VBIC. SPICE Gummel-Poon. (Bipolar Junction Transistor, BJT) Gummel Poon. BJT (parasitic transistor) (avalance mutliplication) (self-heating)

Similar documents
1 Introduction -1- C continuous (smooth) modeling

BIPOLAR JUNCTION TRANSISTOR MODELING

Modeling high-speed SiGe-HBTs with HICUM/L2 v2.31

A Novel Method for Transit Time Parameter Extraction. Taking into Account the Coupling Between DC and AC Characteristics

HICUM / L2. A geometry scalable physics-based compact bipolar. transistor model

ECE-305: Spring 2018 Final Exam Review

Institute of Solid State Physics. Technische Universität Graz. Exam. Feb 2, 10:00-11:00 P2

VBIC Fundamentals. Colin McAndrew. Motorola, Inc East Elliot Rd. MD EL-701 Tempe, AZ USA 1 VBIC

Lecture 38 - Bipolar Junction Transistor (cont.) May 9, 2007

HICUM release status and development update L2 and L0

About Modeling the Reverse Early Effect in HICUM Level 0

HICUM Parameter Extraction Methodology for a Single Transistor Geometry

Digital Integrated CircuitDesign

Lecture 17 The Bipolar Junction Transistor (I) Forward Active Regime

ELEC 3908, Physical Electronics, Lecture 19. BJT Base Resistance and Small Signal Modelling

Bipolar Junction Transistor (BJT) Model. Model Kind. Model Sub-Kind. SPICE Prefix. SPICE Netlist Template Format

MEXTRAM (level 504) the Philips model for bipolar transistors

Semiconductor Device Modeling and Characterization EE5342, Lecture 15 -Sp 2002

EE105 - Fall 2006 Microelectronic Devices and Circuits

Modelling the Vertical PNP - Transistor using ICCAP and VBIC

Regional Approach Methods for SiGe HBT compact modeling

The Mextram Bipolar Transistor Model

VBIC MODELING HANDBOOK

Memories Bipolar Transistors

Lecture 17 - The Bipolar Junction Transistor (I) Forward Active Regime. April 10, 2003

2 nd International HICUM user s meeting

Recitation 17: BJT-Basic Operation in FAR

Final Examination EE 130 December 16, 1997 Time allotted: 180 minutes

Device Physics: The Bipolar Transistor

Charge-storage related parameter calculation for Si and SiGe bipolar transistors from device simulation

Semiconductor Device Modeling and Characterization EE5342, Lecture 16 -Sp 2002

Methodology for Bipolar Model Parameter Extraction. Tzung-Yin Lee and Michael Schröter February 5, TYL/MS 2/5/99, Page 1/34

Mextram 504. Jeroen Paasschens Willy Kloosterman Philips Research Laboratories, Eindhoven. c Philips Electronics N.V. 1999

Lecture 35 - Bipolar Junction Transistor (cont.) November 27, Current-voltage characteristics of ideal BJT (cont.)

The Mextram Bipolar Transistor Model

Lecture Notes for ECE 215: Digital Integrated Circuits

ECE-342 Test 2 Solutions, Nov 4, :00-8:00pm, Closed Book (one page of notes allowed)

13. Bipolar transistors

Lecture 27: Introduction to Bipolar Transistors

Metal-oxide-semiconductor field effect transistors (2 lectures)

ECE 305 Fall Final Exam (Exam 5) Wednesday, December 13, 2017

ELEC 3908, Physical Electronics, Lecture 18. The Early Effect, Breakdown and Self-Heating

12. Memories / Bipolar transistors

BJT - Mode of Operations

Chapter 7. The pn Junction

Bipolar junction transistor operation and modeling

Charge-Storage Elements: Base-Charging Capacitance C b

Status of HICUM/L2 Model

Student Number: CARLETON UNIVERSITY SELECTED FINAL EXAMINATION QUESTIONS

figure shows a pnp transistor biased to operate in the active mode

****** bjt model parameters tnom= temp= *****

Lecture 29: BJT Design (II)

UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences

Model derivation of Mextram 504

The Devices. Jan M. Rabaey

Non-standard geometry scaling effects

Peak Electric Field. Junction breakdown occurs when the peak electric field in the PN junction reaches a critical value. For the N + P junction,

Type Marking Pin Configuration Package BFR92P GFs 1=B 2=E 3=C SOT23

6.012 Electronic Devices and Circuits

Semiconductor Physics Problems 2015

DATA SHEET. PRF957 UHF wideband transistor DISCRETE SEMICONDUCTORS. Product specification Supersedes data of 1999 Mar 01.

Spring Semester 2012 Final Exam

LOW TEMPERATURE MODELING OF I V CHARACTERISTICS AND RF SMALL SIGNAL PARAMETERS OF SIGE HBTS

Chapter 2. Small-Signal Model Parameter Extraction Method

Accurate transit time determination and. transfer current parameter extraction

The Devices. Devices

BFP193. NPN Silicon RF Transistor*

Microelectronic Circuit Design Fourth Edition - Part I Solutions to Exercises

HICUM/L2 version 2.2: Summary of extensions and changes

BFR93A. NPN Silicon RF Transistor. For low-noise, high-gain broadband amplifiers at collector currents from 2 ma to 30 ma

A Simplified, Analytical, One-Dimensional Model for Saturation Operation of the Bipolar Transistor

Schottky Rectifiers Zheng Yang (ERF 3017,

ESD (Electrostatic discharge) sensitive device, observe handling precaution! Type Marking Pin Configuration Package BFR181 RFs 1=B 2=E 3=C SOT23

Circle the one best answer for each question. Five points per question.

Consider a uniformly doped PN junction, in which one region of the semiconductor is uniformly doped with acceptor atoms and the adjacent region is

BFP196W. NPN Silicon RF Transistor*

Nonlinear distortion in mm-wave SiGe HBTs: modeling and measurements

HICUM/L2 version 2.21: Release Notes

BFP193. NPN Silicon RF Transistor* For low noise, high-gain amplifiers up to 2 GHz For linear broadband amplifiers f T = 8 GHz, F = 1 db at 900 MHz

ESD (Electrostatic discharge) sensitive device, observe handling precaution! Type Marking Pin Configuration Package BFR183W RHs 1=B 2=E 3=C SOT323

Devices. chapter Introduction. 1.2 Silicon Conductivity

CLASS 3&4. BJT currents, parameters and circuit configurations

Introduction to Power Semiconductor Devices

ECE 497 JS Lecture - 12 Device Technologies

PHYSICAL ELECTRONICS(ECE3540) CHAPTER 9 METAL SEMICONDUCTOR AND SEMICONDUCTOR HETERO-JUNCTIONS

ELEC 3908, Physical Electronics, Lecture 17. Bipolar Transistor Injection Models

BFP196W. NPN Silicon RF Transistor*

For the following statements, mark ( ) for true statement and (X) for wrong statement and correct it.

PHYSICAL ELECTRONICS(ECE3540) CHAPTER 9 METAL SEMICONDUCTOR AND SEMICONDUCTOR HETERO-JUNCTIONS

Holes (10x larger). Diode currents proportional to minority carrier densities on each side of the depletion region: J n n p0 = n i 2

R. Ludwig and G. Bogdanov RF Circuit Design: Theory and Applications 2 nd edition. Figures for Chapter 6

Characteristics of Active Devices

Lecture 15 - The pn Junction Diode (I) I-V Characteristics. November 1, 2005

Junction Bipolar Transistor. Characteristics Models Datasheet

Chapter 13 Small-Signal Modeling and Linear Amplification

Flint Ward 1 !( 1. Voting Precinct Map «13 «15 «10. Legend. Precinct Number. Precinct Boundaries. Streets. Hydrography. Date: 1/18/2017.

