Concepts of Chemical Bonding and Molecular Geometry Part 1: Ionic and Covalent Bonds. David A. Katz Pima Community College Tucson, AZ

Similar documents
Chapter 8: Concepts of Chemical Bonding

Chapter 8 Concepts of Chemical. Bonding

Chapter 8 Concepts of Chemical. Bonding

Chapter 8 Concepts of Chemical. Bonding. Ionic vs Covalent Simulation 3/13/2013. Why do TiCl 4 & TiCl 3 have different colors?

Chapter 8 Concepts of Chemical. Bonding

Chapter 8. Basic Concepts of Chemical Bonding. Lecture Presentation. John D. Bookstaver St. Charles Community College Cottleville, MO

The energy associated with electrostatic interactions is governed by Coulomb s law:

Chemistry: The Central Science

Chapter 8 & 9 Concepts of Chemical. Bonding

Chapter 8 The Concept of the Chemical Bond

Name: Hr: 8 Basic Concepts of Chemical Bonding

Covalent Bonding. a. O b. Mg c. Ar d. C. a. K b. N c. Cl d. B

Chapter 8. Chemical Bonding I: Basic Concepts

Chapter 6 Chemical Bonding

Chapter 8. Basic Concepts of Chemical Bonding. Lecture Presentation. John D. Bookstaver St. Charles Community College Cottleville, MO

Name AP CHEM / / Chapter 8 Outline Bonding: General Concepts

Chapter 8. Basic Concepts of Chemical Bonding

CHAPTER 12 CHEMICAL BONDING

Chemical Bonding I: Covalent Bonding. How are atoms held together in compounds?

The Octet Rule Most atoms seek the same electron configuration as the closest noble gas, which is very stable.

Chemical Bonding I: Basic Concepts

Worksheet 5 - Chemical Bonding

Chapter Nine. Chapter Nine. Chemical Bonds: A Preview. Chemical Bonds. Electrostatic Attractions and Repulsions. Energy of Interaction

Chemistry: The Central Science. Chapter 8: Basic Concepts of Chemical Bonding

Bonding in Chemistry. Chemical Bonds All chemical reactions involve breaking of some bonds and formation of new ones where new products are formed.

Chapter Nine. Chemical Bonding I

Chapter 12. Chemical Bonding

Lewis Dot Symbols. The Octet Rule ATOMS TEND TO GAIN, LOSE, or SHARE ELECTRONS to ATTAIN A FILLED OUTER SHELL of 8 ELECTRONS.

Carbon Compounds. Chemical Bonding Part 2

Chemical Bonds & Lattice Energy

Chapter 8. Bonding: General Concepts. Copyright 2017 Cengage Learning. All Rights Reserved.

Unit 11 Bonding. Identifying the type of bonding involved in a molecule will allow us to predict certain general properties of a compound.

Chemistry 101 Chapter 9 CHEMICAL BONDING

Forming Chemical Bonds

Cartoon courtesy of NearingZero.net. Chemical Bonding and Molecular Structure

C H E M 1 CHEM 101-GENERAL CHEMISTRY CHAPTER 7 CHEMICAL BONDING & MOLECULAR STRUCTURE INSTR : FİLİZ ALSHANABLEH

CHEM 110: CHAPTER 8 Basic Concepts of Chem Bonding. Lewis Structures of Atoms: The Lewis Dot Diagram

Chapter 9 Bonding - 1. Dr. Sapna Gupta

Chapter 9 Bonding. Dr. Sapna Gupta

Bonding: Part Two. Three types of bonds: Ionic Bond. transfer valence e - Metallic bond. (NaCl) (Fe) mobile valence e - Covalent bond

Chapter 8. Chemical Bonding: Basic Concepts

Chem 1075 Chapter 12 Chemical Bonding Lecture Outline. Chemical Bond Concept

Chapter 12. Chemical Bonding

Chapter 7 Chemical Bonding and Molecular Structure

Chapter 9. Chemical Bonding I: The Lewis Model. HIV-Protease. Lecture Presentation

8.1 Types of Chemical Bonds List and define three types of bonding. chapter 8 Bonding General Concepts.notebook. September 10, 2015

Chemical Bonding -- Lewis Theory (Chapter 9)

