n (t) 0 if q 0 c Anton Shiriaev. 5EL158: Lecture 7 p. 6/??

Linear Velocity The linear velocity vn 0 (t) of the end-effector is the time-derivative of o 0 n (t) and v0 n (t) 0 if q 0 Therefore there are functions J v1 (q, q),..., J vn (q, q) such that v 0 n (t) = d dt o0 n (t) = J v 1 ( ) q 1 + J v2 ( ) q 2 + + J vn ( ) q n c Anton Shiriaev. 5EL158: Lecture 7 p. 6/??

Linear Velocity The linear velocity vn 0 (t) of the end-effector is the time-derivative of o 0 n (t) and v0 n (t) 0 if q 0 Therefore there are functions J v1 (q, q),..., J vn (q, q) such that v 0 n (t) = = d dt o0 n (t) = J v 1 ( ) q 1 + J v2 ( ) q 2 + + J vn ( ) q n [ ] o 0 n q (t) 1 q 1 + [ ] o 0 n q (t) 2 q 2 + + [ ] o 0 n q (t) n q n c Anton Shiriaev. 5EL158: Lecture 7 p. 6/??

Linear Velocity A prismatic joint i: translation along the z i 1 -axis with velocity d dt d i when all other joints kept fixed results in d dt o0 n (t) = d dt d i(t)ri 1 0 k = d dt d i(t) zi 1 0 = J v i d i c Anton Shiriaev. 5EL158: Lecture 7 p. 6/??

Linear Velocity A revolute joint i: rotation along the z i 1 -axis with angular velocity d dt θ iz i 1 when all other joints kept fixed results in d dt o0 n (t) = ω r = [ θzi 1 ] [o n o i 1 ] = J vi θi c Anton Shiriaev. 5EL158: Lecture 7 p. 6/??

Linear Velocity The linear velocity vn 0 (t) of the end-effector is the time-derivative of o 0 n (t) and v0 n (t) 0 if q 0 Therefore there are functions J v1 (q, q),..., J vn (q, q) such that v 0 n (t) = = d dt o0 n (t) = J v 1 ( ) q 1 + J v2 ( ) q 2 + + J vn ( ) q n [ ] o 0 n q (t) 1 q 1 + [ ] o 0 n q (t) 2 q 2 + + [ ] o 0 n q (t) n q n J vi = z 0 i 1, z 0 i 1 [o 0 n o0 i 1 ] for prismatic joint, for revolute joint c Anton Shiriaev. 5EL158: Lecture 7 p. 6/??

Jacobian for Example 3.1 v0 n (t) ω 0 0,n (t) = J v(q(t)) J ω (q(t)) [ q 1 q 2 ] c Anton Shiriaev. 5EL158: Lecture 7 p. 7/??

Jacobian for Example 3.1 v0 n (t) ω 0 0,n (t) = J v 1 (q(t)) J v2 (q(t)) J ω1 (q(t)) J ω2 (q(t)) [ q 1 q 2 ] c Anton Shiriaev. 5EL158: Lecture 7 p. 7/??

Jacobian for Example 3.1 v0 n (t) ω 0 0,n (t) = z 0 (o 2 o 0 ) J v2 (q(t)) J ω1 (q(t)) J ω2 (q(t)) [ q 1 q 2 ] c Anton Shiriaev. 5EL158: Lecture 7 p. 7/??

Jacobian for Example 3.1 v0 n (t) ω 0 0,n (t) = z 0 (o 2 o 0 ) z 1 (o 2 o 1 ) J ω1 (q(t)) J ω2 (q(t)) [ q 1 q 2 ] c Anton Shiriaev. 5EL158: Lecture 7 p. 7/??

Jacobian for Example 3.1 v0 n (t) ω 0 0,n (t) = z 0 (o 2 o 0 ) z 1 (o 2 o 1 ) z 0 J ω2 [ q 1 q 2 ] c Anton Shiriaev. 5EL158: Lecture 7 p. 7/??

Jacobian for Example 3.1 v0 n (t) ω 0 0,n (t) = z 0 (o 2 o 0 ) z 1 (o 2 o 1 ) z 0 z 1 [ q 1 q 2 ] c Anton Shiriaev. 5EL158: Lecture 7 p. 7/??