Session 6: Solid State Physics. Diode

TEMPERATURE DEPENDENCE SIMULATION OF THE EMISSION COEFFICIENT VIA EMITTER CAPACITANCE

Review of Band Energy Diagrams MIS & MOS Capacitor MOS TRANSISTORS MOSFET Capacitances MOSFET Static Model

junctions produce nonlinear current voltage characteristics which can be exploited

Transcription:

page 4 VBC SPCE Gummel-Poon (Bipolar Junction Transistor, BJT) 1970 Gummel Poon GP BJT (parasitic transistor) (avalance mutliplication) (self-heating) (qusai-saturation) Early GP BJT (Heter-junction Bipolar Transistor HBT) Vertical Bipolar nter-company (VBC) VBC Gummel-Poon page 4

page 5 Gummel-Poon GP VBC.1 VBC Gummel-Poon VBC BJT Gummel-Poon VBC 1. (Base width modulation) BJT HBT GP VA(Early voltage). (parasitic PNP) 3. Kull (quasi-saturation) 4. 5. 6. (distributed base) (current crowding effect) 7. epi-layer 8. (self-heating) 9. (weak avalanche breakdown) 10. (excess phase shift) page 5

page 6 NPN VBC -1 Gummel-Poon NPN Gummel-Poon PNP R C Q BCX Q BC BE BEX BC gc BC C BEO C BCO Double Poly-Silicon BJT (poly-silicon base) R B R BP (normalized base charge qb qbp) (DC AC Transient) VBC Weil-McNamee RLC (thermal network) page 6

page 7 S C si R S C BCO R CX tfp trp bp BCP Q BCP R BP q bp cx BEP Q BEP Q BCX R C ci B R BX Q BEX bx bex R B q b Q BC Q BE bc bi be gc ei txf tzr C BEO R E E dt F lxf xf xf 1 tzf RTH CTH tzf Q cxf 1Ω t 1 page 7

Chap. VBC page 8.1.1 (cc) CC (Transport current) tzf tzr s V bei V bci cc = tzf tzr = exp 1 exp 1 q b NF V th NR V th (.1a) V th k T q = (.1b) Vth (Thermal voltage) k q T ( K) q b ( ) 4 1 1 1 qb q S q S q S q je q jc q1s 1 VER VEF s V bei s V bci qs = exp 1 exp 1 KF + N FV tv KR NR V tv = + + (.a) = + + (.b) (.c) q 1S (Base-width modulation) q S (High Level injection effect) q je q jc C JE C JC.1. ( be, bc ) VBC ( ) ( Recombination) V bei V bei BE = WBE BE exp 1 + BEN exp 1 NE V th N EN V th (.3a) page 8

page 9 V bei V bei BEX = ( 1 WBE ) BE exp 1 + BEN exp 1 NE V th NEN V th V bci V bci BC = BC exp 1 + BCN exp 1 NCV th NCN V th (.3b) (.3c) BE BC - - NE NC - - (emission coefficient) BEN BCN NEN NCN W BE (ntrinsic) (extrinsic).1.3 (Weak Avalanche Effect) BC BC ( i ) ( ) d ε qe i = d εi P = exp = exp λ qeλ (mean free path) gc α n b n gc = n xd Emax exp (.4a) b E n max n = cc bc (.4b) gc BC x d E max BC n ( NPN ) gc << n page 9

page 10 CJC C jc = (.5a) MC VBC 1 PC ε xd = (.5b) C x d jc PC V Emax = 1 MC BC (.5c) C BC CJC BC PC jc BC (Built-in potential) MC BC (Grading coefficient) BC (.4a) AVC igc = ( cc BC ) AVC1 ( PC Vbci ) exp ( ) 1 MC PC Vbci αn 1 AVC1 = b 1 MC ( 1 MC ) εbn AVC = CJC PC n MC (.6) AVC1 AVC VBC Gummel-Poon.1.4 (Quasi-saturation effects) Kirk Effect ( β ) (f T ) ( ρ c ) page 10