Types of Bonding : Ionic Compounds. Types of Bonding : Ionic Compounds

Chapter 8. Chemical Bonding: Basic Concepts

Bonding: Part Two. Three types of bonds: Ionic Bond. transfer valence e - Metallic bond. (NaCl) (Fe) mobile valence e - Covalent bond

Unit 7: Basic Concepts of Chemical Bonding. Chemical Bonds. Lewis Symbols. The Octet Rule. Transition Metal Ions. Ionic Bonding 11/17/15

Ch 6 Chemical Bonding

AP Chemistry A. Allan Chapter 8 Notes - Bonding: General Concepts

Chapter 8. Basic Concepts of Chemical Bonding

Chapter 8 Basic Concepts of Chemical Bonding

Chemical Bonding Basic Concepts

Chapter 11 Chemical Bonds: The Formation of Compounds from Atoms Advanced Chemistry Periodic Trends in Atomic Properties Learning Objective

Chapter 6 Chemical Bonding

Chapter 8: Bonding. Section 8.1: Lewis Dot Symbols

Chemistry Chapter 6 Test Review

Bond Atoms Electron behavior Ionic Metal + nonmetal Electrons transferred Covalent Nonmetal + nonmetal Electrons shared

Three types of chemical bonding: Recall that we can use dots to show valence electrons - these are called Lewis electron-dot structures:

Chapter 8. Bonding: General Concepts

bond energy- energy required to break a chemical bond -We can measure bond energy to determine strength of interaction

INTRODUCTORY CHEMISTRY Concepts and Critical Thinking

There are two types of bonding that exist between particles interparticle and intraparticle bonding.

Chem 115: Chapter 9 Dr. Babb

CHEMICAL BONDS. Electrical forces. Reflect a balance in the attractive and repulsive forces between electrically charged particles

Chemical Bonding AP Chemistry Ms. Grobsky

Chapter 8. Bonding: General Concepts

Chapter 9 MODELS OF CHEMICAL BONDING

Chapter 6 Chemistry Review

Introduction to Chemical Bonding

What is a Bond? Chapter 8. Ionic Bonding. Coulomb's Law. What about covalent compounds?

Chapter 7: Chemical Bonding and Molecular Structure

Chapter 8. Basic Concepts of Chemical Bonding

Chapter 8 Basic concepts of bonding

Cartoon courtesy of NearingZero.net. Chemical Bonding and Molecular Structure

Chemistry 101 Chapter 9 CHEMICAL BONDING. Chemical bonds are strong attractive force that exists between the atoms of a substance

Chapter Eight. p328. Bonding: General Concepts

Cartoon courtesy of NearingZero.net. Unit 3: Chemical Bonding and Molecular Structure

INTRODUCTORY CHEMISTRY Concepts and Critical Thinking Seventh Edition by Charles H. Corwin

Chapter 7 Chemical Bonding

We study bonding since it plays a central role in the understanding of chemical reactions and understanding the chemical & physical properties.

UNIT 5.1. Types of bonds

CHAPTER 8: BASIC CONCEPTS OF CHEMICAL BONDING. Bond-an attractive interaction between two or more atoms.

BONDING. Covalent bonding Two non- metal atoms can form a stable octet structure by sharing electrons.

Chapter 7. Ionic & Covalent Bonds

Covalent Bonding. In nature, only the noble gas elements exist as uncombined atoms. All other elements need to lose or gain electrons

What is this? Electrons: charge, mass? Atom. Negative charge(-), mass = 0. The basic unit of matter. Made of subatomic particles:

CHEMICAL BONDS. Determining Percentage Composition, Empirical, and Molecular Formulas for Compounds:

Molecular Geometry & Polarity

Chapter 8. Basic Concepts of Chemical Bonding

Its Bonding Time. Chemical Bonds CH 12

Chapter 6. Chemical Bonding

Chapter 8. Bonding: General Concepts

Chapter #3 Chemical Bonding

Ch 10 Chemical Bonding, Lewis Structures for Ionic & Covalent Compounds, and Predicting Shapes of Molecules

Chemical Bonding. Chemical Bonding 20/03/2015. The atomic radius increases from right to left. The atomic radius increases from top to bottom


Transcription:

Concepts of Chemical Bonding and Molecular Geometry Part 1: Ionic and Covalent Bonds David A. Katz Pima Community College Tucson, AZ

Chemical Bonds Three basic types of bonds: Ionic Electrostatic attraction between ions Covalent Sharing of electrons Metallic Metal atoms bonded to several other atoms

Chemical Bonds Of the three types of chemical bonds, ionic and covalent bonds are most common. These are considered to be extreme forms of connecting or bonding atoms: Ionic - complete transfer of 1 or more electrons from one atom to another Covalent - some valence electrons shared between atoms Most bonds are somewhere in between.

