Clues to Earth s Past

Similar documents
Absolute Ages of Rocks

3 Absolute Dating: A Measure of Time

Unit 2 Lesson 3 Absolute Dating. Copyright Houghton Mifflin Harcourt Publishing Company

Notepack 19. AIM: How can we tell the age of rocks? Do Now: Regents Question: Put the layers of rock in order from oldest to youngest.

Clues to Earth s Past

Earth s History. The principle of states that geologic processes that happened in the past can be explained by current geologic processes.

Clues to Earth s Past. Fossils and Geologic Time

Determining Absolute Age

After You Read. Mini Glossary. 130 Rocks and Minerals

STUDY GUIDE CHAPTERS 12 & 13 GEOLOGIC TIME CHAPTER 12 SECTION 12.1

Lesson Learning Goal

Geologic Time: Concepts and Principles

Name: Period: Half-life and Radiometric Dating

Geologic History Unit Notes. Relative age - general age statement like older, younger more recent

HISTORICAL NOTES. Catastrophism. James Usher, mid-1600s, concluded Earth was only a few thousand years old

Geologic Time Test Study Guide

Geologic History. Earth is very, very old

1 Radioactivity BEFORE YOU READ. Atomic Energy. National Science Education Standards STUDY TIP

Page 17a. Objective: We will identify different types of radioactive decay. Warm-up:

Chapter 4: Geologic Time

Clues to Earth s Past

TRACE FOSSIL FOSSIL ICE CORE RELATIVE DATING SUPERPOSITION ABSOLUTE DATING GEOLOGIC COLUMN UNIFORMITARIANISM HALF-LIFE RADIOACTIVE DECAY

Geologic Time. Absolute versus relative time. Absolute time. Absolute time: time in specific units (hours, days, years, etc.)

Geologic Time: Hutton s Outcrop at Siccar Point. How do we determine age (relative & absolute) What is the age of the earth? How do we know?

How Old is the Solar System?

1. What is the definition of uniformitarianism? 2. What is the definition of organic? 4. What is the definition of inorganic?

Geologic Time: Hutton s Outcrop at Siccar Point

GEOLOGICAL TIME / DATING TECHNIQUES

Station Look at the fossil labeled # 16. Identify each of the following: a. Kingdom b. Phylum c. Class d. Genus

9. RELATIVE AND RADIOMETRIC AGES

What we will learn about Fossils?

geologic age of Earth - about 4.6 billion years

CHAPTER 8 DETERMINING EARTH S AGE RELATIVE AND ABSOLUTE ROCK AGES. Loulousis

GEOLOGICAL TIME / DATING TECHNIQUES

GEOLOGIC EVENTS SEDIMENTARY ROCKS FAULTING FOLDING TILTING

Absolute Age - Radioactive Decay. Absolute Age - Isotopes. Absolute Age - Radioactive Decay

Earth s Changing Surface Chapter 4

9. DATING OF ROCKS, FOSSILS, AND GEOLOGIC EVENTS

November 1, Aims: Agenda. SWABT explain the absolute age of rocks using radiometric dating.

Guided Notes Geologic History

Understanding the Atom

The Environment and Change Over Time

Prentice Hall EARTH SCIENCE

Geologic Time. Earth s History

Before the 1700 s, scientists thought that the Earth was only 6,000 years old. This mindset was based on biblical references.

Unit 6: Interpreting Earth s History

NOTES: The Fossil Record and Geologic Time

Chapter 17. Geologic Time: Concepts and Principles

Chapter 3 Time and Geology

Relative Geologic Time Scale. Geologic Time Scale

Geologic Time Essentials of Geology, 11th edition, Chapter 18 Geologic Time: summary in haiku form Key Concepts Determining geological ages

Earth Science 11: Geologic Time Unit

Read It! Station Directions

FOSSILS Uncovering Clues to the Earth s Past

State the principle of uniformitarianism. Explain how the law of superposition can be used to determine the relative age of rocks.

Absolute Dating. Using half-lives to study past-lives. Notes #26

Date: TEN UNIT. Earth. History. and

The Electromagnetic Spectrum. 7.1 Atomic Theory and Radioactive Decay. Isotopes. 19K, 19K, 19K Representing Isotopes

Name Test Date Hour. forms that lived only during certain periods. abundant and widespread geographically. changes to the surface of Earth.

Lecture Outline Friday Feb. 21 Wednesday Feb. 28, 2018

Determining geological ages

Radiometric Dating and the Age of the Earth

Age of Earth/Geologic Time. Vocabulary

10.4 Half-Life. Investigation. 290 Unit C Radioactivity

EARTH S HISTORY. Geological Evolution

2. Can you name earth s three eras and explain why they are divided that way?

Before the 1700 s, scientists thought that the Earth was only 6,000 years old. This mindset was based on biblical references.