Chap. VBC page 11 ( C R ), BC V V ( R R ) = + BCi BC C CX C VBC BC BC - ci cx contact BE SCR BC SCR Emitter Base Collector Sub collector contact ci cx R C R CX [11] rci rci K Vrci + VthK bci Kbcx ln K = Vrci RC 1+ VO bci + 1 + 1 bcx (.7) RC VO GAMM VBC. VBC CC( ) GCTC (Global Communication Technology Coporation) ngap/gaas HBT VBC page 11

page 1-3 Emitter n + n + ngaas GaAs Ledge n ngap Ledge Base p + GaAs Collector n GaAs Subcollector n + GaAs Semi nsulator Substrate..1-1 VBC (R E ) (R CX ) page 1

page 13 (R B ) (R BX )..1.1 RE-flyback RC-flyback -4 HP 414 R E (E) (ei) C ( ) V CE R E V CE B R E -4(a) B + V CE = 0 ~ 10mA = 0A step 100uA C B + V EC = 0 ~ 0mA 0 E = A step 100uA (a) (b) RE-flyback(a) RCX-flyback(b) R E 1 = V B CE (.8).8 page 13

page 14 0.30 0.5 0.0 VCE (V) Linear fit of RE VCE (V) 0.15 0.10 0.05 0.00 0 4 6 8 10 B (ma) 0.6 0.5 VCE (V) Linear fit of RCX 0.4 VEC (V) 0.3 0. 0.1 0.0 0 5 10 15 0 B (ma) page 14

page 15..1. VBC (R BX R B ) (1). (R BX ) (). (R B ) (.8) (Early Effect) VBC (emitter current crowding effect) RB WBE R B R B = RBX + (.8) qb ( ) ( 1 β ) R + R i + R + + R C π BX B b π ac E ( ) R + R i + R BX B b E optimized -1 ngap/gaas HBT (N B >>N E,N C ) R B 0 page 15

Chap. VBC page 16 j * MAG + ( ) + + ( ) + + ( 1+ β ) R R i R BX B b E R R i R R BX B b π ac E REAL frequency RBX RB R E ( ) R CX ( ) R BX ( ) R B ( ) 19. 7 31.4 0.. Gummel plot ngap/gaas HBT pnp pnp VBC page 16

Chap. VBC page 17 Gummel plot Gummel plot Gummel plot (Diode) V E 0 V B V C V B V C -8 ( B ) ( BE N E ) ( BEN N EN ) V BE (Recombination) kt V BE (R E ) - ( C ) KF KF B C NF 1 RE NE BEN S BE NEN V BE page 17

page 18 B E KR NC NR 1 RCX BCN BC NEN S V BC Gummel plot -10 ( S ) -11-1 ngap/gaas HBT Gummel kt Gummel HBT ngap/gaas HBT KF 1 - Gummel plot page 18

page 19 10-10 -3 1x10-4 C E 1x10-5 C & E 10-6 10-7 10-8 10-9 -0. 0.0 0. 0.4 0.6 0.8 1.0 1. 1.4 1.6 1.8 V BE &V CE 10-10 -3 1x10-4 C & B (A) 1x10-5 10-6 10-7 10-8 10-9 1.0 1.1 1. 1.3 1.4 1.5 V BE (V) c Simulation b Simulation b Measurement c Measurement page 19

Chap. VBC page 0 10-10 -3 1x10-4 E & B (A) 1x10-5 10-6 10-7 10-8 10-9 B Sim (A) E Sim (A) B Mea (A) E mea (A) 10-10 0.8 1.0 1. 1.4 1.6 V BC (V) S(Amp.) 1.58E-5 BE(Amp.) 8.63E-6 BC(Amp.) 4.31E-15 NF 1.03 NE 1.11 NC 1.98 NR 1.01 BEN(Amp.) 1.00E-19 BCN(Amp.) 1.00E-19 KF 1 NEN NCN KR 1.86E-07..3 (Base Width Modulation Effect) ngap/gaas HBT V EF V ER page 0