Ionic Bonding

Forming an ionic compound Metal of low IE Nonmetal of high EA 2 Na (s) + Cl 2 (g) 2 Na + + 2 Cl -

Forming an ionic compound Na [Ne] 3s 2 Na + [Ne] 3s 0 Cl [Ne] 3s 2 3p 5 Cl - [Ne] 3s 2 3p 6 The Na + and Cl - are held together by the electrostatic attraction of the two ions. This electrostatic attraction is the ionic bond

Forming an ionic compound Ionic compounds, such as sodium chloride, do not form molecules, they form ionic crystals. This structure is called a crystal lattice

Forming an ionic compound Ionic compounds, such as sodium chloride, do not form molecules, they form ionic crystals. This structure is called a crystal lattice

Energetics of Ionic Bonding Previously, it was noted that the ionization energy for sodium is 495 kj/mol.

Energetics of Ionic Bonding 349 kj/mol of that energy needed to ionize a sodium atom is supplied by giving electrons to chlorine. That energy is called the electron affinity.

Energetics of Ionic Bonding These numbers don t explain why the reaction of sodium metal and chlorine gas to form sodium chloride is so exothermic!

Energetics of Ionic Bonding The missing energy, which is unaccounted for, is the electrostatic attraction between the newly formed sodium cation and chloride anion.

Lattice Energy This third piece of energy is the lattice energy: The energy required to completely separate a mole of a solid ionic compound into its gaseous ions. The energy associated with electrostatic interactions (the forces which hold the crystal lattice together) is governed by Coulomb s law: E el = Q 1Q 2 d where: Q 1 and Q 2 are the charges of the ions d is the distance between them

Lattice Energy Since lattice energy is a function of the charges on the ions, then lattice energy increases with the charge on the ions. (compare Group I with Group II compounds.) Lattice energy also increases with decreasing size of ions. (compare Li thru Cs compounds)

Lattice Energy

Energetics of Ionic Bonding By accounting for all three energies (ionization energy, electron affinity, and lattice energy), we can get a good idea of the energetics involved in the ionic bonding process.

We break the process into steps Electron affinity of Cl Ionization of Na Conversion of Cl 2 to Cl atoms Conversion of solid Na to gaseous Na Energy of net reaction

Energetics of Ionic Bonding These phenomena also helps explain the octet rule. Metals tend to stop losing electrons once they attain a noble gas configuration because energy would be expended that cannot be overcome by lattice energies. Once a noble gas configuration is obtained, the ion is said to be isoelectronic with the noble gas.

Covalent Bonding

Covalent Bonding The bond is a result of the mutual attraction of 2 nuclei for the same electrons.

Covalent Bonding In these bonds atoms share electrons. There are several electrostatic interactions in these bonds: Attractions between electrons and nuclei Repulsions between electrons Repulsions between nuclei

Lewis Structures Lewis structures are representations of molecules showing all electrons, bonding and nonbonding. The shared electrons can be represented by a pair of dots or a single dash

Multiple Covalent Bonds Atoms can share more than a single pair of electrons A double bond is the result of two atoms sharing 4 electrons (2 electron pairs) A triple bond is the result of two atoms sharing 6 electrons (3 electron pairs) Oxygen has a double bond Nitrogen has a triple bond NOTE: In reality, the electron pairs are not lined up as diagrammed above, they are arranged in 3-dimensional space

Multiple Covalent Bonds Double and triple bonds are commonly observed for C, N, P, O, and S Carbon dioxide methanal Tetrafluoroethene Sulfur trioxide

Multiple Covalent Bonds What is the effect of bonding and structure on molecular properties? Free rotation around C C single bond No rotation around C=C double bond