Jacobian for Example 3.1 z i = 0 0 1, o 0 = 0 0 0, o 1 = a 1 c 1 a 1 s 1 0, o 2 = a 1 c 1 + a 2 c 12 a 1 s 1 + a 2 s 12 0 c Anton Shiriaev. 5EL158: Lecture 7 p. 7/??

Lecture 7: Kinematics: Velocity Kinematics - the Jacobian Manipulator Jacobian Analytical Jacobian Singularities Inverse Velocity and Manipulability c Anton Shiriaev. 5EL158: Lecture 7 p. 8/??

Analytic Jacobian Given a robot and a homogeneous transformation [ ] Tn 0 (q) = Rn 0(q) o0 n (q), q = [ ] q 1,..., q n 0 1 there are several ways to represent rotational matrix Rn 0 (q), e.g. R = R(φ, θ, ψ) = R z,φ R y,θ R z,ψ with (φ, θ, ψ) being the Euler angles (ZYZ-parametrization). c Anton Shiriaev. 5EL158: Lecture 7 p. 9/??

Analytic Jacobian Given a robot and a homogeneous transformation [ ] Tn 0 (q) = Rn 0(q) o0 n (q), q = [ ] q 1,..., q n 0 1 there are several ways to represent rotational matrix Rn 0 (q), e.g. R = R(φ, θ, ψ) = R z,φ R y,θ R z,ψ with (φ, θ, ψ) being the Euler angles (ZYZ-parametrization). If the robot moves q = q(t), then ω0,n 0 (t) is defined by d dt R0 n (q(t)) = S(ω0 0,n (t))r0 n (q(t)) Angular velocity is function of α(t) = (φ(t), θ(t), ψ(t)), d dt α(t) ω 0 0,n (t) = B(α(t)) d dt α(t) c Anton Shiriaev. 5EL158: Lecture 7 p. 9/??

Analytic Jacobian The equation [ v 0 n (t) α(t) ] = J a (q) q defines the so-called analytic Jacobian c Anton Shiriaev. 5EL158: Lecture 7 p. 10/??

Analytic Jacobian The equation [ v 0 n (t) α(t) ] = J a (q) q defines the so-called analytic Jacobian Both manipulator and analytic Jacobians are closely related [ ] [ ] vn 0(t) vn 0 ω0,n 0 (t) = J(q(t)) q(t) = (t) B(α(t)) α(t) [ ] [ ] I 0 vn 0 = (t) 0 B(α(t)) α(t) [ ] I 0 = J a (q(t)) q(t) 0 B(α(t)) c Anton Shiriaev. 5EL158: Lecture 7 p. 10/??

Lecture 7: Kinematics: Velocity Kinematics - the Jacobian Manipulator Jacobian Analytical Jacobian Singularities Inverse Velocity and Manipulability c Anton Shiriaev. 5EL158: Lecture 7 p. 11/??

Singularities The manipulator Jacobian J(q) a 6 n-matrix mapping ξ = v0 n = J(q) d ω0,n 0 dt q = J v(q) d dt q J ω (q) = [ J 1 (q), J 2 (q),..., J n (q) ] q 1. q n c Anton Shiriaev. 5EL158: Lecture 7 p. 12/??

Singularities The manipulator Jacobian J(q) a 6 n-matrix mapping ξ = v0 n = J(q) d ω0,n 0 dt q = J v(q) d dt q J ω (q) = [ J 1 (q), J 2 (q),..., J n (q) ] q 1. q n Since ξ R 6 rank [ J 1 (q), J 2 (q),..., J n (q) ] 6, q c Anton Shiriaev. 5EL158: Lecture 7 p. 12/??

Singularities The manipulator Jacobian J(q) a 6 n-matrix mapping ξ = v0 n = J(q) d ω0,n 0 dt q = J v(q) d dt q J ω (q) = [ J 1 (q), J 2 (q),..., J n (q) ] q 1. q n Since ξ R 6 rank [ J 1 (q), J 2 (q),..., J n (q) ] 6, q Configurations q s = [ q s 1,..., qs n] for which rank [ J 1 (q s ), J 2 (q s ),..., J n (q s ) ] are called singular < max q { rank [ J1 (q), J 2 (q),..., J n (q) ]} c Anton Shiriaev. 5EL158: Lecture 7 p. 12/??