Chap. VBC page 1 0..4 (Quasi-saturation) VBC R C G AMM V O H RCF Q CO -3-13 -15 R C G AMM V O R C G AMM (epi) V O H RCF Q CO ngap/gaas (mobility) -4 page 1

page RC = 500 RC = 1500 C C GAMM = 100 p GAMM = 0 V C V C RC V GAMM V C VO =100 VO = 10 R C 1 G AMM 5.00E-15 V O 100 H RCF 0.1 V C Q CO 1.00E-15 VO V page

page 3 0.060 0.055 0.050 measurement data simulation 0.045 0.040 Jc (ma/um ) 0.035 0.030 0.05 0.00 0.015 0.010 0.005 0.000 0 1 3 4 5 Vc (V) 0.565 0.5000 Measurement Data Simulation 0.4375 Jc (ma/um ) 0.3750 0.315 0.500 0.1875 0.150 0.065 0.0000 0 1 3 4 5 Vc (V) page 3

Chap. VBC page 4..5 ngap/gaas HBT VBC 3 1. GaAs pnp. (N B >>N E N C ) V EF V ER 0 3. GaAs (epi-layer) VBC ngap/gaas HBT ngap/gaas HBT S(Amp.) 1.58E-5 BE(Amp.) 8.63E-6 BC(Amp.) 4.31E-15 NF 1.03 NE 1.11 NC 1.98 NR 1.01 BEN(Amp.) 1.00E-19 BCN(Amp.) 1.00E-19 KF 1 NEN NCN KR 1.86E-07 WBE 1 R C 1 R E ( ) 19. VEF 0 G AMM 5.00E-15 R CX ( ) 7 VER 0 V O 100 R BX ( ) 31.4 RTH 4.4K H RCF 0.1 R B ( ) 0 CTH 1.00E-09 Q CO 1.00E-15 page 4

Chap. VBC page 5.3 VBC.3.1 VBC VBC - - - (Q BE ) (Q BEX ) - (Q BC ) (Q BCX ) VBC (CBEO) (CBCO) (space charge) (deplete) VBC SGP FC smooth AJ Q, = CJE qj( Vbei, PE, ME, FC, AJE) BE dep C BE QBE, dep qj( Vbei, PE, ME, FC, AJE) = = CJE Vbei Vbei 1 CJE for Vbei < FC PE ME Vbei 1 PE CJE Vbei 1 FC 1 ( 1 ME) ME for Vbei FC PE ME FC + + + PE ( 1 ) (.9) PE - (built-in potential) ME - (0.5, for uniform doped base) - CBE - CBC (1). (). (1). - Q BE page 5

page 6 Q = Q + Q BE BE, dep BE, duf = CJE WBE qje + TFF tzf (.10a) tzf V bci TFF = TF( 1+ QTFq1 ) 1 + XTF exp tzf + TF 1.44 VTF (.10b) CJE - WBE TFF VBC (transit time) (). - Q BEX = ( ) = ( ) (.11) QBEX QBE, dep 1 WBE CJE 1 WBE qj( Vbex, PE, ME, FC, AJE) 0<WBE<1 V BEX VBC Vbx-Vei (3). - QBC Q = Q + Q + Q BC BC, dep BC, duf epi, in = CJC qjc + TR qb + QCO K tzr bci (.1) V bci Kbci = 1+ GAMM exp Vth QCO Kbci (base pushout Kirk Effect) (4). - QBCX Q BCX = QCO K (.13a) bcx page 6

page 7 K bcx V bcx 1 GAMM exp V = + (.13b) th.3. HP 8510 S S de-embedding Pad de-embedding dummy open S Y S mea Y Y open Y deivce pad page 7