Multiple Bonds and Bond Length As the number of bonds between two atoms increases, the bond length decreases. A single bond is longer than a double bond. Thus, a double bond is stronger than a single bond. A double bond is longer than a triple bond Thus, a triple bond is stronger than a double bond. Bond Bond length C C 1.54Å C=C 1.34Å C C 1.20Å

Polar Covalent Bonds Although atoms often form compounds by sharing electrons, the electrons are not always shared equally. Fluorine pulls harder on the electrons it shares with hydrogen than hydrogen does. Therefore, the fluorine end of the molecule has more electron density than the hydrogen end. Note: These diagrams are called Electrostatic Potential Surfaces and represent the polarities in molecules

Polar Covalent Bonds When two atoms share electrons unequally, a bond dipole results. The dipole moment,, produced by two equal but opposite charges separated by a distance, r, is calculated: = Qr Where Q is the charge = 1.6 x 10-19 coulomb It is measured in debyes (D). 1D = 3.34 x 10-30 coulomb-meter

Polar Covalent Bonds This unequal sharing of electrons was studied by Linus Pauling (1901-1994) in a series of papers published in 1931-1932 In 1932, Pauling proposed a relative electronegativity scale: COORDINATES OF ELEMENTS ON THE ELECTRONEGATIVITY SCALE H 0.00 Br 0.75 P.10 Cl.94 I.40 N.95 S.43 O 1.40 C.55 F 2.00 J. Am. Chem. Soc. 54 (September 1932): 3570-3582

Electronegativity: The ability of atoms in a molecule to attract electrons to itself. Electronegativity values range from 0 to 4.0 On the periodic table, electronegativity increases as you go from left to right across a row. from the bottom to the top of a column.

Decreasing electronegativity Electronegativity: Increasing electronegativity

Electronegativity and Bond Polarity A pure covalent bond and an ionic bond are the two extreme cases. In general, as the electronegativity difference between two atoms increases, the percent ionic character of the bond increases. Covalent Ionic Percent ionic character As a general rule: If ΔEN < 0.5, then the bond is mainly covalent If 0.5 ΔEN 1.5, then the bond ranges from weak polar to strong polar If ΔEN > 1.5, then the bond is most probably ionic

Polar Covalent Bonds The greater the difference in electronegativity, the more polar is the bond. The negative end of the molecule is the atom with the higher electronegativity

Polar Covalent Bonds Electrostatic potential surfaces (EPS) are used to visualize a) Where the charges lie in molecules b) The polarity of molecules The HF molecule superimposed on the EPS surface The HF molecule seen inside on the EPS surface The EPS surface around HF The HF molecule is not visible The boundary surface around the molecule is made up of all the points in space where the electron density is a given value (here 0.002 e - /Å 3 ). The colors indicate the potential (charges) experienced by a H + ion on the surface. More attraction (a negative site) is red, and repulsion (a positive site) is blue

Polarity Just because a molecule possesses polar bonds does not mean the molecule as a whole will be polar. The shape and symmetry of the molecule will determine the overall polarity. In carbon dioxide, CO 2, the polarities of the bonds cancel out and the molecule is non-polar.

Polarity By adding the individual bond dipoles, one can determine the overall dipole moment for the molecule. The bent angle of a water molecule increases the overall polarity of the molecule.

Polarity In NH 3, the shape and the nonbonded electron pair on nitrogen cause the nitrogen end to be negative and the hydrogen ends to be positive In NF 3, the high electronegativity of the F atoms result in the N being slightly positive. The overall polarity of the molecules is less than that for NH 3 molecule.

Polarity In methylamine, the molecule is polar and the region around the nitrogen is negative. Boron trifluoride BF 3 is not polar (but the B is slightly positively charged) Carbonyl chloride, Cl 2 CO Carbonyl chloride, Cl 2 CO is polar with the O more negative than Cl.

Polarity The EP surfaces show cis-c 2 H 2 Cl 2 (left) is polar whereas trans-c 2 H 2 Cl 2 (right) is not polar.

Polarity Why are these molecules polar or non-polar?

Polarity phosgene The polarities of molecules of the type AX 3 Their polarities are a result of shape of the molecule, its symmetry, and the electronegativities of the atoms bonded to the central atom.

Polarity The change in polarity (shown as dipole moments) in the methane to tetrachloromethane series