Singularities Identifying manipulator singularities are important: Singularities represent configurations from which certain direction may be unattainable; c Anton Shiriaev. 5EL158: Lecture 7 p. 13/??

Singularities Identifying manipulator singularities are important: Singularities represent configurations from which certain direction may be unattainable; At singularity bounded end-effector velocity ξ may correspond to unbounded joint velocities q ξ 1 = J 1 (q 1, q 2 ) q 1 + J 2 (q 1, q 2 ) q 2 c Anton Shiriaev. 5EL158: Lecture 7 p. 13/??

Singularities Identifying manipulator singularities are important: Singularities represent configurations from which certain direction may be unattainable; At singularity bounded end-effector velocity ξ may correspond to unbounded joint velocities q ξ 1 = J 1 (q 1, q 2 ) q 1 + J 2 (q 1, q 2 ) q 2 Singularities often correspond to points on the boundary of the manipulator workspace c Anton Shiriaev. 5EL158: Lecture 7 p. 13/??

Singularities of the elbow manipulator c Anton Shiriaev. 5EL158: Lecture 7 p. 14/??

Singularities of the elbow manipulator c Anton Shiriaev. 5EL158: Lecture 7 p. 15/??

Lecture 7: Kinematics: Velocity Kinematics - the Jacobian Manipulator Jacobian Analytical Jacobian Singularities Inverse Velocity and Manipulability c Anton Shiriaev. 5EL158: Lecture 7 p. 16/??

Assigning Joint Velocities The manipulator Jacobian J(q) a 6 n-matrix mapping ξ = v0 n ω 0 0,n = J(q) d dt q = [ J 1 (q), J 2 (q),..., J n (q) ] q 1. q n c Anton Shiriaev. 5EL158: Lecture 7 p. 17/??

Assigning Joint Velocities The manipulator Jacobian J(q) a 6 n-matrix mapping ξ = v0 n ω 0 0,n = J(q) d dt q = [ J 1 (q), J 2 (q),..., J n (q) ] When the Jacobian is square, we can invert it q 1. q n q = J 1 (q)ξ des c Anton Shiriaev. 5EL158: Lecture 7 p. 17/??

Assigning Joint Velocities The manipulator Jacobian J(q) a 6 n-matrix mapping ξ = v0 n ω 0 0,n = J(q) d dt q = [ J 1 (q), J 2 (q),..., J n (q) ] When the Jacobian is square, we can invert it q 1. q n q = J 1 (q)ξ des When n > 6 there are many solutions, but them can be found q = J + (q)ξ des + ( I J + J ) b, b R n where J + = J T (JJ T ) 1 c Anton Shiriaev. 5EL158: Lecture 7 p. 17/??

Manipulability Suppose that we restricted possible joint velocities of n-degree of freedom robot q 2 = q1 2 + + qn 2 1 c Anton Shiriaev. 5EL158: Lecture 7 p. 18/??

Manipulability Suppose that we restricted possible joint velocities of n-degree of freedom robot q 2 = q1 2 + + qn 2 1 Then we restricted possible body velocities by ξ T P(q a )ξ = ξ T ( J(q a )J T (q a ) ) 1 ξ = ( J + (q a )ξ ) T J + (q a )ξ = q 2 1 c Anton Shiriaev. 5EL158: Lecture 7 p. 18/??

Manipulability Suppose that we restricted possible joint velocities of n-degree of freedom robot q 2 = q1 2 + + qn 2 1 Then we restricted possible body velocities by ξ T P(q a )ξ = ξ T ( J(q a )J T (q a ) ) 1 ξ = ( J + (q a )ξ ) T J + (q a )ξ = q 2 1 The set defined by the inequality is called manipulability ellipsoid It illustrates how easy/difficult to move the end-effector in certain directions from the configuration q a c Anton Shiriaev. 5EL158: Lecture 7 p. 18/??