page 8 S S S S S 11, open 1, open S 1, open, open S 11, mea 1, mea S 1, mea, mea Y Y Y Y Y 11, open 1, open Y 1, open, open Y 11, mea 1, mea Y 1, mea, mea Y11, device Y1, device Y11, mea Y1, mea Y11, open Y1, open Y Y = Y Y Y Y 1, device, device 1, mea, mea 1, open, open -18 Port 1 Port Ca C c Cb C C C a b c mag ( Y11, device + Y1, device ) = (.14a) mag π f ( Y, device + Y1, device ) = (.14b) -mag π f ( Y1, device ) = (.14c) π f CV C BE V c 0 V b (.14) -19 - -0 page 8

page 9 Port Port 1 Vb = 5 ~ 1V step 0.V Vc = 0V C BE Port Port 1 Vc = 1 ~ 7.5V step 0.45V Vb = 0V C BC -1 - ngap/gaas HBT - - -6 page 9

page 30 3 30 CBE Measurement CBE Simulation 8 CBE (ff) 6 4-5 -4-3 - -1 0 1 VBE (V) C BE 45 40 35 CBC (ff) 30 5 0 15 Measurement Data Simulation 10 5-8 -6-4 - 0 VBC (V) C BC page 30

page 31 C JE (ff) 7.5 C JC (ff) 10. P E 1.35 P C 1.09 M E 75.01m M C 481.m A JE 1m A JC 1m F C 0.9.3.3 f t (unit current gain frequency) VBC (.15) TFF = 1 π f T tzf V bci TFF = TF( 1+ QTFq1 ) 1 + XTF exp tzf + TF 1.44 VTF (.15) TF XTF TF QTF TF TF TF VTF TF VBC Gummel- Poon VBC VTF VBC S de-embbeding H H 1 page 31

page 3 f t H 1-0dB/decade DC~0GHz S H GHz -3 Port Port 1 Vc = 1 ~ 3V step 0.5V Vb = 1. ~ 1.5V step 0.01V ngap/gaas HBT QTF 0 C-CAP -4-7 page 3

page 33 40 35 30 5 Ft (GHz) 0 15 10 5 0 Measurement Simulation 1x10-5 1x10-4 10-3 10-10 -1 c (A) 35 30 5 Ft (GHz) 0 15 10 5 Measurement Simulation 0 0 4 6 8 10 c (ma) VBC page 33

page 34 VBC TF(psec) 3.01 TF 0.61m QTF 0 VTF 0 XTF 14.48 TR 0 VBC V BC VBC - (BC) - Kirk Effect VBC V CE (V BC ).3.4 S S TD ADS VBC S -8-5 -8 S page 34

page 35 ngap/gaas HBT VBC C JE (ff) 7.5 C JC (ff) 10. P E 1.35 P C 1.09 M E 75.01m M C 481.m A JE 1m A JC 1m F C 0.9 TF(psec) 3.01 TF 0.61m QTF 0 VTF 0 XTF 14.48 TR 0 S11 Mag. (db) 0-1 - -3-4 -5 Qx4 b =15µA V c =V VBC Model Measurement Data(Mag.) 0 - -4-6 -8-10 -1-14 -16-18 -0 - S11 Phase(degree) -6-7 VBC Model Measurement Data (Phase) 0 5 10 15 0-4 -6-8 -30 Freq. (GHz) ngap/gaas HBT S VBC (S11) page 35

page 36 S1 Mag. (db) -0-30 -40-50 -60-70 VBC Model Measurement Data (Phase) Qx4 b =15µA V c =V VBC Model Measurement Data (Mag.) 0 5 10 15 0 9 90 88 86 84 8 80 78 76 74 7 70 68 66 64 6 60 58 56 54 S1 Phase (degree) Freq. (GHz) ngap/gaas HBT S VBC (S1) S1 Mag. (db) 8 6 4 0 Qx4 b =15µA V c =V VBC Model Measurement Data (Mag.) 180 160 140 10 100 S1 Phase(degree) - VBC Model Measurement Data (Phase) 0 5 10 15 0 80 Freq. (GHz) ngap/gaas HBT S VBC (S1) page 36