Geologic Time. What is Age? Absolute Age The number of years since the rock formed. (150 million years old, 10 thousand years old.

Name Date EARTH S HISTORY VOCABULARY

Name Class Date. 1. In your own words, write a definition for each of the following terms: superposition, geologic column, and geologic time scale.

Unit A (225 m.y. old) Unit B (how old is it?) Unit C (275 m.y. old)

and Fuels OSSIIS Vocabulary Process Skill

6. Relative and Absolute Dating

8. GEOLOGIC TIME LAST NAME (ALL IN CAPS): FIRST NAME: Instructions

Fundamental Forces of the Universe

Geological Time How old is the Earth

The Rock and Fossil Record. Chapter 15 Sections 1-5

Geologi Fisik (Stratigrafi, Paleontologi & Umur Geologi)

ENVI.2030L Geologic Time

The Geology of Pacific Northwest Rocks & Minerals Activity 1: Geologic Time

b. atomic mass H What is the density of an object with a volume of 15cm 3 and a mass of 45g?

1. In the block diagram shown here, which is the oldest rock unit?

NUMB3RS Activity: How to Get a Date. Episode: Bones of Contention

Chapter 3 Time and Geology

Fossils and Carbon Dating Created for SPICE by Rachel Naumann and Melissa Henkel May 2008 Lesson 1: Fossil Detectives

Dating the age of the Earth

Directed Reading page

Vocabulary and Section Summary B

Quiz Three (9:30-9:35 AM)

Friday, 05/06/16 6) HW QUIZ MONDAY Learning Target (NEW)

Geologic Time Grand Canyon National Park

Directed Reading. Section: Determining Relative Age. conclusions? UNIFORMITARIANISM. geology? of Earth? Skills Worksheet

The History of Life. Before You Read. Read to Learn

Geologic Time. Decoding the Age of our Planet & North Carolina

Stars and Galaxies. Evolution of Stars

Atoms, Elements, and the Periodic Table

Issues of the Age of the Earth Parts 1 & 2

GY 112: Earth History

Unit 6 Nuclear Radiation Parent Guide. What is radioactivity and why are things radioactive?

Do Now HW due Friday 9/30

Transcription:

chapter 3 3 Clues to Earth s Past section 3 Absolute Ages of Rocks What You ll Learn how absolute age differs from relative age how the half-lives of isotopes are used to tell a rock s age Before You Read How old are you? How do you know what your exact age is? On the lines below, tell different ways you could verify your exact age. Highlight As you read this section, highlight each of the vocabulary terms and their definitions. C Explain Use quarter sheets of notebook paper to explain absolute age, radioactive decay, half-life, and radiometric dating. Absolute Age Half-life Radioactive Decay Radiometric Dating Read to Learn Absolute Ages After you sort through your stack of magazines looking for that article about the car you saw, you decide that you need to get your magazines back into a neat pile. By now, they are all in a jumble. They are no longer in order according to their relative age. How can you stack them so the oldest are on the bottom and the newest are on the top? Luckily, all the magazines have dates on their covers. The dates make your job easy. By using the dates as your guide, you can put the magazines back in order easily. What is absolute age? Rocks don t have dates stamped on them. Or do they? Absolute age is the age, in years, of a rock or other object. Scientists who study rocks, or geologists, are able to figure out the absolute age of rocks. Geologists use the properties of atoms in rock material to determine absolute age. Knowing the absolute age of rocks leads to a better understanding of events in Earth s history. 98 Clues to Earth s Past

Radioactive Decay Each atom has a dense center called the nucleus, which is surrounded by particles with a negative charge called electrons. Inside the nucleus are protons, which have a positive charge, and neutrons, which have no electric charge. The number of protons determines the identity of the element. The number of neutrons determines the form of the element, or isotope. For example, every atom with just one proton is a hydrogen atom. Hydrogen atoms can have no neutrons, one neutron, or two neutrons. This means that there are three isotopes of hydrogen. Some isotopes break down into other isotopes, giving off a lot of energy. Radioactive decay is the process in which the nucleus of an atom breaks down. What are alpha and beta decay? In some isotopes, a neutron breaks down into a proton and an electron. This type of radioactive decay is called beta decay, because the electron leaves as a beta particle. The nucleus loses a neutron but gains a proton. Other isotopes give off two protons and two neutrons in the form of an alpha particle. This is called alpha decay. Alpha and beta decay are shown in the figure below.. Identify What is the process in which the nucleus of an atom breaks down called? Unstable parent isotope Unstable parent isotope Neutron Neutron Proton Beta decay Alpha decay Daughter product Daughter product Proton Beta particle (electron) Alpha particle Picture This 2. Determine the beta particle that is given off during beta decay and the alpha particle given off during alpha decay. Reading Essentials 99