page 37 S Mag. (db) 0. 0.0-0. -0.4-0.6-0.8-1.0 Qx4 b =15µA V c =V VBC Model Measurement Data (Mag.) 0 - -4-6 S Phase (degree) -1. -1.4 VBC Model Measurement Data (Phase) 0 5 10 15 0-8 Freq. (GHz) ngap/gaas HBT S VBC (S).4 ngap/gaas HBT.3.3 GP VBC BiCMOS HBT f t C V CE V CB TF XTF VTF TF Q GP VBC f C S dq f d C HBT - HBT page 37

Chap. VBC page 38-9 40 35 Middle current region 30 V ce 5 Low current region Ft (GHz) 0 15 10 5 High current region 0 1x10-5 1x10-4 10-3 10 - c (A) Ft c contact BE SCR BC SCR Emitter Base Collector Sub collector contact high current density w E w B w C w BE w BC ngap/gaas HBT page 38

Chap. VBC page 39.4.1 (Neutral Base Region) w B Q nb ζ ζ w ( ζ 1) e + 1 B wb e 1 i (.16) = + ζ µ V ζ e v e ζ ζ nb T c T µ nb (drift factor) E w V n B ζ = (.17) th ζ wb ( N B ) (intrinsic) ( n i ) En E n V dn V dn = n + N dx n dx T B T i B i (.18) ( n i ) (SiGe) band-gap grading (.16) / ( v c ) (Kirk Effect ) w B v c - vbci ζ ζ dq ( 1) e 1 nb w ζ + B wb e 1 = = + = + (.19) Bf ζ ζ Bfd Bfv dt µ nbvt ζ e vc e ζ page 39

page 40 w B v c c ζ bias Bfd Bfv ( ) w 1 1 B = wb 0 kb c (.0) w w ( V ) = = k b - B0 B BCi 0 c = C jci0 C jci Bfd Bfd 0 b k ( c ) ζ ( ζ ) e = 1 1 w 1 + 1 B Bfd 0 = ζ µ nbvt ζ e (.1) E n = 0 ζ w ( ζ 1) e + 1 B wb = = Bfd 0 ζ µ nbvt ζ e µ nbvt Bfv u Vlim vs v = c vs, E lim 1+ u = w = c µ nc 0 (.) u E ( v, i ) / Elim = jc BCi T BC lim E µ nc 0 Bfv ζ wb 0 1+ u e 1 kb ( c 1) v ζ s u e = ζ 1 (.3) page 40

page 41 ζ e ζ 1 ζ BC e 1 1+ u u 1 1 kb ( c 1) > 1 BC 1+ u u > 1 1 kb ( c 1) 1 BC Bfd 1+ u u 1 kb ( c 1) 1 1 + u ζ wb 0 e ζ 1 Bfv0 u0 Bfv = 1 Bfv0 1 ζ + = + vs e 1 u 1+ u0 u w e ζ 1 ζ B0 Bfv0 = 1+ ζ vs e 1 u0 (.4) V = 0 u 0 u 1 c Bfv0 BCi.4. - (BC Space Charge Region) - wbc BC = (.5) v c w BC v c - BC (punch-through) ε A C jcip C = w C C jcip jcip BC = BCP = BCP c (.6) C jci C jci0 page 41

Chap. VBC page 4 punch-through wc BCP = v c.4.3 (Neutral Emitter Region) w E pe0 pe 0 = dqpe we we d = v + µ V (.7) B ke pe T v ke (contact recombination velotcity) µ pe C β 0 = dc db Ef pe0 = (.8) β 0 0 ( C, Low ) β V = 0 β 0 BCi Ef β ( C Low ) 0, = Ef 0 (.9) β ( V ) 0 C, BCi (ntegral Charge-Control Relation) page 4

page 43 β β 0 ( C Low ) g E 0, T 1+ (.30) (, V ) C BCi CK g E CK.4.5 Ef Q Ef g E T Ef = Ef 01 + CK g E Q = 1 + i T Ef Ef 0 T CK (.31).4.4 - (BE Space Charge Region) - V T v BEi QBE = qae wbe ni exp 1 (.3) PE VT w BE - n i - PE BE BE vbei qae wbeni exp V T 1 = g PE m C (.33) g m g m C BE page 43

page 44.4.5 (Neutral Collector Region) - (Sub-Collector) Kir-effect Krik-effect f T CK CK v 1 ceff x + x + 10 = 1 + r Ci0 1+ ( vceff Vlim ) 3 (.34a) x v V ceff lim = (.34b) V PT x V PT punchthrough V lim ( v < Vlim ) CK ( V lim V PT ) ceff rci 0 v ceff r Ci0 w qa µ = C (.35a) N E nc 0 C v ceff vcei v CEs = VT ln 1+ exp 1 + 1 V T (.35b) v CEs CE CK page 44

page 45 v CEi T = ( ) CK Q pc pcs ( ) QpC = pcsit wi wc wc pcs = 4µ nc 0VT (.36) w w ( 1 i ) = Q pc i C CK T T < CK pc Q + + = = + + i = 1 CK it w i i a i hc w w C 1 1 ahc (.37) a hc > 0 pc pc dq w 1 pc CK = = pcs + di C it i + ahc (.38).4.6 page 45

Chap. VBC page 46 (1). drift Ef - BC - BE = << 1 ( c ) Bfd 0kb 1 = + + + + f 0 Bfd Bfv BC Ef BE ( ) [ ] ( c 1) [ u u 1 ] / sqrt( i ) ( c 1) [ 1 c 1 ] / sqrt( i ) = 0 + BCP C jcip C jci0 Bfd 0kb c 1 + Bfvl u0 u 1 + BE0 / sqrt( it ) (.39) = + + + 0 0h Bfvl 0 BE0 T + + + 0 0h Bfvl BE0 T 0 Ef 0 Bfd 0 Bfv0 BCP ( C jcip C jci0 ) = + + + V = 0 0h - Early Effect Bfvl T C BCi (). Ef Bf pc Ef = g E ( i ) ( 1 ) Ef Ef 0 T CK Q = i + g Ef Ef T E (.40) Bf pc [11] page 46

page 47 fh = hcsw 1+ Q = w i fh hcs T it i ahc w w e ζ w hcs = Bfvs + pcs = + µ 1 4µ CK + ζ Bm C C ζ nc 0VT e nc 0VT (.41) Ef 0 g E hcs a hc V BCi = 0 V BE ( V = 1.5V ) 1 π f CE je jc ( V ) = (.4) ', f CE C T C + C g m 0h matlab Bfvl BE0 r Ci0 = wc 75 qa µ N Ω (.43a) E nc 0 C VPT V (.43b) E lim V v w µ lim s = = lim c nc 0 vs V = wc 0.V (.43c) µ nc 0 w C N C V PT CV matlab -9-31 -3 page 47

page 48 ngap/gaas HBT f 0 (psec).6 Ef 0 0.4 rci 0 77 0h (psec) 1.3 g E.7 VPT.5 Bfvl (psec) 0.01 hcs (psec) 5 Vlim 0.34 BE0 5.5e-14 a hc 0.65 VCEs 0. 40 35 30 Measurement Simulation 5 Ft (GHz) 0 15 10 5 0 1x10-5 1x10-4 10-3 10 - c (A) (log) page 48

page 49 35 30 5 Ft (GHz) 0 15 10 5 Measurement Simulation 0 0 4 6 8 10 c (ma) (lin) page 49