3. Explain What has to happen to the parent isotope before the daughter product can form? What is a half-life? In radioactive decay, the parent isotope breaks down. The daughter product is formed. Each parent isotope decays to its daughter product at a certain rate. Based on its decay rate, it takes a certain period of time for one half of the parent isotope to decay to its daughter product. The half-life of an isotope is the time it takes for half of the atoms in the isotope to decay. The figure below shows how during each half-life, one half of the parent material decays to the daughter product. For example, the half life of carbon-4 is 5,730 years. So, it will take 5,730 years for half of the carbon-4 atoms to change into nitrogen-4 atoms. You might think that in another 5,730 years, all the remaining carbon-4 atoms will decay into nitrogen-4 atoms. But they don t. Only half the remaining atoms will decay during the next 5,730 years. So, after two half-lives, one fourth of the original carbon-4 atoms will remain. After many half-lives, such a small amount of isotope remains that it is not measurable. Picture This 4. Determine the fraction that shows what remains of the parent material after 4 half-lives. Write the fraction below. Parent material 2 2 halflife 3 4 4 2 halflives 7 5 8 6 8 3 halflives 4 halflives Radiometric Ages Decay of radioactive isotopes is like a clock keeping track of time that has passed since rocks have formed. As time passes, the amount of parent isotope in a rock decreases and the amount of daughter product increases. Scientists can use this information to figure out the absolute age of the rock. Radiometric dating is the process used to calculate the absolute age of rock by measuring the ratio of parent isotope to daughter product in a mineral and knowing the half-life of the parent. % 200 Clues to Earth s Past

What does radiocarbon dating show? Carbon-4 is useful for dating bones, wood, and charcoal up to 75,000 years old. Living organisms take in carbon from the environment to build their bodies. Most of the carbon is carbon-2, but some is carbon-4. The ratio of these two isotopes in the environment is always the same. After the organism dies, the carbon-4 slowly decays. Scientists can compare the isotope ratio in the sample to the isotope ratio in the environment. Once scientists know the amount of carbon-4 in a sample, they can determine the age of bones, wood, or charcoal. Can radiometric dating be used on all rocks? Aside from carbon-4 dating, rocks that can be radiometrically dated are usually igneous and metamorphic rocks. Most sedimentary rocks can t be dated this way. Why? Many sedimentary rocks are made up of particles that eroded from older rocks. Dating these pieces only gives the age of the original rocks they came from. What are the oldest known rocks? Radiometric dating has been used to date the oldest rocks on Earth. These rocks are about 3.96 billion years old. Scientists estimate Earth is about 4.5 billion years old. Rocks older than 3.96 billion years probably were eroded or changed by heat and pressure. Uniformitarianism Before radiometric dating was used, many people thought Earth was only a few thousand years old. But in the 700s, Scottish scientist James Hutton estimated the Earth to be much older. He used the principle of uniformitarianism. Uniformitarianism states that Earth processes occurring today are similar to those that occurred in the past. Hutton observed that the processes that changed the landscape around him were slow. He inferred that they were just as slow all through Earth s history. Hutton hypothesized that it took much longer than a few thousand years to form rock layers and erode mountains. Today, scientists agree that Earth has been shaped by two types of change. There are slow, everyday processes that take place over millions of years. There are also sudden, violent events such as the collision of a comet that might have caused the dinosaurs to become extinct. 5. Explain Why doesn t radiometric dating work on sedimentary rock? 6. Describe What are the two types of change that have changed Earth? Reading Essentials 20

After You Read Mini Glossary absolute age: age, in years, of a rock or other object half-life: time it takes for half of the atoms in an isotope to decay radioactive decay: process in which the nucleus of an atom breaks down radiometric dating: process used to calculate the absolute age of rock by measuring the ratio of parent isotope to daughter product in a mineral and knowing the half-life of the parent uniformitarianism: principle stating that Earth processes occurring today are similar to those that occurred in the past. Review the terms and their definitions in the Mini Glossary. Then explain the difference between absolute age and relative age. 2. Fill in the half-life chart to show the decay of carbon-4 over time. Half-Life of Carbon-4 Percent Carbon-4 Years Passed 00 0 2.5 6.25 3.25 3. In this section you highlighted vocabulary terms. Was this strategy helpful? Explain why or why not. End of Section 202 Clues to Earth s Past Visit earth.msscience.com to access your textbook, interactive games, and projects to help you learn more about the absolute ages of rocks.